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Sex and size matter: ontogenetic patterns of nutrient content of
aquatic insects

Jeffrey A. Back' anp Ryan S. King?

Center for Reservoir and Aquatic Systems Research, Department of Biology, Baylor University,
Omne Bear Place 97388, Waco, Texas 76798-7388 USA

Abstract. C, N, and P content were measured across the ontogeny of lotic aquatic insects representing a
diversity of life-history characteristics. The relationship between individual mass and nutrient content was
used to show ontogenetic patterns of nutrient content by species. Species analyzed for C and N content
exhibited a quasihomeostatic pattern across ontogeny. Percent C and %N varied among taxa irrespective of
ontogeny, with %C ranging from 47.4 to 56.2% and %N ranging from 9.6 to 11.6%. P content also varied by
species but declined nonlinearly across ontogeny and was best represented by a power function. Percent P
varied from >7% in 1°%-instar Tabanus larvae to only 0.34% in adult male Ambrysus circumcinctus. Females
had more P per unit mass than males in 6 of the 10 species that could be sexed. In the leptophlebiid
mayflies, %P increased in mature female nymphs relative to the penultimate developmental class, whereas
%P content of males continued to decline to eclosion. Maximum terminal mass by species was the main
factor driving the magnitude of change in %P through their ontogeny. Small-bodied, rapidly growing
species exhibited the sharpest decline in P content. Nonhomeostatic patterns in %P across ontogeny and
between sexes has important implications for population- and community-level dynamics and ecosystem
processes. First, small-bodied, high-%P taxa have faster growth rates than larger individuals, which
supports one of the predictions of the growth-rate hypothesis (GRH). Second, elemental imbalance
between consumers and their food changes across ontogeny, and therefore, nutrient recycling rate by a
species changes with population age structure. Last, community structure may reflect nutrient availability
in food such that enriched environments are more likely to be dominated by taxa with high growth rates
and, thus, relatively high P demand.

Key words: ecological stoichiometry, elemental composition, ontogeny, homeostasis, phosphorus,
nutrient patterns, aquatic insects.

Ecological stoichiometry is the study of constraints
and consequences of elemental imbalances between
consumers and their food (Sterner and Elser 2002).
Nutrient imbalances arise because the bodies of
herbivores and detritivores are typically more en-
riched in N and P than the plants and detritus they eat
(Sterner and Hessen 1994, Fagan et al. 2002, Cross
et al. 2003). The C content of plants and detritus
usually is similar except that aquatic plants and algae
have lower C content than detritus (Kahlert 1998) and
terrestrial plants (Sterner and Elser 2002, Shurin et al.
2006). In contrast, predators are more similar in
elemental content to their prey (Sterner and Elser
2002). Patterns of CNP content of consumers and their
food provides a basis for understanding the effects of
elemental imbalances on growth rates of consumers
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(Elser et al. 2003), nutrient recycling (Vanni et al. 2002,
Evans-White and Lamberti 2006, Rothlisberger et al.
2008), population dynamics (Andersen et al. 2004,
Moe et al. 2005), foodweb organization (Vrede et al.
2004), and community structure and function (Elser
et al. 2000, Cross et al. 2005).

The CNP content of lotic macroinvertebrates and
their food resources has recently received attention
(Cross et al. 2003, Bowman et al. 2005, Evans-White
et al. 2005, Liess and Hillebrand 2005, Back et al. 2008,
Small and Pringle 2010). Organisms accomplish
homeostasis by modifying the quality or quantity of
organic matter ingested to maintain adequate supply
relative to demand of essential elements required for
metabolism, growth, and reproduction (Sterner and
Elser 2002). Investigators have implicitly assumed
that aquatic macroinvertebrates maintain an approx-
imately constant, or homeostatic, elemental com-
position across life stages or sizes within species.
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However, the limited number of studies on CNP
content of aquatic and terrestrial invertebrates span-
ning different developmental stages has revealed
nonhomeostatic patterns across the ontogeny of
species (zooplankton: Andersen and Hessen 1991,
Hessen and Lynch 1991, Main et al. 1997, Villar-
Argaiz et al. 2002; Drosophila: Elser et al. 2006;
mayflies: Frost and Elser 2002, Back et al. 2008,
Veldboom and Haro 2011). Specifically for insects, P
content of 5 species of Drosophila larvae decreased
with increasing larval development, and each species
had differing P content (Elser et al. 2006). P content
decreased across the early developmental stages of
Ephemerella sp. mayflies (Frost and Elser 2002). P
content decreased in early developmental stages of
Caenis sp. and increased in later developmental
stages, whereas C and N content were nearly constant
across ontogeny (Back et al. 2008). P content also
increased in late-stage larvae, pupae, and adults of the
caddisfly Brachycentrus occidentalis (Veldboom and
Haro 2011). However, these investigators compared,
at most, the elemental content of several size classes
and did not examine individuals across the continu-
um of ontogeny.

