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Permafrost conditions in

mountain ranges are

sensitive to regional land

surface temperature

(LST), among other

factors. To explore that

relationship, this study

carried out 3 steps: (1)

validated Moderate

Resolution Imaging

Spectroradiometer 1-km daily LST data using data measured

in situ, (2) used the Harmonic Analysis of Time Series (HANTS)

algorithm for fitting and removing the influence of clouds, and

(3) analyzed the spatial and temporal characteristics of LST

dynamics in the central Tien Shan mountain range based on

remote-sensing data improved by covariance and empirical

orthogonal function analysis. The results indicate that the in

situ data present a basic reference for rebuilding invalid

values in the retrieved data, and the data gap in daily LST

products can be logically reconstructed with the HANTS

algorithm. Major long-term and large-scale patterns can be

well extracted with the reconstructed LST data. The most

dynamic and sensitive LST areas occurred in the buffers

around the periglacial areas. Areas above the periglacial line

mainly exhibited a decrease in LST, while areas below it

showed an increase. This suggests that the periglacial line of

the central Tien Shan region has risen during the past decade.

These findings can provide a reference for how periglacial

areas respond to climate change and how this may affect

hydrological and ecological processes.
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Introduction

Earth’s climate has warmed by approximately 0.6uC over
the past 100 years, and the ecological responses to recent
climate change attract increasing attention (Walther et al
2002). Climate warming has a direct impact on land
surface temperature (LST) and speeds up the thaw of
permafrost, which subsequently affects soil organic
matter degradation, hydrology, and the carbon budget
(Lawrence and Slater 2005; Zimov et al 2006). Continued
or even accelerated future warming is likely to induce
further retreat and degradation of high-elevation
permafrost (Haeberli et al 1993).

As “water towers” fed by precipitation and “solid
reservoirs,” the high Central Eurasia mountains play
important roles for the surrounding lowlands (Messerli et
al 2004). LST is one of the key parameters in the physics
of surface processes, combining surface–atmosphere
interactions and energy fluxes (Wan et al 2002). The
dynamics of permafrost in mountain ranges are sensitive

to the regional LST and affected by multiple factors (eg
elevation, slope, aspect, soil structure, snow, and
vegetation cover); thus, they obviously often exhibit
spatial heterogeneity.

Since little traditionally observed information exists
for high-elevation mountain regions, scientific challenges
in spatiotemporal surface temperature studies at
different scales remain, and LST could serve as an
indicator helping to determine the thermal regime of
permafrost (Hachem et al 2009). Due to the remoteness of
most permafrost areas, monitoring surface processes
through remote sensing is desirable (Running et al 1994;
Westermann et al 2011); it offers the most feasible,
consistent, and accurate means of identifying land surface
parameters (Sellers et al 1997; Gruber and Hoelzle 2001;
Hall et al 2006). LST retrieval using infrared satellite
measurements has been widely discussed (Prata 1993;
Ulivieri et al 1994; Qin et al 2001; Trigo et al 2008).
A number of studies of the retrieval of remotely sensed
LST have been performed (Wan et al 2002; Mao et al 2005;
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Trigo et al 2008), including multichannel approaches
(Ulivieri et al 1994) and application of the mono-window
algorithm to Landsat Thematic Mapper data (Qin et al
2001).

In recent years, Moderate Resolution Imaging
Spectroradiometer (MODIS) LST data sets have been
widely used for monitoring, mapping, and modeling the
spatial distribution and active-layer dynamics of
permafrost (Hachem et al 2009; Westermann and Langer
2010) as well as permafrost mass balance at meso to macro
scales (Hall et al 2006; Sun and Kafatos 2007). After an
initial evaluation we found the day-LST data to be the
most applicable for bare and sparsely vegetated areas
(Wan et al 2002; Wang et al 2007). The newly released
MODIS LST Version 5 products provide an opportunity
to improve this application. The accuracy of most
algorithms of LST retrieval from thermal infrared is high
(Qin et al 2001; Wan et al 2002). In mountainous
permafrost regions, numerous climate and terrain
features operate singly and in combination; in particular,
the thermal infrared band is susceptible to the impact of
clouds on the mountain peaks. Therefore, a field
validation and continuous time series reconstruction
is essential before application of MODIS LST products.

Using high-frequency automatic data recording, this
study investigated the difference between satellite-
retrieved and in situ–recorded data, which provided
a reference for reconstructing data and analyzing
spatiotemporal patterns and scale. This remote-sensing
analysis enabled us to explore the complex surface
temperature dynamics in terms of distribution and
evolution of the collective features of heterogeneity in
mountainous regions (Sun et al 2010; Xu et al 2013).

