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Applications
in Plant Sciences

The Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) and the U.S. Lacey 
Act provide partial or full protection for species that are at 
risk of over-exploitation via harvest and trade (Lancaster  
and Espinoza, 2012a; Eberhardt, 2013). The U.S. Lacey Act 
requires the scientific name, common name, and geographic 
source to accompany imported wood or finished wood products 

(Eberhardt, 2013). Despite the substantial risk of penalties and 
forfeitures, Lacey Act declarations are frequently unreliable 
and inaccurate due to misidentification, allowing for ~US$10–
15 billion to be lost by governments and businesses globally 
(Elias, 2012). Accountability for harvest and trade in CITES-
protected species requires taxonomic and geographic verification 
(Dormontt et al., 2015).

Anatomical wood identification relies on morphological 
characters that range from the simple and macroscopic (e.g., 
color, weight, and scent) to the complex and microscopic, such 
as the distribution of resin canals or vessels, and the arrange-
ment of parenchyma and ray cells in wood (Hoadley, 1990). 
Microscopic examination of wood can typically provide an 
identification to the level of species, but the wood of closely 
related species is often nearly identical, and specimens may be 
incorrectly identified as the wrong taxon, even to the level of 
family (Wheeler and Baas, 1998). Wood identification resources 
are digitally available, interactive, and provide macroscopic and 
microscopic detail for thousands of species (Wheeler et al., 
1989; Gasson et al., 2011; Wheeler, 2011). These resources pro-
vide a valuable starting point for the identification of protected 
tree species; however, given the taxonomic diversity and volume 
of international wood commerce, wood identification based on 
anatomy is limited by insufficient expertise. Additionally, ana-
tomical verification is time-consuming when shipments con-
tain numerous logs, boards, composites, or finished items such 
as furniture and musical instruments (Dormontt et al., 2015; 
McClure et al., 2015). With the high demand for wood and 
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•	 Premise of the study: We investigated whether wood metabolite profiles from direct analysis in real time (time-of-flight) mass 
spectrometry (DART-TOFMS) could be used to determine the geographic origin of Douglas-fir wood cores originating from two 
regions in western Oregon, USA.

•	 Methods: Three annual ring mass spectra were obtained from 188 adult Douglas-fir trees, and these were analyzed using random 
forest models to determine whether samples could be classified to geographic origin, growth year, or growth year and geographic 
origin. Specific wood molecules that contributed to geographic discrimination were identified.

•	 Results: Douglas-fir mass spectra could be differentiated into two geographic classes with an accuracy between 70% and 76%. 
Classification models could not accurately classify sample mass spectra based on growth year. Thirty-two molecules were identi-
fied as key for classifying western Oregon Douglas-fir wood cores to geographic origin.

•	 Discussion: DART-TOFMS is capable of detecting minute but regionally informative differences in wood molecules over a 
small geographic scale, and these differences made it possible to predict the geographic origin of Douglas-fir wood with moder-
ate accuracy. Studies involving DART-TOFMS, alone and in combination with other technologies, will be relevant for identify-
ing the geographic origin of illegally harvested wood.

Key words:  DART-TOFMS; Douglas-fir; metabolites; provenance; Pseudotsuga; wood identification.
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wood products, a taxonomically accurate and rapid method 
for wood identification is critical for the enforcement of laws 
regarding the harvest of trees and the trade of wood and wood 
products.

An even greater challenge than wood taxonomic identifica-
tion is determining the geographic origin of a wood specimen. It is 
nearly impossible to identify the geographic origin of a log based 
on anatomy alone, even from microscopic features (Gasson, 2011). 
While it is prohibited to harvest some tree species entirely, others 
(e.g., Spanish cedar [Cedrela odorata L.] and Mongolian oak 
[Quercus mongolica Fisch. ex Turcz.]) are legal to harvest across 
only a limited portion of their natural distribution (Zyryanova 
et al., 2005; Pennington and Muellner, 2010; Reboredo, 2013). 
To combat illegal logging and provide supply management tools 
for legal timber trade, methods for precise identification of wood  
to geographic provenance are also needed.

Mass spectrometry–based chemical or metabolite screening 
of wood via direct analysis in real time (time-of-flight) mass 
spectrometry (DART-TOFMS) has been proposed as a rapid 
screening tool for wood identification that shows considerable 
promise for agencies responsible for enforcing international 
trade regulations (e.g., U.S. Lacey Act of 2008, the European 
Union Timber Regulation of 2010, CITES; Espinoza et al., 2015; 
Musah et al., 2015). DART-TOFMS provides an instantaneous 
small molecule profile for solid samples in an open-air environ-
ment, removing the labor-intensive requirement of material 
preparation in chemical solvent and the potential for sample 
preparation biases (Cody et al., 2005; Cody, 2013). Differentia-
tion provided by DART-TOFMS metabolite profiles has been 
used to discriminate wood from many closely related tree spe-
cies (Cody et al., 2012; Lancaster and Espinoza, 2012a, 2012b; 
Espinoza et al., 2014, 2015). Due to rapid sample preparation 
(i.e., less than one minute per sample) and the classification ac-
curacy of this method, DART-TOFMS is now used by the U.S. 
Fish and Wildlife Service to identify CITES-listed species in 
wood forensics cases, especially when anatomical identification 
is not possible (Lancaster and Espinoza, 2012a; Espinoza et al., 
2014; McClure et al., 2015).