Food elemental content and species development
are intimately linked by changing elemental needs
across ontogeny. Because elemental content may
change across the ontogeny of a species, the severity
of elemental imbalance also may change (increase or
decrease) assuming constant C, N, and P content of
food. This linkage may affect survivorship of specific
life-history stages as demonstrated for the copepod
Diaptomus clavipes (Villar-Argaiz and Sterner 2002).

Understanding how P content varies across ontog-
eny is of particular importance because P deficiency
limits growth of invertebrates (Urabe et al. 1997,
Sterner and Elser 2002). Furthermore, growth rates
are positively correlated with body %P (Elser et al.
1996, 2003, Frost and Elser 2002, Weider et al. 2005) but
negatively correlated with adult invertebrate body size
(Woods et al. 2004). Phylogeny also may constrain P
(Woods et al. 2004) and N (Fagan et al. 2002) content of
invertebrates, independent of ontogeny.

Life-history traits, such as reproductive strategy,
probably have a strong bearing on P content during
ontogeny. P content of invertebrates that produce a
single (usually large) batch of eggs (semelparous taxa)
may increase as larvae mature. Percent P of somatic
tissue is less than that of gametes (especially eggs) in
the few taxa examined (Andersen and Hessen 1991,
Markow et al. 1999, 2001, but see Feerovig and Hessen
2003). P content of iteroparous taxa (reproduce
multiple times, fewer eggs) probably declines as
larvae grow because adults can feed and supply
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nutrients necessary for maintenance and reproduc-
tion. Differences in patterns of P content between
iteroparous and semelparous taxa may be because
semelparous insect taxa do not feed as adults.
Therefore, the burden of P (and C, N, and other
elements) acquisition rests entirely on larval feeding.
Collectively, these previous studies suggest that sex,
reproductive strategy, adult feeding status, trophic
level, life-cycle completion time, and metamorphosis
type may interact to produce varying patterns in P
content across invertebrate ontogeny.

The objectives of our study were to: 1) describe the
pattern of %CNP content of aquatic macroinverte-
brates across their ontogeny, from egg or 1% instar to
mature larva or adult, 2) assess whether nutrient
content differs between sexes, and 3) identify consis-
tent patterns (if any exist) in nutrient content related
to life-history traits.

Methods
Study area

All insects were collected from 3 to 24 June 2009 from
Cowhouse Creek in Coryell County, Texas, USA (lat
31.286122°N, long 97.883994°W). Cowhouse Creek is a
tributary of the Brazos River in the Cross Timbers Level
III Ecoregion (Griffith et al. 2004). Land cover in the
1180-km* catchment consists of shrubland (43%),
grassland (34%), and forest (19%) (King et al. 2009).
Stream habitats sampled were riffles, runs, and their
margins. Riffles and runs consisted of large areas of
shallow gravel and cobble substrates overlying lime-
stone bedrock. Insects were collected using D-nets, kick
screens, and by hand-picking insects from rocks.
Corydalus cornutus eggs were collected from ash tree
(Fraxinus) leaves overhanging the creek and Tabanus sp.
eggs were collected from exposed rocks in riffles. The
goal was to collect the entire size range of numerically
dominant species. Insects were transported to the
laboratory and sorted live under a stereomicroscope.

Chemical analyses

Intact whole insects were dried in Al weighing pans
at 50°C for >48 h and then stored in a desiccator. The
bottoms of the weighing pans were covered with
paper towel to: 1) prevent insects from sticking to the
pan while drying, and 2) provide evidence of fluid
leakage from an insect’s body that would lead to its
exclusion from chemical analysis. Before chemical
analyses, insects were redried for >24 h at 50°C.
Individual insects were weighed on a microbalance
(Mettler Toledo XP-26; Mettler-Toledo AG, Greifen-
see, Switzerland) to the nearest pg. No method was
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available to measure simultaneously the C, N, and P
content of a single individual. Therefore, C and N
content were measured on one set of individuals, and
P content was measured on a different set of
individuals for each species. Enough material was
available to measure C, N, and P content on only 8
taxa, whereas P content alone was measured on 10
additional taxa (18 total).