The aims of this study were (1) to validate daily MODIS
LST data at 1-km resolution using data recorded in situ,
(2) to rebuild cloud-free daily LST data using the
Harmonic Analysis of Time Series (HANTS) algorithm,
and (3) to analyze spatial and temporal LST patterns
based on the reconstructed MODIS LST data. Statistical
methods adopted for the analysis were covariance (CoV),
slope of linear regression and empirical orthogonal
function (EOF). This integration of statistical methods
leads to a better understanding of LST regimes in
mountainous regions and their implications for
environmental change.

Study area

Located in the central region of the Eurasian continent,
the alpine permafrost zone in the central Tien Shan
Mountains (78.70–80.60uE, 41.56–42.65uN) belongs to the
Asian high-mountain permafrost region (Marchenko et al
2007). Its elevation ranges mainly from 2500 to 7000 m in
the Aksu River Basin, including the largest glaciers
located on the highest mountain, Tomur Peak (7435 m).
The field investigation area is on a tributary of the Aksu

River near Tomur Peak (Figure 1). With a contribution of
more than 70% to the total runoff of the Tarim River, the
Aksu River has by far the largest impact on water
resources and development of the region.

Stretching across the China–Kyrgyzstan border, the
central Tien Shan is an important water source for both
the north and south, and nearly 90% of the Tarim Basin
population inhabits the outskirts of the mountains (Sun,
Chang, and Opp 2010). There, sound water management
has as much to do with water demands as it does with the
effects of climate change on water availability. The
identification of LST characteristics is fundamental for
large-scale modeling of the state of the permafrost in the
central Tien Shan. But the dynamics and amount of water
contribution from the periglacial belt are largely
unknown, and gauging data are scarce throughout the
region. Given its extraordinary topographic
heterogeneity and high-mountain ridges, the estimate of
future freshwater availability in light of climate change is
a key issue for agricultural planning, food security, and
urbanization in western China.

Data

In situ measurements

To perform a detailed LST study of the alpine permafrost,
a monitoring network of 46 thermistor strings and 23
mini temperature data loggers (built-in PT1000 sensors
with a resolution of 0.01uC) was installed on the southern
regions of the central Tien Shan. The loggers were used to
measure the temperature at multiple depths in the active
layer at hourly intervals. To identify the factors with the
largest influence on LST, the monitoring locations were
carefully chosen in terms of elevation, slope, aspect, and
other attributes. Because the in situ measurements are
affected by snow and surface soil, for a better comparison
with remotely sensed data we chose only time series of 5
data loggers that were less affected by these factors for
this study.

MODIS LST data

Two MODIS sensors are aboard the Terra and Aqua
platforms, which were launched in 1998 and 2002,
respectively. These platforms have provided a new and
improved capability for terrestrial satellite remote
sensing aimed at meeting the needs of climate change
research. In this study, MYD11A1 products were adopted.
The MODIS LST products provide per-pixel temperature
values in a sequence of swath-based to grid-based global
image data. Due to cloud cover, there are always many
invalid values in the daily MODIS LST products. This has
been a major barrier for the application of remotely
retrieved data. More than 7300 images of 1-km daily LST
data were adopted as raw material for this analysis. Brief
descriptions of the LST data products are available from
Wan (1999, 2009).
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Methods

HANTS algorithm

The numerous data gaps in the MODIS daily LST product
create a need for data interpolation. The HANTS
algorithm has been applied to vegetation index and LST
to rebuild cloud-free images by harmonic analysis
(Roerink et al 2000; Julien et al 2006; Xu et al 2009).
Clouds always have a negative influence on the
Normalized Difference Vegetation Index, and therefore,
taking the maximum value over a limited period tends to
remove most cloud-contaminated observations. In
HANTS, curve fitting is applied iteratively; first, a least
squares curve is computed based on all data points, and
next, the observations are compared to the curve.
Observations that are clearly below the curve are
candidates for rejection due to cloud cover, and the
points that have the greatest negative deviation from the
curve are removed first. Next, a new curve is computed
based on the remaining points, and the process is
repeated. Pronounced negative outliers are removed by
assigning them a weight of 0, and a new curve is
computed. This sequence of iterations finally results in

a smooth curve that approaches the upper boundary of
the data points (Wen et al 2004). In this way, cloudy
observations have been removed. In this study, the
HANTS algorithm was used on daily LST data, and
monthly mean data were then generated from the
reconstructed daily LST data for long-term and large-
scale analysis.