Although DART-TOFMS is increasingly used to differentiate 
wood among species, little is known about the ability of DART-
TOFMS to discriminate geographic provenances of wood de-
rived from a single species. Local environmental conditions and 
genetic differences can affect molecule biosynthesis in plants 
(McGarvey and Croteau, 1995; Litvak et al., 2002; Huber and 
Bohlmann, 2004; Schnitzler et al., 2004; Huber et al., 2005a, 
2005b; Robinson et al., 2007; Loreto and Schnitzler, 2010), and 
these may impart a signal that allows for identification of differ-
ent geographic sources of conspecific samples. For example, 
DART-TOFMS has been used to discriminate fresh herbaceous 
material from roots of Angelica gigas Nakai originating from 
Korea or China (Kim et al., 2015), and also to discriminate cul-
tivated and wild sources of Aquilaria Lam. spp. wood specimens 
(Espinoza et al., 2014). These studies tested the ability of DART-
TOFMS to discriminate differences at a large spatial scale 
(e.g., >500 km; Kim et al., 2015), but they did not directly 
address the ability of DART-TOFMS data to resolve fine-scale 
intraspecific provenances.

Here, we investigated fine-scale variation in wood chemistry 
to evaluate the potential for identifying the geographic origin  
of wood based on DART-TOFMS spectra. We screened wood 
metabolite profiles from wood core samples of Douglas-fir 
(Pseudotsuga menziesii (Mirb.) Franco var. menziesii) across a 
narrowly defined geographic region (distances <100 km) in the 

North American Pacific Northwest. Douglas-fir is a widespread, 
economically important tree in this region (Howe et al., 2013). 
Given its value, Douglas-fir is an attractive target for poaching 
in national forests and parks (Koehler, 2013). However, the 
value of Douglas-fir in this context is as an experimental system 
for testing technologies to reveal fine-scale geographic variation 
in the features used in forensic wood identification—wood 
chemistry, genetic markers, or stable isotopes. Spatial variation 
in wood chemistry can be influenced by genetics and local envi-
ronmental variation (Huber et al., 2005a, 2005b; Robinson et al., 
2007). Although few Douglas-fir wood molecules have been 
fully described, the wood of Douglas-fir is rich in secondary me-
tabolites or molecules that likely function as growth hormones 
and defense molecules (Schnitzler et al., 2004; Loreto and 
Schnitzler, 2010). Due to the dominance of Douglas-fir across a 
wide array of environments and heterogeneous landscapes in 
western Oregon (Hermann and Lavender, 1990; Ohmann and 
Spies, 1998) and its characteristic high levels of phenotypic and 
genetic variability (St. Clair et al., 2005; Eckert et al., 2009; 
Krutovsky et al., 2009; Howe et al., 2013), a relationship be-
tween geography and molecular composition and abundance is 
possible, regardless of whether genetics or environmental condi-
tions are responsible for wood chemical variation.

Our specific objective was to determine if DART-TOFMS 
wood metabolite spectra could be used to differentiate Douglas-fir 
wood cores from the Oregon Coast Range and Oregon Cascade 
Range. These two mountain ranges run parallel to the Pacific 
Ocean and show strong environmental gradients in temperature 
and precipitation over small geographic distances (~35–100 km; 
Ohmann and Spies, 1998; Law et al., 2004). Douglas-fir is con-
tinuously distributed across these mountain ranges, and previous 
genetic analysis shows that the intervening valley is a weak bar-
rier to historical migration and gene flow (Krutovsky et al., 
2009). The combination of continuous tree distribution and 
small geographic scale is relevant to many questions in illegal 
logging, such as wood theft from specific parts of a larger native 
range, or from specific administrative units such as reserves or 
national parks. For this study, we collected wood increment cores 
from 188 Douglas-fir trees, with approximately equal sampling 
of the Coast Range and Cascade Range. Sections of dried wood 
from the 1986–1988 growing seasons were dissected and indi-
vidually analyzed by DART-TOFMS to obtain sample mass 
spectra for each tree ring and averaged mass spectra for indi-
vidual trees over three years. This sampling design allowed us to 
address two specific questions: (1) Can wood from Douglas-fir 
trees originating in the Oregon Coast and Cascade ranges be  
accurately classified to geographic source using their DART-
TOFMS metabolite profiles, and if so, which molecules allow 
for the discrimination of regional sources of wood, and (2) What 
is the magnitude of interannual variation in wood metabolic 
molecules relative to that of geographic variation?

MATERIALS AND METHODS

Samples—We collected 5.15-mm-diameter wood cores from 188 adult 
Douglas-fir trees in western Oregon between June and August 2015. We chose 
sample locations based upon previous studies that characterized the geographic 
distribution of genetic variation in the species (St. Clair et al., 2005; Krutovsky 
et al., 2009). We focused our efforts in two geographically distinct mountain 
ranges in western Oregon, with 23 sampling locations from the Coast Range 
(bounded by 43.1–45.5°N and 123.5–124.0°W) and 25 sampling locations from the 
Cascade Range (bounded by 43.1–45.6°N and 121.5–122.7°W). A map showing 
sampling locations and known source classifications is provided in Fig. 1 
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(see Appendix 1 for GPS coordinates). At each sampling location, we opportunisti-
cally selected two to six trees for a total of 85 trees from the Coast region and 103 
trees from the Cascades region. Cores were dried at 35°C for two weeks in indi-
vidual aluminum foil packets, then transferred to an air-tight plastic container 
with Drierite desiccant (Sigma-Aldrich, St. Louis, Missouri, USA). Our goal 
was to produce wood cores with a reduced moisture content comparable to kiln-
dried lumber, but without exposing wood to the high temperatures used in kiln 
drying (90–100°C), to avoid driving off potentially diagnostic molecules. We 
also attempted to control the effect of wood age on subsequent chemical analy-
ses by selecting identical growth years for analysis. The oldest growth year 
shared by all samples was 1986 (due to a small number of shallow cores in Coast 
Range trees), so our analyses in this study focused on years 1986, 1987, and 
1988.