C and N content were measured simultaneously
with a Thermo-Finnegan Flash 1200 elemental ana-
lyzer (ThermoQuest, Milan, Italy). Individual insects
of each taxon were analyzed when possible. In a few
cases, small individuals were combined to achieve the
minimum 200 ug of dry mass needed for %C and %N
analysis. Whole insects were placed in Sn capsules,
gently crushed with a metal spatula, and sealed in the
capsule. Standards of L-cystine (30% C and 11.67% N)
and an internal standard of Anax junius dragonfly
nymphs (49.9% C and 10.8% N) were run with
samples for quality assurance/quality control (QA/
QC). Mean (SD) % recovery of C and N from L-cystine
standards (n = 26) were 101.5% (1.30) for C and 95.2%
(0.63) for N and from A. junius standards (n = 22)
were 101.1% (1.93) for C and 98.5% (0.45) for N.

For P measurement, individual insects were
weighed as above, placed in 22-mL glass scintillation
vials, pulverized with a metal spatula, capped with a
lid containing a Teflon septum, and chemically
digested in an autoclave for 1 h at 120°C by the
method of Feergvig and Hessen (2003). The minimum
mass required for P measurement was 10 ug (assum-
ing 1% P content). For sample masses <2000 pg,
15 mL deionized (DI) water and 1.8 mL of digestion
solution was used. For every 2000-ug increment, an
additional 1.8 mL of digestion solution was used in
place of 1.8 mL of DI water, up to a 22,000-ug
maximum mass digested (19.8 mL digestion solution,
no DI water). Individuals that weighed >22,000 ng
were broken into subunits, digested in multiple vials,
and composited after digestion. All samples with
masses >2000 ug were diluted back to the ratio of
15 mL DI:1.8 mL digestion solution with DI water. P
content was estimated via colorimetry by the ascorbic
acid—-molybdate method on a Lachat 8500 flow-
injection autoanalyzer with an ASX-520 autosampler
(Hach Co., Loveland, Colorado). Tissue standards of
tomato leaf (SRM 1573a, 0.216% P), and bovine liver
(SRM 1577¢c, 1.175% P) and dissolved inorganic
standards were run for QA/QC. To ensure no bias
among the 11 runs, a wide range of masses for each
taxon was analyzed in >2 separate runs. The mean
(SD, n) % recovery for P was 103.9% (14.3, 45) for
tomato leaf, 92.7% (6.1, 26) for bovine liver, and 103.6
(6.5, 176) for inorganic P standards.
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Data analyses

Patterns of C, N, and P content.—Percent C, N, and P
were plotted as functions of dry mass for each taxon
separately. C, N, and P curves were evaluated as linear,
exponential, logarithmic, and power functions. The
goodness of fit of each curve type was assessed using
the 7* value. Linear regressions were tested for slopes
equal to 0 in R (version 2.13.1; R Core Development
Team, Vienna, Austria) using the CAR library (Fox and
Weisberg 2011). A slope equal to 0 is evidence of
elemental homeostasis across ontogeny. Mass and %
element data were log(x)-transformed prior to analysis
to meet assumptions of linear models.

Sexual differences in nutrient content—Mayfly nymphs
were grouped into 5 development classes (DC) based
on wing-pad development (Taylor and Kennedy 2006)
and sexed based on eye development. Other imma-
ture insect taxa and earlier DC mayflies could not
be sexed. DCs 3, 4, and 5 were defined by wing pads
that reached abdominal segment 1, 2, and 3+,
respectively (Fig. 1A-C). Females have simple eyes,
and males have turbinate eyes (Fig. 1B, C). Adult
Coleoptera (Stenelmis) and Hemiptera (Ambrysus,
Rheumatobates, and Rhagovelia) also were sexed and
%P was compared between sexes.

Analysis of covariance (ANCOVA) was used to
assess whether change in %P with mass differed
between males and females. Mass was the covariate
and sex was the categorical factor in each ANCOVA
model. Our analysis followed the framework outlined
by Engqvist (2005). If the interaction term was
significant, then the rate of change of %P differed
between males and females (i.e., slopes not equal).
The data were analyzed again without the interaction
term and the main effects, sex and mass, were
examined. The 2 models (significant interaction vs
nonsignificant interaction) were then compared with
analysis of variance (ANOVA), and a nonsignificant
result indicated the simplest model was most appro-
priate (Engqvist 2005). If the main effects and
interaction (sex, mass) were nonsignificant, we con-
cluded that the sexes had the same %P and the
regression line had a slope of 0, and thus, %P did not
vary with mass. If only mass was significant, the slope
was not equal to 0, and %P varied with mass but the
sexes had the same %P. If only sex was significant, the
sexes had the same slope, but one sex had higher %P
than the other and the slope of both regression lines
was 0. If both sex and mass were significant, then %P
changed with mass and the sexes differ in %P, but the
slopes of males and females were equal.