CoV and slope

In statistics, CoV is simply a value calculated from the
mean and the standard deviation of the LST time series in
each pixel, using the following formula:

CoV~
s

m
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i~1

(Xi{Xi)
2

s

1
n

Pn
i~1

Xi

ð1Þ

where Xi is the ith sample (value) of a variable (pixel), and
n is the number of samples. This method has been widely
used to determine the spatial variations of land surface
variability (Weiss et al 2001).

FIGURE 1 Map of the study area in the central Tien Shan Mountains. (Map by Zhandong Sun)
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To finally pin down the LST dynamics, the interannual
CoV derived from monthly LST values and the
interannual CoV derived from LST values were
calculated, respectively. The interannual CoV may reflect
the overall change of the LST in the given period of time.
To detect and quantify the continuous changes of LST in
each pixel, a linear regression analysis between LST time
series and time from 2003 to 2012 was used. Such a linear
regression makes it possible to reveal the long-term trend
of CoV, which is indirectly but intimately related to LST
dynamics. Mathematically, it determines the equation of
the line that best fits the set of LST values for each pixel.

Y~aXzb ð2Þ

where a is the slope of the best-fitting line. The slope
a may act as a sustainability indicator for detecting
changes in LST dynamics in the study area. If the slope of
this regression exhibits a negative sign, showing
a statistically decreasing trend over time, it may be
concluded that the temporal variability of LST is
declining; conversely, if the slope exhibits a positive sign,
showing a statistically increasing trend, it may be
concluded that the temporal variability of LST is
increasing.

Empirical orthogonal function

The main purpose of the EOF is to carry out a linear
transformation of the original data, producing a new set
of orthogonal functions that exclude redundant
information and extract the embedded patterns (Huete
et al 2002). EOFs have been widely used in atmospheric
science (Lorenz 1970; Dommenget and Latif 2002). Some
of the most important oscillations in the climate system
were identified using EOF analysis (Zhu 1996). For
a spatiotemporal field, the mathematical form of the EOF
can be defined as follows:

Qij~
Xm
k~1

Ukizkj; ð3Þ

where i 5 1, ..., m; j 5 1, ..., n; m is the number of sites (or
grids); n is the time series length; Qij are the ith

components of the jth random vector for the centralized
and normalized data; Uki are the weight coefficients
representing the contribution of the kth component at the
ith site (in other words, the components of the
eigenvectors of the correlation matrix); zkj are the time-
dependent functions of the kth component of expansion
(the so-called amplitude functions). Note that the weight
coefficients Uki vary between the time series data sets (or
between different sites) but are constant in time.

The EOFs are the eigenvectors. The relative
importance of any individual EOF to the total variance in

the field is measured by its associated eigenvalue. In
practice, we often sort eigenvalues and corresponding
eigenvectors in decreasing order using the first several
EOFs to explain the principal variance. Each EOF is
associated with a series of time coefficients that describe
the time evolution of the particular EOF. The term “EOF”
is also interchangeable with geographically weighted
principal component analysis in geophysics.

Results and discussion

Validation of the MODIS LST

We chose 5 in situ loggers and the MODIS LST imagery
grids in which the loggers were situated for use in this
analysis and then compared the LST values the in situ
loggers recorded (around 14:00 h Beijing time) to valid
MODIS-retrieved daily LST values from 1 September
2010 to 31 August 2012 in order to validate the MODIS
data. Thus, the LST time series from the in situ loggers
and MODIS retrieval are recorded at almost the same
time of day. The relationship between MODIS-retrieved
and in situ–measured data is presented in Figure 2;
information about the in situ conditions and
a comparison in CoV and correlation coefficient of the 2
series are given in Table 1.

As Figure 2 shows, the remote-sensing data series had
a higher frequency of fluctuation than the logger data series.
The values recorded by the MODIS LST and the loggers
were within 4uC, and most of the correlation coefficients
between the 2 data sources were greater than 0.9. To some
extent, the in situ–measured data were consistent with the
mean of the data retrieved via remote sensing. The
deviation between the 2 data sets provides an important
reference for interpolating missing data in the daily LST
products. Daytime discrepancies are strongly impacted by
the different heating rates of different elements within
a pixel (eg, vegetation types, bare ground) (Trigo et al 2008).
Major factors affecting this analysis are as follows:

1. The scale of the logger and MODIS LST grids differed.
Environmental variables can vary strongly within the
grid cells. The MODIS LST data are an integration of
a 1000 3 1000 m grid, and the logger data cover
a much smaller area; thus, validating with a single
measurement is difficult and susceptible to bias
(Gubler et al 2011).