Mass spectrometry—Mass spectra were acquired using an AccuTOF DART 
mass spectrometer (JEOL USA, Peabody, Massachusetts, USA) in positive ion 
mode. We used the DART source parameters as previously described for this 
particular instrument (Lancaster and Espinoza, 2012a, 2012b; Espinoza et al., 
2014, 2015; McClure et al., 2015). We analyzed annual rings directly via DART-
TOFMS by holding samples in the helium input stream for approximately 
eight seconds (McClure et al., 2015; Lesiak and Musah, 2016). We selected 
poly(ethylene glycol) 600 (Ultra Scientific, Kingstown, Rhode Island, USA) as 
our mass calibration standard, which we analyzed at the beginning and end of 
every set of samples from the same sampling location and after every third 
sample (McClure et al., 2015).

Data analysis—We analyzed our data using TSSPro3 (Shrader Analytical 
Laboratories, Detroit, Michigan, USA), Mass Mountaineer version 2 (RBC Soft-
ware, Peabody, Massachusetts, USA), and R version 3.3.2 (R Core Team, 2016) 
with the packages randomForest version 4.6-12 (Liaw and Wiener, 2002), ROCR 
version 1.0-7 (Sing et al., 2005), vcfR version 1.3.0 (Knaus and Grunwald, 
2016), ggplot2 version 2.2.0 (Wickham, 2009), and gridExtra version 2.2.1 
(Auguie, 2016). We have provided relevant R code for the random forest analy-
sis, including custom graphs (Appendix S1), as well as our raw data files (Ap-
pendices S2, S3). We used the TSSPro3 processing software to obtain mass 
spectra corresponding to: (1) each annual ring analyzed via DART-TOFMS 

(three mass spectra per individual; n = 560), and (2) a mass spectrum averaged 
over growth years 1986–1988 (one mass spectrum per individual; n = 188). 
Mass spectra include estimated mass-to-charge ratios (m/z) and relative mole-
cule abundance (0–100%). Specifically, DART-TOFMS software outputs a 
mass spectrum in which each peak represents a different molecule, with its 
height normalized to that of the most abundant molecule. In this way, spectra are 
normalized within a spectrum, not globally across all spectra (Cody, 2015). The 
mass tolerance for the molecules detected in each mass spectrum was 250 mDa 
and the minimum relative abundance was 1%, which resulted in 946 potential 
molecules across all samples. Figure 2 shows two aligned representative 
mass spectra, one from the Cascade Range (Fig. 2 [red, 1987], 44.55878°N, 
122.04321°W) and one from the Coast Range (Fig. 2 [blue, 1986], 44.06787°N, 
123.64871°W). Using Mass Mountaineer, we were able to infer the identity of a 
subset of the most abundant molecules (Appendix S4; Shinbo et al., 2006).

To address our study questions, we used random forests classification from 
the R package randomForest to predict the class membership of each sample 
using mass spectra from DART-TOFMS. Random forest analysis is a classifica-
tion method that is robust to nonnormal distributions (e.g., zero-truncated data, 
extreme value distributions) and can handle up to thousands of variables without 
the need for variable selection and without overfitting (Breiman, 2001; Strobl  
et al., 2009). We specified classification models to test four different grouping 
variables: Source for each individual annual ring, abbreviated SourceINDIV (two 
classes: Cascades and Coast); Source for each tree averaged across annual rings, 
abbreviated SourceMEAN (two classes: Cascades and Coast); Year (three classes: 
1986, 1987, 1988); and Year*Source (six classes: Cascades 1986, Cascades 
1987, Cascades 1988, Coast 1986, Coast 1987, Coast 1988). These models are 
summarized in Table 1.

Random forests were generated for each of our classification models consid-
ering all 946 molecules (classification variables) across sample mass spectra. 
We performed 500 iterations of the following protocol: (1) we randomly sam-
pled an 80% subsample of mass spectra to be designated as the training set, from 
which a random forest of 500 classification trees was generated; (2) the median 
out-of-bag (OOB) classification error (Breiman, 2001, 2002; Liaw and Wiener, 
2002) for the random forest was obtained; and (3) the remaining 20% subsample 
of mass spectra was designated a validation set to test the performance of the 
random forest for class membership prediction (Lever et al., 2016). Instability is 
a feature of random forest analysis, and complete reproducibility across replicate 
analyses cannot be assured (Breiman, 2001; Strobl et al., 2009). For this reason, 
we performed 500 iterations of each random forest model to better understand 
the distribution of classification values. Previous studies using DART-TOFMS 
for the classification of botanical samples have reported “classification accu-
racy” (Lancaster and Espinoza, 2012a, 2012b; Espinoza et al., 2014, 2015; 
McClure et al., 2015; Musah et al., 2015). To be consistent, we reported the 
complement of median OOB classification error, or “classification accuracy” 
(classification accuracy = 1 − classification error), so that our results could be 
directly compared to other DART-TOFMS studies. We measured overall clas-
sification accuracy and classification accuracy by class for the SourceINDIV 
and SourceMEAN models to test for classification asymmetry via a paired t test 
in R. To evaluate whether classification accuracy was higher than random ex-
pectations, we performed randomization tests (by shuffling class identifiers; 
500 iterations) to determine the expected random accuracy for random forests.

For the SourceINDIV and SourceMEAN classification models, we used the R 
package ROCR to calculate the true positive and false positive rates of class 
prediction for the 20% validation set over 500 iterations (Gu et al., 2011; Xi 
et al., 2014). We displayed the performance of 500 random forests visually as 
receiver operating characteristic (ROC) curves, and used a generalized additive 
model and a cubic spline to generate a mean ROC curve over 500 iterations. 
Empirical measures of model performance are shown as the mean area under the 
ROC curve (AUC) for the 500 random forests.