Nutrient content and life-history traits.—To test the
hypothesis that smaller taxa had sharper declines in %P
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Fic. 1. Early (A), intermediate (B), and late (C) development classes (DC) for the mayfly Neochoroterpes nanita. Turbinate eyes
of males are indicated by arrows. Horizontal line is the furthest extent of the wing pads. The first 3 abdominal segments are

denoted as abl, ab2, and ab3.

with increasing size, we plotted the maximum size of
each taxon against the P decay rate to assess whether life-
history traits influenced patterns in %P. Maximum size
was a surrogate for life-cycle completion time. Based on
the generation-time law (Bonner 1965, Peters 1983), we
predicted smaller maximum-sized taxa would have a
faster life-cycle completion time than larger maximum-
sized organisms. Reproductive strategy, metamorphosis
type, functional feeding group (FFG), and taxonomy
were coded into the plot to detect whether patterns
emerged based on these life-history traits.

Results
Patterns of %CNP content

Linear regression analysis revealed that %C and
%N were invariant (i.e., slopes = 0) across the

Downloaded From: https://bioone.org/journals/Freshwater-Science on 14 May 2024
Terms of Use: https://bioone.org/terms-of-use

ontogeny of 6 of the 8 taxa examined. Ambrysus
circumcinctus had slopes < 0 for %C and N, whereas
Baetodes inermis had slopes < 0 for %C and Stenelmis sp.
had slopes < 0 for %N. Mean %C ranged from 47.4 to
56.2%, and no trends relative to phylogeny or FFG
were evident (Table 1). Mean %N ranged from 9.6 to
11.6%. Trends within FFG showed qualitatively that
predators had the highest %N content, followed by
filter feeders, collector-gatherers, and grazers with the
lowest %N content (Table 1). The C:N ratio ranged
from 4.9 to 6.4 and predators had the lowest C:N ratios
(Table 1). Tabanus sp. eggs were 10.9% N and 50.8% C.

The relationship between %P and mass was best
represented by a power function across all 18 taxa
(Fig. 2A-R). Without exception, small individuals had
higher %P than larger individuals within species.
Variability in larval %P declined as mass increased.
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Results of analysis of covariance (ANCOVA) of slopes of regressions for C and N content of aquatic insects across

their ontogeny. 1= predator, 2 = filter feeder, 3 = collector-gatherer, 4= grazer, SE = standard error, CI = confidence interval.

Mass range Mean %
Taxon n (ug) Nutrient (SE) Slope r p Slope CI (5%, 95%) C:N

Ambrysus circumcinctus’ 24 50-15,110 C 50.0 (0.50) —0.0003  0.3305 0.004 —0.0004, —0.0001 5.0
N 11.6 (0.12) —0.00003 0.0935 0.05 —0.000089, —6 X 108

Rhagovelia choreutes’ 14 200-1680 C 51.1 (0.60)  0.0009  0.0369 0.5108 —0.002, 0.004 52
N 11.5 (0.15)  0.00003 0.0008 0.9255 —0.0007, 0.0008

Tabanus sp.’ 21 740-21,750 C 479 (0.50) —0.0001  0.1744 0.0596 —0.0003, 0.000006 49
N 11.3 (0.10) —0.00001 0.0225 0.5164 —0.00004, 0.00002

Chimarra sp.> 31 170-3710 C 50.0 (0.66) —0.0007  0.0188 0.4625 —0.002, 0.001 53
N 11.0 (0.17) —0.0003  0.0609 0.1809 —0.0008, 0.0001

Stenelmis sp.’ 17 31-750 C 54.0 (1.06) —0.0022  0.0236 0.5552 —0.01, 0.005 57
N 11.0 (0.29) —0.002 0.2534 0.0393 —0.004, —0.0001

Neochoroterpes nanita® 35 53-3390 C 474 (0.55)  0.0004 0.0126 0.2724 —0.0008, 0.002 5.3
N 10.5 (0.13) —0.0002  0.0364 0.5209 —0.0004, 0.00013

Baetodes inermis® 31 140-1560 C 56.2 (0.61) —0.0057  0.3328 0.0005 —0.0075, —0.0023 6.4
N 10.2 (0.13) —0.0001  0.005 0.99  —0.0006, 0.0006

Psephenus texanus® 30 370-5070 C 52.8 (0.63)  0.0005 0.026 0.1838 —0.0006, 0.0006 6.4
N 9.6 (0.13) —0.0001  0.0648 0.1748 —0.0003, 0.00007

Eggs (not shown in Fig. 2) were available for analysis for
2 species. Corydalus cornutus eggs had a mean %P of
1.84% (n = 21, range 0.82-3.99%), which was near the
largest observed larval %P value (1.86%) for that species.
Tabanus sp. eggs had a mean %P of 4.67% (n = 13, range
1.90-8.19%). First-instar Tabanus sp. larvae reared from
eggs had a mean %P of 6.11% (n = 4, range 4.67-7.27%).