2. Snow cover occasionally affected the loggers (Bartlett
et al 2004). Snow cover substantially increases the daily
temperature for a logger sensor; this effect was very
significant for the last 2 loggers during the winter.

HANTS simulation of the LST time series

Since the in situ–measured data are consistent to the
mean of the data retrieved by remote sensing, rebuilding
(interpolate) the missing data on this basis is reasonable.
In this study, the HANTS algorithm was applied to the

MountainResearch

Mountain Research and Development http://dx.doi.org/10.1659/MRD-JOURNAL-D-14-00001.1331Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 25 May 2024
Terms of Use: https://bioone.org/terms-of-use



LST data on a per-pixel basis for each year between 2003
and 2010 for the entire study area. Examples of the
HANTS-fitted and original LST time series are given in
Figure 3. The results indicate that the data gap in the
daily LST time series can be logically reconstructed.
Because of the small size of the filled gaps the data rebuilt
by this algorithm did not greatly impact the long-term

trends. So the reconstructed data are an ideal basis for
monthly or long-term statistical analysis for the central
Tien Shan region.

Spatiotemporal characteristics of LST

With the LST data reconstructed by HANTS fitting, the
monthly and yearly mean LST can be calculated from the

FIGURE 2 LST data as retrieved from MODIS and as measured by 5 in situ loggers (nonconsecutive days).

TABLE 1 General information about the in situ loggers and corresponding grids.

Logger ID

Elevation

(masl) Slope Aspect

Vegetation

cover

CoV for

grids

CoV for

loggers

Correlation

coefficient

A5021D 2826 5u West Dense 170 149 0.91

A50208 3213 11u West Sparse 147 121 0.90

A5021C 3523 8u West Dense 152 120 0.92

A50223 3650 25u South Dense 159 95 0.92

A50213 3887 24u West Sparse 173 86 0.87
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FIGURE 3 HANTS-fitted LST time series and measured time series for 2 random pixels in 2003 (from 1 January to 31 December).

FIGURE 4 (A) Relationship between yearly mean LST and elevation; (B) spatial distribution of the CoV for yearly mean LST; (C) relationship between the CoV of yearly
mean LST and elevation; (D) spatial distribution of the slope for the intra-annual CoV.
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daily 1-km LST data. The statistical analysis indicates that,
in general, the yearly mean LST shows a strong inverse
relation with elevation in the study area (Figure 4A).
These LST/elevation regions exhibit a buffer with a width
of about 1000 m at elevations above 3000 m; the range of
the buffer becomes even wider at elevations below 3000
m. The 0uC isothermal region ranges from 3000 to 4200 m
in elevation for the central Tien Shan.

The distribution of CoV is a good way to determine
spatial LST variability. In general, the spatial distribution
of the CoV for yearly mean LST exhibits some high-value
belts that are consistent with the geomorphology
(Figure 4B). The high-value regions show a clear buffer
between the glacier cover and the grassland. A
comparison with a digital elevation model for this region
indicates that this dynamic buffer has an elevation
ranging from 3000 to 4300 m, which is consistent with the
periglacial areas in elevation. That means the periglacial
areas are the most sensitive regions for LST dynamics.
The thaw or advance of the permafrost and the changes in
the active layer are much more obvious in these regions.
Thus, the effort to understand the variability of
permafrost under climate change should be focused on

these buffer regions—the “hot lines” of permafrost
dynamics.

As Figure 4C shows, the distributions of the CoV and
elevation exhibit a bilaterally decreased pattern with
a peak for areas with an elevation around 3800 m; the
high-LST-dynamic regions are mainly distributed between
3000 and 4300 m (with CoV values higher than 0.5).

The slope of the intra-annual CoV reflects the
dynamic trend of LST during the study period. As
Figure 4D shows, the high value of slopes is mainly
restricted to elevations of 3200–4200 m. This is somewhat
consistent with the result of CoV analysis, with the
difference that there are also some high-value regions for
CoV on the north slopes of the central Tien Shan. Slope
results further indicate that areas above the periglacial
line exhibit a decreasing trend for LST change, while
areas below the periglacial line show an increasing trend.
These findings to some extent suggest that the periglacial
line of the central Tien Shan region has risen, and as
a consequence of atmospheric warming, the lower
boundary of permafrost distribution in mountain ranges
may have risen as well, causing local degradation of
formerly frozen slopes.