To tentatively identify molecules, we compared mass-to-charge ratios from 
Douglas-fir spectra with a list of publicly available molecular masses from the 
conifer tree genera Pseudotsuga Carrière and Pinus L. using Mass Mountaineer 
(Shinbo et al., 2006). We also used the importance function of randomForest to 
obtain the Gini impurity index (Gini index) for the SourceINDIV model and the 
SourceMEAN model (Liaw and Wiener, 2002). Node impurity decreases each time 
a variable is used to partition data. After each partitioning event at a node, the 
samples remaining to be classified are more alike (i.e., belong to the same class) 
and descendent nodes have a lower node impurity. Variables that frequently 
partition data across random forests have a higher decrease in node impurity, 
which is estimated as a mean considering all 500 classification trees in the ran-
dom forest (Breiman, 2001). The scale of the Gini index is based on the number 
of samples remaining to be classified after a variable is employed to partition 
samples (Breiman, 2001). A larger sample size to train the model, such as for the 

Fig. 1.  Map of sampled region in western Oregon, USA. Dots show the 
site of sampled trees, with Cascade Range samples in red and Coast Range 
samples in blue.
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SourceINDIV model, leads to a greater overall mean decrease in node impurity and 
Gini index. We compared lists of the 50 largest mean Gini indices from the 
SourceINDIV model and the SourceMEAN models to identify ions that were shared 
by both models (Venny version 2.1; Oliveros, 2007).

Finally, we generated a heat map of molecular masses and intensities for each 
averaged spectrum using the R package vcfR by applying a mass tolerance of  
1 Da and a minimum relative abundance of 5%. Molecule relative abundance 
was log2 transformed to aid visualization of rare molecules. As described above, 
the abundance of each molecule is normalized row-wise (by sample), with 100% 
reflecting the most abundant molecule. Using available DART-TOFMS soft-
ware (e.g., TSSPro3, Mass Mountaineer), total sample counts cannot be ob-
tained, so normalization across samples cannot be made.

RESULTS

Classification— Our analysis evaluated the suitability of four 
classification models for Douglas-fir wood metabolites, including 
SourceINDIV, SourceMEAN, Year, and Year*Source (Table 1). 

The results from these analyses are summarized in Table 2 and 
described below.

SourceINDIV model—This random forest analysis was based 
on 500 classification trees across 500 iterations and tested clas-
sification accuracy arising from geographic source variation in 
wood chemistry. All individual annual rings were assigned to 
one of two location classes (Table 1). Our estimated mean clas-
sification accuracy of 75.7% for observed data is significantly 
higher than the estimated mean classification accuracy with ran-
domized data (49.8%; Table 2, Fig. 3A).

SourceMEAN model—This model also tested classification ac-
curacy to geographic source variation in wood chemistry. Mean 
spectral abundance values for samples were assigned again to 
one of two location classes (Table 1). Random forest analysis 
based on 500 classification trees across 500 iterations returned 

Fig. 2.  Graph of two aligned representative mass spectra. The x-axis shows the mass-to-charge ratio (m/z) and the y-axis shows molecule relative abun-
dance (%). The red spectrum is a representative from the Cascades region (44.55878°N, 122.04321°W) and the blue spectrum is a representative from the 
Coast region reflected vertically (44.06787°N, 123.64871°W). We labeled molecule peaks with at least 25% relative abundance, some of which are unknown 
(Unk. Molecule). For peaks with similar m/z, we labeled a range of m/z with multiple names. Additionally, some molecules have multiple names for a single 
m/z, and we labeled all names that would fit in the limited space. Refer to Appendix S4 for the full list of molecules.

Table 1.  Abbreviations used to identify each classification model and 
a description of the grouping variable, classes within the grouping 
variable, and the number of samples used to train the model.

Model identifier Grouping variable Classes n

SourceINDIV Region of origin Cascades, Coast 560
SourceMEAN Region of origin Cascades, Coast 188
Year Growth year 1986, 1987, 1988 560
Year*Source Growth year and region  

of origin
Cascades 1986, Cascades  

1987, Cascades 1988,  
Coast 1986, Coast 1987,  
Coast 1988

560

Note: n = sample size.

Table 2.  Results of the random forest classification analysis for each 
model. 

Estimated mean classification accuracya

Model Class Randomized (95% CI) Observed (95% CI)

SourceINDIV 2 49.8% (49.5, 49.3) 75.7% (75.6, 75.8)
SourceMEAN 2 48.9% (48.5, 49.3) 70.1% (70.0, 70.2)
Year 3 32.9% (32.7, 33.1) 24.5% (24.4, 24.6)
Year*Source 6 16.2% (16.0, 16.3) 16.0% (15.9, 16.1)

a Estimated mean classification accuracies after 500 iterations for 
randomized and observed data; 95% confidence intervals are in parentheses. 
Estimated mean classification accuracy is the complement of the estimated 
mean of the median out-of-bag classification error for 500 iterations.
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an estimated mean classification accuracy of 70.1% for observed 
data, which is significantly higher than the estimated mean 
classification accuracy with randomized data (48.9%; Table 2, 
Fig. 3B).

Year model—This random forest analysis was based on 500 
classification trees across 500 iterations to classify sample mass 
spectra by growth year (Table 1). Our random forest analysis 
with observed data returned an estimated mean classification ac-
curacy of 24.5%. This value is significantly lower than the mean 
classification accuracy of 32.9% estimated from 500 randomiza-
tions (Table 2, Fig. 3C).