Sexual differences in nutrient content

Among the mayfly species, %P of all leptophlebiids
(Neochoroterpes nanita, Thraulodes gonzalesi, and Traver-
ella presidiana) differed significantly between the sexes
(Table 2). However, T. gonzalesi and T. presidiana
differences were mass dependent. Females were more
P-enriched, and %P was higher in mature DC 5
nymphs than in DC 4 nymphs (Table 3). In contrast,
%P of all swimmer mayfly taxa (Baetis sp., B. inermis,
and Isonychia sicca) did not differ between the sexes
and %P declined as mass increased for all these taxa
(Table 3). The slope of %P differed between males
and females of the hemipterans Rheumatobates hun-
gerfordi and Rhagovelia choreutes, with %P in females
declining less per unit mass than males. Percent P of
adult A. circumcinctus differed between sexes, and
females were P-enriched compared to males. The rate
of decline in %P with DC was similar for males and
females. Adult Stenelmis sp. sexes had the same slope
and did not differ in %P content (Table 3).

Nutrient content and life-history traits

No clear patterns in %P were revealed based on
life-history traits (Fig. 3A-C). However, a strong
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statistically significant linear relationship (+* = 0.60,
p < 0.001) between taxon maximum size and P decay
rate (i.e., the slope of the curve for each taxon in
Fig. 2A-R) was evident. Species maximum size was
the main factor driving the magnitude of changes in
%P across ontogeny, with small-bodied, rapidly
growing species exhibiting the sharpest decline in P
content across ontogeny.

Discussion
Patterns of C, N, and P content

The degree to which aquatic macroinvertebrate
species change their elemental content across their
ontogeny is largely unknown. Our findings show that
%C and %N are homeostatic across the ontogeny of 6
of the 8 aquatic insect species examined, and in those
with significant variation, the changes were small
relative to the changes in %P across the ontogeny of
all taxa investigated. Both %C and %N were
nonhomeostatic in A. circumcinctus, whereas only
%C was nonhomeostatic in B. inermis and %N in
Stenelmis sp. (Table 1). Even though the slopes were
negative, it is unclear to us if they are biologically
significant. Overall, the consistency of the %C and
%N pattern suggests that these elements are quasi-
homeostatic across the ontogeny of aquatic insects in
general. In Caenis sp. mayflies, %C increased slightly
across size classes, and %N decreased slightly across
size classes at 2 sites, results suggesting that %C and
%N were more-or-less homeostatic (Back et al. 2008).
Percent C increased greatly across the ontogeny
of a caddisfly, whereas %N declined gradually
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Fic. 2. Relationship between individual mass and %P for Baetis sp. (A), Baetodes inermis (B), Isonychia sicca (C), Thraulodes
gonzalesi (D), Traverella presidiana (E), Neochoroterpes nanita (F), Argia sp. (G), Brechmorhoga mendax (H), Rhagovelia choreutes (I),
Rheumatobates hungerfordi (J), Ambrysus circumcinctus (K), Corydalus cornutus (L), Helicopsyche sp. (M), Cheumatopsyche sp. (N),
Chimarra sp. (O), Psephenus texanus (P), Stenelmis sp. (Q), and Tabanus sp. (R). Raw data were plotted to illustrate the nonlinear
pattern of data. Solid line is a regression line, and dotted lines are 95% confidence intervals.
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TaBLE 2. Results of analysis of covariance (ANCOVA) comparing the relationship between body mass and %P of individuals
with respect to sex. ns = not significant, ¥ = 0.1 > p > 0.5,* = 0.5 > p > 0.01, ** = 0.01 > p > 0.001, ** p < 0.001.