FIGURE 5 Spatial patterns of the first 4 EOFs of the monthly LST over central Tien Shan; EOFs 1 and 2 show patterns related to elevation, and EOFs 3 and 4 show
patterns related to aspect.
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Synthetic analysis of CoV and its slope indicates that
the most sensitive regions for LST dynamics are periglacial
regions (3000–4300 m). This is consistent with earlier
findings that climate change has led to an accelerated
retreat of high mountain glaciers (Marchenko et al 2007;
Sun et al 2010), which in turn has triggered more runoff
and an increase in vegetation index (Sun et al 2010).

EOF patterns and Principle Component evolution: spatial

patterns and amplitudes

The EOF analysis efficiently extracted large-scale spatial
patterns (EOFs) and the corresponding amplitudes, also
called Principle Components (PCs), from the
reconstructed LST monthly data set. Figure 5 presents the
4 leading EOFs. Spatial patterns for EOF1 and EOF2
exhibit a strong connection with the large-scale
geomorphological features (elevation effects) of the
central Tien Shan. Two patterns have obviously reversed
characters in space (eg the high-value center located at
the tops of the mountains for EOF1 and the reverse for
EOF2). The spatial patterns of EOF3 and EOF4 present
differences based on aspect (eg the high-value region of
EOF3 has a southern aspect, while the high-value region
of EOF4 has a northern aspect), which reflect the effect of
local atmospheric circulation.

The amplitudes (PCs) for EOF1 and EOF2 have similar
phases corresponding to the seasonal temperature cycles
of the past decade, which indicate the fundamental
impacts from climate processes (Figure 6). PC2 is slightly

later and weaker than PC1; this difference was especially
pronounced in 2009. The frequency of PC3 and PC4 is
higher than that of the first PC1 and PC2, and there are
some clear differences in the reaction to the season
rhythms. PC3 and PC4 phases also exhibit a somewhat
opposite behavior. PC3 shows a decreasing trend from
2003 to 2006 and an increasing trend from 2007 to 2009,
while PC4 exhibits almost the reverse. This reflects the
amplitude shift of the impacts from the north and south
slopes of the central Tien Shan.

For most pattern extraction, the leading patterns
make a large contribution to the change as a whole, and
these patterns are normally stable in evolutionary
processes. From the amplitude of the EOFs, the patterns
of fluctuation for EOF1 and EOF2 are relatively stable.
This is consistent with earlier findings that the thermal
state of permafrost in the Tien Shan region reflects the
rise in average air temperature during the 20th century
(Marchenko et al 2007). But the peripheries of these
patterns are often sensitive regions as a result of patterns
overlapping in a given period. This effect is highlighted in
Figures 4B and 4D. At the same time, other patterns,
which make a trivial contribution to the overall change,
may contribute to important changes in a certain period
and location, and proper attention should be paid to
these phenomena.

Earlier studies indicated that climate warming is
leading to accelerated ablation and retreat of high
mountain glaciers (Lawrence and Slater 2005; Marchenko

FIGURE 6 The amplitudes (PCs) of the first 4 EOFs, normalized between +1 and 21.
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et al 2007) as well as runoff and vegetation increase in the
short to middle term (Woo et al 1994; Sun et al 2010),
which may even cause a shift between runoff depth and
precipitation (Sun et al 2010). The findings of this study
provide insight into how periglacial areas have responded
to climate change. Based on long-term air temperature
and snow cover data, there is a way to reconstruct the
thermal state of permafrost and project these findings to
evaluate the contribution of permafrost to water
discharge in a given period.

Conclusions

Data analysis showed that the in situ LST data provided
a useful reference for rebuilding invalid values in the
retrieved LST data. The data gap in the 1-km daily LST
time series can be logically reconstructed with the
HANTS algorithm, which provides a good basis for

studying the spatial and temporal patterns of LST
dynamics. The long-term and large-scale patterns of LST
in the high mountain region of central Tien Shan can be
successfully identified with the reconstructed data and
statistical methods discussed in this article. These large-
scale spatial patterns of LST are generally influenced by
geomorphological features, such as elevation and aspect,
and by local atmospheric circulation.

The CoV of yearly LST and its intra-annual slope
clearly show a sensitive dynamic buffer around the
periglacial areas with elevation ranging from 3000 to 4300
m. LST mainly decreased above the periglacial line in the
central Tien Shan and increased in areas below it. This
indicates that the periglacial line region has risen during
the past decade. As a consequence of atmospheric
warming, the lower boundary of permafrost distribution
in mountain ranges may have risen as well, causing local
degradation of formerly frozen slopes.
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