Year*Source model—We used random forests to test the clas-
sification accuracy based on interannual and geographic source 
variation in wood chemistry. Samples were assigned one of six 
categories (Table 1). Our random forest analysis based on 500 
classification trees across 500 iterations with observed data re-
turned an estimated mean classification accuracy of 16.0%. The 
estimated mean classification accuracy from 500 randomiza-
tions was 16.2%, a value that is nearly identical to observed val-
ues (Table 2, Fig. 3D).

Model performance— To assess model performance, we cal-
culated the area under the ROC curve (AUC). The AUC of the 
SourceINDIV model (0.85) was substantially higher than the 
SourceMEAN model (0.79) (Fig. 4A, 4B), and direct comparison 
of mean model performance (Fig. 4C) showed that SourceINDIV 
analysis performed better than the SourceMEAN analysis. By 
conducting multiple iterations, we demonstrated that ROC 
curves (Fig. 4A, 4B; gray lines) are nonuniform across iterations 

and that the performance of each random forest and the AUC is 
dependent on samples included in the validation set.

Molecule importance— The 946 putative molecules detected 
from all samples showed a mass-to-charge range of 90.06 to 
1060.90 m/z. Using Mass Mountaineer, we were able to infer the 
identity of 65 molecules (~7%; Appendix S4; Shinbo et al., 
2006). Well-known among characterized mass-to-charge ratios 
were molecules like the lignin precursor coniferyl alcohol 
(180.08 m/z; Quideau and Ralph, 1992), the methylated form of 
the plant auxin indole-3 acetic acid or methyl indole-3-acetate 
(189.08 m/z; Simon and Petrášek, 2011), the defense molecule 
pinosylvin (212.08 m/z; Jorgensen, 1961), the flavonolignan 
pseudotsuganol (236.18 m/z; Foo and Karchesy, 1989), and an-
other conifer defense molecule, sandaracopimaric acid (302.22 
m/z; Hall et al., 2013). By tabulating the 50 molecules with the 
highest Gini index for the SourceINDIV model and the SourceMEAN 
model (Fig. 5A, 5B, respectively), we found that 32 of the 50 
highest Gini index molecules (64%) are shared among both 
models (Fig. 5A, 5B: black bars), and 18 are unique to each 
model. Of the 32 shared molecules, 14 (~44%) were assigned a 
putative identity based on mass-to-charge ratio (Table 3).

A heat map of molecule abundances by sample from the 
SourceMEAN model displays qualitative differences between 
samples originating from the Cascade and Coast ranges (Fig. 6). 
In this plot, molecules with the 50 highest Gini index values 
from the SourceMEAN model are identified (Fig. 6: blue trian-
gles). Both common and rare molecules have high Gini values, 
which is indicated by the bar plot of summed molecule abun-
dances along the upper x-axis. Noteworthy differences between 
these populations can be observed in the 208–258 m/z range, 

Fig. 3.  Distributions of the classification accuracies from random forests. Dark gray distributions were generated from randomized data, and light gray 
distributions were generated from observed data. Blue lines indicate the estimated mean classification accuracy for observed data, and black lines indicate 
the estimated mean classification accuracy for randomized data. 95% confidence intervals are listed in Table 2. Classification accuracies are shown for the 
SourceINDIV (A), SourceMEAN (B), Year (C), and Year*Source (D) models.
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where the Coast population has high abundances for many mol-
ecules; conversely, samples from the Cascade Range had higher 
abundances for many molecules in the 527–884 m/z range. Dif-
ferences in these m/z ranges can also be seen in Fig. 2.

Classification asymmetry— Our comparison of the classifi-
cation accuracy for the Cascades and Coast classes from the 
SourceINDIV and SourceMEAN models (Fig. 7A, 7B) revealed that 
across both analyses, classification accuracy was higher for the 

Fig. 4.  ROC curves generated for 500 random forests by predicting the 
class membership of each sample in a validation set. The x-axis is the false 
positive rate and the y-axis is the true positive rate. Gray lines indicate indi-
vidual ROC curves from each of the 500 iterations. Colored lines indicate 
the estimated mean ROC curve generated with a generalized additive model 
and a cubic spline. (A) ROC plots for the SourceINDIV model, (B) ROC plots 
for the SourceMEAN model, and (C) superimposed mean ROC curves for the 
SourceINDIV (blue) and the SourceMEAN (red) models.

Fig. 5.  Comparison of the 50 molecules of highest Gini indices from 
the SourceINDIV (A) and SourceMEAN (B) models. Gray bars are unique to 
each model and black bars are molecules that are shared among the highest 
Gini indices for these models. The shared molecules were identified by 
comparing the highest Gini indices from both models using a Venn diagram 
with the program VENNY (Oliveros, 2007).

Coast trees (SourceINDIV 78.5%, SourceMEAN 74.6%) and lower 
for the Cascades trees (SourceINDIV 72.7%, SourceMEAN 65.5%), 
and the mean values were significantly different (SourceINDIV t = 
59.915, df = 499, P < 0.001; SourceMEAN t = 48.632, df = 499, 
P < 0.001). This indicates that classification accuracy is non-
identical in reciprocal comparisons, and that in our specific case, 
classification accuracy of wood samples depends on the specific 
direction of the classification question.