Taxon df Mass Sex Mass X sex
Neochoroterpes nanita Fi55 2.38 ns 4.859* 5.191*
Thraulodes gonzalesi Fis5 125.136*** 1.859 ns 28.908***
Traverella presidiana Fi53 138.922*** 1.110 ns 7.276**
Baetis sp. Fiss 74.082*** 3.475 ns 0.854 ns
Baetodes inermis Fis3 12.928*** 2.516 ns 0.059 ns
Isonychia sicca Fi3s 59.326*** 2.931 ns 1.468 ns
Rheumatobates hungerfordi Fi1o 11.285** 8.155* 3.491%
Rhagovelia choreutes Fia4 54.281** 52.584** 13.963*
Ambrysus circumcinctus Fie 6.162* 30.565*** 0.861 ns
Stenelmis sp. Fie 0.399 ns 0.383 ns 1.075 ns

(Veldboom and Haro 2011). The increase in %C in the
study by Veldboom and Haro (2011) is probably
related to the fact that B. occidentalis is univoltine,
overwinters as mature larvae, and pupates in early
spring. Therefore, fat reserves are needed to fuel
metamorphosis during pupation and respiration of
the adult in the pupal chamber.

Percent C, %N, and C:N changed relatively little
across the ontogeny of species in our study. Thus, our
results were comparable to values from studies in
which only terminal or homogenized life stages were
examined (Frost et al. 2003, Evans-White et al. 2005,
Liess and Hillebrand 2005, Lauridsen et al. 2012). In
our study, the only pattern in %C was that taxa with

sclerotized or armored integuments had greater mean
%C than taxa with membranous integuments (Table 1).
The slightly higher %N and low C:N of predators
relative to other FFGs in our study also agrees with
results of other studies (Fagan et al. 2002, Evans-White
et al. 2005, Hambéck et al. 2009). The %C and %N of
Tabanus sp. eggs were similar to %C and %N of larvae,
further suggesting ontogenetic homeostasis with re-
spect to C:N.

In contrast, P clearly was not homeostatic across
ontogeny. Thus, comparison of our %P data with
literature values is difficult. However, %P of late-DC
individuals in our study was similar to values
reported for mature individuals in other studies

TaBLE 3. Mean mass (1) and %P (SE) of male and female mayfly nymphs and adult Hemiptera and Coleoptera.

Mass (ug) PP
Development

Taxon class Males Females Males Females
Neochoroterpes nanita 3 235 (13) 308 (13) 0.96 (0.02) 0.96 (0.02)
4 412 (4) 469 (8) 0.87 (0.02) 0.91 (0.03)

5 669 (6) 900 (15) 0.87 (0.03) 0.97 (0.02)

Thraulodes gonzalesi 3 294 (10) 374 (8) 1.40 (0.06) 1.19 (0.04)
4 635 (5) 713 (8) 1.08 (0.05) 1.05 (0.03)

5 831 (12) 1009 (12) 0.99 (0.03) 1.10 (0.04)

Traverella presidiana 3 310 (17) 402 (10) 1.32 (0.05) 1.18 (0.04)
4 560 (5) 948 (8) 1.14 (0.05) 0.97 (0.03)

5 1492 (10) 2019 (7) 0.96 (0.02) 0.99 (0.02)

Buaetis sp. 3 81 (4) 76 (11) 1.92 (0.20) 1.93 (0.09)
4 108 (4) 101 (12) 1.16 (0.02) 1.29 (0.06)

5 153 (9) 135 (7) 1.10 (0.03) 1.15 (0.02)

Baetodes inermis 3 456 (10) 504 (10) 0.78 (0.03) 0.83 (0.02)
4 700 (6) 783 (10) 0.81 (0.04) 0.81 (0.02)

5 1175 (10) 1244 (10) 0.74 (0.02) 0.75 (0.02)

Isonychia sicca 3 2175 (12) 2509 (8) 1.15 (0.02) 1.15 (0.02)
4 5500 (5) 7668 (5) 1.03 (0.05) 1.00 (0.05)

5 6802 (5) 13,768 (6) 0.99 (0.07) 0.98 (0.04)

Rhagovelia choreutes Adult 346 (4) 571 (4) 0.62 (0.17) 0.84 (0.14)
Rheumatobates hungerfordi Adult 309 (5) 381 (11) 1.15 (0.03) 1.18 (0.10)
Ambrysus circumcinctus Adult 10747 (4) 12,674 (5) 0.40 (0.05) 0.60 (0.02)
Stenelmis sp. Adult 660 (4) 847 (5) 0.57 (0.07) 0.59 (0.09)
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Fic. 3. Relationship between the largest mass observed for a taxon and the slope of the power function (from Fig. 2) that
describes the decrease in %P (slope) across ontogeny by reproductive strategy (A), type of metamorphosis (B), and functional
feeding group (C). Lines were fitted by least squares regression.