DISCUSSION

We addressed questions concerning the range of metabolite 
profile variation exhibited by Douglas-fir wood across geogra-
phy and across years, and the accuracy of geographic classifica-
tions for individual trees based on DART-TOFMS spectra. 
Geographic classification models based solely on Source 
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were the most accurate for both data treatments (SourceINDIV, 
SourceMEAN). Random forest mean classification accuracy was 
75.7% for the SourceINDIV model and 70.1% for the SourceMEAN 
model. These values are significantly higher than random expec-
tations (~50%; Table 2; Fig. 3A, 3B). We attributed the higher 
classification accuracy in the SourceINDIV model to the dependence 

between annual rings within individual Douglas-fir trees, as well 
as the larger sample size; simply decreasing the sample size for 
the SourceINDIV model to 188 (same as the SourceMEAN model) 
results in a decrease in classification accuracy (Appendix S5). 
Based on this analysis, we conclude that there is substantial 
geographic source differentiation between chemometric data 

Table 3.  Putative identities for 14 of the 32 molecules that were shared among the lists of 50 molecules with the highest Gini indices from the SourceINDIV 
and the SourceMEAN models. Identities were approximated in Mass Mountaineer by comparing the mass-to-charge ratio of each molecule to a list of 
molecules identified in Pinus and Pseudotsuga. Provided are names that have been used to describe the molecules, their molecular formula, their mass-
to-charge ratio, and the species from which they were identified.

Molecule name Molecular formula Mass (m/z) Species

Indole-3-carboxylic acid C9H7NO2 161.118 Pinus banksiana
Indole-3-ethanol C10H11NO 161.118 Pinus contorta
Indole-3-acetic acid C10H9NO2 175.11121 Pinus contorta, P. grandis
N6-(delta-2-isopentenyl)adenine C10H13N5 203.1796 Pinus halepensis
(R)-(-)-alpha-curcumene C15H22 203.1796 Pinus halepensis
(-)-Germacrene D, (-)-Isocaryophyllene, (-)-Zingiberene,  

(E)-beta-Bourbonene, (E)-Caryophyllene, (Z)-beta-Farnesene,  
alpha-Muurolene, beta-Gurjunene, beta-Sesquiphellandrene,  
Copaene, Cyclohexane, delta-Cadinene, gamma-Cadinene,  
gamma-Muurolene, Humulene, Longicyclene, longifolene

C15H24 205.0872 Pinus armandii, P. cembra, P. contorta,  
P. eldarica, P. formosana, P. halepensis,  
P. kochiana, P. longifolia, P. sylvestris, 
Pseudotsuga menziesii, P. wilsoniana

(-)-beta-caryophyllene epoxide, (-)-humulene epoxide II C15H24O 221.1851 Pinus longifolia, P. luchuensis, P. pallasiana
(-)-alpha-cadinol, copaborneol, delta-cadinol, elemol, guaiol,  

nerolidol
C15H26O 223.10049 Pinus pallasiana, P. palustris, P. parviflora,  

P. silvestris, P. sosnowskyi
4-Chloroindole-3-acetic acid methyl ester C11H10ClNO2 224.10229 Pinus pallasiana, P. sylvestris
ar-Pseudotsugonal C15H20O2 233.1608 Pinus sylvestris
Atlantolone, pseudotsugonal C15H24O2 237.11571 Pinus sylvestris
Pinocembrin C15H12O4 257.0824 Pinus sylvestris, P. taeda
Abieta-7,13-diene C20H32 272.47681 Pinus thunbergi, Pseudotsuga wilsoniana
6-C-Methylkaempferol C16H12O6 301.22061 Pseudotsuga wilsoniana
Dehydroabietic acid C20H28O2 301.22061 Pseudotsuga japonica, P. wilsoniana
(2R)-5,4′-Dihydroxy-7-methoxy-6-methylflavanone C17H16O5 301.22061 Pseudotsuga japonica
Dehydroabietic acid C20H28O2 301.22061 Pseudotsuga menziesii
13-Epitorreferol, 8-alpha,13S-epoxy-14-labden-6alpha-ol,  

torulosol
C20H34O2 306.07059 Pseudotsuga menziesii, P. wilsoniana

Catechin-4-beta-ol C15H14O7 306.07059 Pseudotsuga wilsoniana
(2R,3R)-Pinobanksin 3-acetate, sylpin C17H14O6 315.22211 Pseudotsuga wilsoniana

Fig. 6.  Heat map of wood samples showing the size distribution and relative abundance of wood-derived molecules. Rows indicate samples, and col-
umns indicate molecule abundance, estimated as averaged mass spectra (SourceMEAN model). Abundance is indicated by degree of red color (white = 
low abundance; red = high abundance), and blue triangles indicate molecules showing the approximate location of the 50 highest Gini indices from the 
SourceMEAN model. Bar plots on the top and right axes indicate abundance sums, either by molecule (top) or individual sample (right).
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derived from Douglas-fir tree cores separated by small geo-
graphic distances (e.g., Cascade and Coast ranges, ~35–65 km) 
and that analyses based on multiple individual spectra (pseudo-
replicates) perform as well as or better than those based on spec-
tral means.

Moreover, we tested each random forest for the SourceINDIV 
and SourceMEAN data sets with a randomly selected validation set 
(unknowns) for 500 iterations. The SourceINDIV models based on 
pseudoreplicates performed better when classifying unknowns 
than the SourceMEAN models based on spectral means (Fig. 4C); 
again, the lower performance observed in the SourceMEAN model 
was due to its smaller sample size (Appendix S5). The relation-
ship between classification power/accuracy and reference sam-
ple size is relevant to forensic wood identification studies, as 
these analyses typically have a limited number of reference 
standards, regardless of the identification method used (genetic, 
isotopic, chemical, morphological). The small number of reference 

standards available for many CITES-protected tree species is 
due to the lack of diagnostic specimen vouchers (e.g., flowers, 
fruit, leaves) that can be used to convincingly identify wood 
samples to species, the limited availability of geographically 
source-identified wood specimens, and the ad hoc nature of add-
ing reference materials derived from forensic investigations 
(Dormontt et al., 2015). The identification and acquisition of 
taxonomically validated, geographically referenced wood stan-
dards continues to be a principal focus for the wood forensics 
community.

The classification accuracy of individual spectra to Year 
classes (1986, 1987, or 1988) and Year*Source classes was vir-
tually indistinguishable from random assignments (Table 2; 
Fig. 3C, 3D). These results suggested that chemometric varia-
tion across adjacent annual rings in Douglas-fir heartwood is 
indistinct, and that the variation is not adequately explained by 
year for samples collected over a wide geographic range. It is 
important to note that our samples capture chemometric varia-
tion from a small temporal (three consecutive years out of de-
cades) and longitudinal (5 mm out of tens of meters) position 
from an adult Douglas-fir tree; more intensive sampling across 
the length and girth of a tree is required to fully understand intra-
individual variation.

By ranking the 946 putative molecules detected via DART-
TOFMS using the Gini index, we are able to identify the most 
important molecules for classifying mass spectra to geographic 
origin for the SourceINDIV and SourceMEAN models. The com-
plete analysis based on 946 putative molecules is effectively a 
“first-pass” analysis for screening variable importance; it is pos-
sible to use this analysis to select more-informative subsets of 
molecules for subsequent analysis. For example, reducing the 
full list of 946 predictor variables down to the 50 variables with 
the highest-ranking molecules according to the Gini index im-
proves our classification accuracy from 75.7% to 76.8% for the 
SourceINDIV model and from 70.1% to 74.1% for the SourceMEAN 
model (Appendix S6).

An important observation of our classification experiment 
was that misclassification (false positives and false negatives) 
for the Cascades and Coast classes are asymmetrical, with mis-
classifications more frequent in Cascades-derived wood sam-
ples than Coast-derived wood samples for both source models 
(SourceINDIV and SourceMEAN; Fig. 7A, 7B). This observation 
suggests that for illegal logging studies, the classification power 
of a specific question may depend on the direction of classifica-
tion. For example, in a hypothetical scenario of “classifying sto-
len Douglas-fir wood,” the distribution of classification accuracy 
makes it easier to correctly classify unknown trees to their geo-
graphic source if they derived from the Coast Range than if they 
had derived from the Cascade Range.

Finally, while we were able to measure geographic differences 
in Douglas-fir wood chemistry using DART-TOFMS, we were 
not able to identify whether this variation is a consequence of 
climatic, edaphic, or genetic factors, individually or combined. 
Chemical analysis of wood samples from provenance and recip-
rocal transplant tests (Gould et al., 2012) could shed light on 
the contribution of these factors to variation in wood chemistry. 
For example, in a recently established “Seed Source Move-
ment Trial” (Gould et al., 2012; Ford et al., 2016), 60 half-sib 
families of Douglas-fir have been planted at nine sites across the 
Pacific Northwest, spanning a range of climates from coastal to 
montane. Cores from these populations would show the contribu-
tion of genetic background and growth environment to DART-
TOFMS profiles. These types of studies are a logical next step 

Fig. 7.  Box plots showing the difference in random forest classification 
accuracies for the Cascade Range class and Coast Range class based on 500 
iterations of random forest analysis each with 500 classification trees. (A) 
Classification accuracies for Cascades and Coast classes based on 560 indi-
vidual spectra (SourceINDIV model). (B) Classification accuracies for Cas-
cades and Coast classes based on 188 mean spectra (SourceMEAN model).
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for understanding spatial variations in DART-TOFMS data de-
rived from wood.

Classification methods for DART-TOFMS data— Interpretation 
of sample classifications based on mass spectrometry–derived 
data have relied on a number of approaches, including principal 
component analysis (Pan et al., 2007; Musah et al., 2015), lin-
ear and kernel discriminant analysis (Lancaster and Espinoza, 
2012a, 2012b; Espinoza et al., 2014, 2015; McClure et al., 
2015), partial least square-discriminant analysis (Gu et al., 2011; 
Lee et al., 2012; Kim et al., 2015), support vector machines 
(Mahadevan et al., 2008; Zhou et al., 2010), and random forest 
(Baniasadi et al., 2013). Previous studies using DART-TOFMS, 
in particular for wood identification, have primarily used linear 
and kernel discriminant analysis.

To provide a comparison to other methods, we also analyzed 
our Douglas-fir wood mass spectra with linear discriminant 
analysis (LDA) and calculated classification accuracy using 
leave-one-out cross-validation (Appendix S7). For our data, the 
difference between LDA and random forest classification 
methods was minimal, as the LDA-based classification accura-
cies were 72.9% for the SourceINDIV and SourceMEAN models 
(Appendix S7: Table S7.1). Despite the equivalence of random 
forests and LDA classification models in our example, random 
forests classification offers two significant advantages for DART-
TOFMS data analysis. First, classification variables need to be 
selected a priori for LDA; in DART-TOFMS data, this is accom-
plished by choosing a “representative” spectrum from the pool 
of samples and evaluating compounds present in the representa-
tive spectrum. This step has the potential to bias the analysis 
(overfitting to the reference spectrum) and ignore less frequent, 
spatially important compounds. By contrast, random forest eval-
uates all classification variables, and it ranks their importance to 
the classification model. Second, random forest can include any 
kind of classification variable (categorical, ordinal, continuous, 
ratio) from any distribution. This makes it a potentially ideal 
method for incorporating and evaluating multiple sources of in-
formation (e.g., DART-TOFMS, genetic, and anatomic) in di-
rect combined analyses.

Other applications for DART-TOFMS analysis of wood— In 
addition to the promise of wood identification by DART-TOFMS 
metabolite profiling, the rapidity and ease of DART-TOFMS 
analysis make it a promising tool for addressing chemometric 
questions in other disciplines. In our study, we estimated the 
identity of a mere 65 (~7%) of the 946 putative molecules de-
tected by DART-TOFMS (Appendix S4). That is, the majority 
of the molecules detected in Douglas-fir wood have yet to be 
identified and/or included in mass spectrometry databases 
(Shinbo et al., 2006). Identifying the complete spectrum of mol-
ecules in wood is a critical first step to understanding the role 
that these molecules play in economically important wood qual-
ity traits such as strength, elasticity, and fitness traits like resis-
tance to burrowing insects and wood rot fungi.