(e.g., Evans-White et al. 2005, Hamback et al. 2009).
The pattern of %P was nonlinear (power function)
and declined with increasing size for all 18 taxa
examined (Fig. 2A-R). Mean %P of eggs was equal to
(C. cornutus) or less than (Tabanus sp.) that of 1%*-instar
larvae, but the range of P content in eggs was large
(see Results). The highest egg %P exceeded the %P of
the smallest larvae for both species. The large
variation in egg %P suggests that not all eggs are
created equal. Part of this variation could be because
some eggs analyzed were not fertilized. Nutrients
derived from males through mating represent a
prezygotic investment in reproduction (Zeh and
Smith 1985, Boggs 1990) and can influence the number
and quality of eggs produced. Markow et al. (2001)
demonstrated that males do contribute to the P
content of Drosophila eggs during mating. Male
contributions to the nutrient content of eggs also
have been shown in butterflies (Boggs and Gilbert
1979, Boggs 1990) and beetles (Rooney and Lewis
1999). The fate of low-%P eggs is not known, but
perhaps they fail to develop, or they hatch and larvae
soon die. The fate of high-%P eggs also is not known,
but larvae that hatch probably have an increased
somatic growth rate and possibly have higher
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survivorship resulting from faster growth (Arendt
1997).

We surmise that aquatic insects provision eggs with
large amounts of P to promote rapid growth of early
instars. However, this strategy is not shared by all
insects. The fertilized eggs of the mammalian blood-
feeding hemipteran Rhodnius prolixus (Reduviidae)
contained only 0.61% P (calculated from table 1 in
Ramos et al. 2011). Mammalian blood has a high P
content (20-85 mg/L P; Rapoport and Guest 1941).
After hatching, all sizes of R. prolixus feed on
mammalian blood, thus a high-P diet may preclude
the need for high-P eggs in blood-feeding insects.

The pattern of declining %P across ontogeny has
been shown for Ephemerella sp. (Frost and Elser 2002)
and Caenis sp. (Back et al. 2008) mayflies, brachycentrid
caddisflies (Veldboom and Haro 2011), and zooplank-
ton (Main et al. 1997). However Back et al. (2008) found
greater %P in the largest Caenis sp. size class relative to
intermediate developmental classes, as did Veldboom
and Haro (2011) in Brachycentrus pupae relative to
mature larvae. Back et al. (2008) speculated that the
trend in Caenis sp. could have been a consequence of a
large proportion of females carrying high-%P eggs in
the sample (but they did not sex individuals in the
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sample). In our study, all 3 leptophlebiid mayflies had
increasing %P in the largest female individuals, but
males did not. Declining %P with increasing size fits
the predictions of the GRH (Elser et al. 1996, 2006, Main
et al. 1997, Sterner and Elser 2002). Small individuals
grow faster than large ones of the same species. Thus,
growth slows as organisms age (Peters 1983). P is
necessary to fuel rapid growth because of the high P
content of ribosomes, messenger ribosomal ribonucleic
acid (mRNA), and especially ribosomal RNA (rRNA).
Unlike deoxyribonucleic acid (DNA), quantities of
ribosomes, mRNA, and rRNA are not fixed in cells,
and changes in these constituents can alter the amount
of cellular P (Sterner and Elser 2002). Transcription
rates and protein synthesis are positively correlated
with P supply (Acharya et al. 2004, Vrede et al. 2004,
Weider et al. 2005).

Nutrient ratios also are important because growth
requires different relative amounts of C, N, and P, and
other elements (Elser et al. 1996, Sterner and Elser
2002). Furthermore, somatic growth may have differ-
ent elemental requirements than gamete production,
especially with reference to P (Vrede et al. 1999,
Feergvig and Hessen 2003). Because %C and %N did
not vary markedly across ontogeny, the C:N ratio also
did not vary much for the 8 taxa examined in our
study. However the C:P and N:P ratio obviously
increases with declining %P as organism size increas-
es. Because the N:P ratio increases across ontogeny
and growth rate slows with increasing size, N must
not be limiting for growth when organism P is in high
supply (i.e., when organisms are small). Thus, an
optimal N:P (or C:P) may not exist for organisms
undergoing rapid somatic tissue growth because only
%P changes across ontogeny in a significant way.

Sexual differences in nutrient content

In all cases where a difference was detected, female
insects were more enriched in P than males. Repro-
ductive strategy does not seem to influence sexual
patterns in %P content. Among semelparous mayflies,
some taxa have females that are enriched in P relative
to males and others have females with the same %P as
males. Iteroparous (Hemiptera and Coleoptera) taxa
also show both patterns (Table 2). Veldboom and
Haro (2011) found 2 populations of Brachycentrus in
which male pupae were more enriched in P than
female pupae, and 2 populations where the %P was
equal between pupae of both sexes. Morehouse et al.
(2010) suggested that sexual differences in nutrient
content should be expected based on difference in
biochemical demand and composition of gametes and
other sexually specific structures.
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Nutrient content and life-history traits

Phylogeny may be an important secondary deter-
minant of %P content in mayfly nymphs across their
ontogeny. Mayflies showed 2 distinct patterns in %P
that apparently were constrained by phylogeny.
Percent P of Baetis sp., B. inermis, and 1. sicca did not
differ between males and females. However, females
of all 3 leptophlebiid taxa (N. nanita, T. gonzalesi, and
T. presidiana) were more enriched in P than males.
This pattern is consistent with the pattern of increased
P in late-instar Caenis nymphs documented by Back et
al. (2008). Phylogenetic analysis indicates that Caenis
(Caenidae) is more closely related to Leptophlebiidae
(suborder Furcatergalia) and Baetidae is more closely
related to Isonychiidae (suborder Pisciforma) than
Caenidae and Baetidae are related to each other
(Ogden et al. 2009).

Mature Baetis and Caenis nymphs are both small and
can complete their life cycles and reproduce in <2 wk
(Edmunds et al. 1976, Brittain 1982, Taylor and
Kennedy 2006), yet they differ in ontogenetic patterns
in %P. The %P of the largest Caenis sp. size classes
increased in a manner similar to its slower-growing
larger relatives, the leptophlebiids, whereas %P of
Baetis sp. did not increase with size. In contrast, B.
inermis and its close relative Baetis sp. share the same
ontogenetic %P pattern despite B. inermis differing in
morphology and behavior. Baetodes inermis has spines
and tubercles on its legs and abdomen and does not
swim actively (Edmunds et al. 1976). The causal factors
responsible for the difference in %P between the
suborders are not known, but warrant further study.

Reproductive strategy, type of metamorphosis, and
FFG did not appear to be associated with the pattern
of decreasing %P with increasing maximum size
(Fig. 3A—C). Patterns did not differ between semel-
parous and iteroparous taxa, between pauro- or
holometabolous taxa, or among FFGs. Moreover, the
expected pattern that %P of FFGs would reflect the
quality of food sources (i.e., increasing %P in
collector-gatherers, filterers, scrapers, and predators)
was not observed. Thus, the maximum size of a taxon
drove the rate at which %P declined (Fig. 3A-C). The
smallest taxa had the greatest decline in %P and the
fastest life-cycle-completion times. The only exception
was Stenelmis sp., which can take from 6 mo to 2 y to
complete its life cycle (White 1978, Brown 1987).

Nonhomeostatic patterns in %P across ontogeny
have important implications for population- and
community-level processes and will affect predictions
about consumer-driven nutrient recycling. The differ-
ence between the nutrient content of food and the
nutrient demand of a species determines recycling
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rates (Elser and Urabe 1999, Evans-White and
Lamberti 2006, Rothlisberger et al. 2008). For a given
species, small individuals may be a sink and hoard
nutrients (especially P) whereas larger individuals
become a source so that organisms advance along a
sink-source continuum as they grow. The high %P of
small individuals may profoundly influence their
perceived quality to predators. Small individuals may
not contain as much P (by mass) as larger individuals,
but shorter prey-handling times may benefit preda-
tors that target small prey. Thus, predatory taxa may
preferentially target small taxa and decrease P-
excretion rates to conserve P for egg production.
Nonpredatory taxa may hoard P across ontogeny to
help meet P demands for reproduction. Although the
actual mechanisms used by organisms to meet P
demands for growth and reproduction are not clear,
some combination of altered P-excretion rates, P
uptake, and switching to higher-quality food or
increased food ingestion rates probably are involved.

The effect of nutrient subsidies on patterns of
ontogenetic nutrient content should be investigated.
Nutrient subsidies may increase insect nutrient content
across ontogeny or might result in larger individual
size, egg size, or fecundity without altering %P.
Subsidies can be passed up the food chain, thereby
influencing community structure and function. Fur-
thermore, high %P content of small taxa means high P
demand, a possible mechanism for the proliferation
of small, rapidly growing taxa in nutrient-enriched
ecosystems (Miltner and Rankin 1998, King and
Richardson 2007, Wagenhoff et al. 2011).
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