Considerable attention has been given to annual rings as envi-
ronmental records of climate change (Fritts, 1972; Crowley, 
2000; Belmecheri et al., 2016). Given its sensitivity and small 
sample requirements (~20 mm3 for this study), DART-TOFMS 
analysis of annual rings could be conducted over centuries of 
growth from different populations and species, and this offers a 
method to study intra-individual and population-level plant chemi-
cal responses across geography and time. Although we have 
demonstrated that growth year is a poor predictor of chemical 

variation, the relationship between wood chemistry and climate 
over longer periods of time (decades to centuries) is unexplored. 
Particularly interesting questions for the response of Douglas-fir 
to climatic variation are induced elevated terpene synthase ac-
tivity with exposure to high temperatures (Litvak et al., 2002) 
and the suppression of wound response after light and water 
stress in conifers (McGarvey and Croteau, 1995). By combining 
historical weather records and historical metabolite profiles, it 
should be possible to identify climatically responsive molecules 
present in wood, and use these to make predictions about how 
wood composition will change with different models of predicted 
future climate warming (McIntyre et al., 2015).

Conclusions— Rapid screening methods for identifying the 
species and geographic provenance of commercially traded 
wood are essential for enforcing illegal logging provisions out-
lined in the U.S. Lacey Act of 2008, the European Union Timber 
Regulation of 2010, and CITES. Numerous methodological ap-
proaches are currently being evaluated and applied, including 
DNA genotyping, stable isotope composition analysis, and wood 
chemometric analysis (Dormontt et al., 2015). Studies have 
demonstrated that DART-TOFMS is one of the most rapid 
screening tools available (Cody et al., 2005; Cody, 2013; Musah 
et al., 2015) and that it can differentiate molecules present in 
wood that show fixed or nearly fixed differences between tree 
species (Cody et al., 2012; Lancaster and Espinoza, 2012a, 
2012b; Espinoza et al., 2014, 2015). Our study highlights the 
potential for using DART-TOFMS to identify the geographic 
origin of wood at scales under 100 km. In total, these studies 
show that DART-TOFMS can be used to address wood differ-
ences and wood identification at many scales—between popula-
tions, species, and genera.
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Appendix 1.  GPS coordinates of Douglas-fir sampling locations, elevation, a priori source classifications, and number of trees sampled.

Population ID Latitude (DD) Longitude (DD) Elevation (ft.) Source n

1024 44.30486 −122.84895 1393 Cascade Range 4
1026 44.414 −122.672 556 Cascade Range 2
1191 44.61435 −123.53946 696 Coast Range 4
1195 44.33089 −123.86224 1009 Coast Range 4
1202 44.60163 −121.95015 2615 Cascade Range 4
1223 44.19244 −121.98228 3354 Cascade Range 4
2034 43.21882 −122.1983 5278 Cascade Range 4
2092 44.36678 −122.02457 3467 Cascade Range 4
3031 44.77376 −122.54893 1089 Cascade Range 4
3054 44.1584 −122.62379 1548 Cascade Range 4
3061 44.17607 −122.99362 1942 Cascade Range 6
3175 44.18 −123.444 751 Coast Range 4
3187 43.33717 −123.55252 2127 Coast Range 3
3198 44.06787 −123.64871 2124 Coast Range 4
3202 45.33647 −123.65208 1837 Coast Range 4
3205 43.06919 −124.0074 1191 Coast Range 4
3218 43.31859 −124.07347 292 Coast Range 4
3238 43.82875 −123.35144 694 Coast Range 4
3240 44.2391 −123.436756 1623 Coast Range 3
3313 43.7085 −123.50705 692 Coast Range 4
3353 44.95717 −123.80177 2353 Coast Range 4
3358 44.38269 −123.46298 1303 Coast Range 4
3364 44.18041 −123.6151 1879 Coast Range 3
4005 44.435 −121.715 3311 Cascade Range 4
4069 45.56364 −121.51936 2420 Cascade Range 4
4085 45.28366 −121.68187 4160 Cascade Range 4
4126 43.3052 −122.78975 2651 Cascade Range 4
4146 43.63619 −122.42519 1666 Cascade Range 4
4153 43.52632 −122.43086 2948 Cascade Range 4
4158 43.74414 −122.54805 2102 Cascade Range 4
4173 44.19257 −122.30781 1963 Cascade Range 2
4192 44.366 −122.237 2783 Cascade Range 4
4193 44.39371 −122.2438 1676 Cascade Range 4
4194 44.373 −122.38 2150 Cascade Range 4
4196 44.433 −122.425 2371 Cascade Range 4
4199 44.418 −122.379 2389 Cascade Range 4
4202 44.66695 −122.11407 2725 Cascade Range 4
4203 44.79057 −122.0533 2573 Cascade Range 5
4205 44.432 −122.002 3331 Cascade Range 4
4209 44.55878 −122.04321 3869 Cascade Range 4
6015 45.318502 −123.85525 1376 Coast Range 4
6024 44.15252 −123.7439 720 Coast Range 4
6090 44.88084 −123.8743 1220 Coast Range 4
6095 44.11648 −124.07047 900 Coast Range 4
6105 44.52202 −123.76382 1543 Coast Range 4
6107 44.11923 −124.02402 1843 Coast Range 4
6118 43.731 −123.952 975 Coast Range 4
AMY 44.19366 −123.50253 739 Coast Range 4

Note: DD = decimal degrees; n = sample size.
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