How to translate text using browser tools
1 June 2008 Biophysical Modeling of Fragment Length Distributions of DNA Plasmids after X and Heavy-Ion Irradiation Analyzed by Atomic Force Microscopy
Thilo Elsässer, Stephan Brons, Katarzyna Psonka, Michael Scholz, Ewa Gudowska-Nowak, Gisela Taucher-Scholz
Author Affiliations +
Abstract

Elsässer, T., Brons, S., Psonka, K., Scholz, M., Gudowska-Nowak, E. and Taucher-Scholz, G. Biophysical Modeling of Fragment Length Distributions of DNA Plasmids after X and Heavy-Ion Irradiation Analyzed by Atomic Force Microscopy. Radiat. Res. 169, 649–659 (2008).

The investigation of fragment length distributions of plasmid DNA gives insight into the influence of localized energy distribution on the induction of DNA damage, particularly the clustering of double-strand breaks. We present an approach that determines the fragment length distributions of plasmid DNA after heavy-ion irradiation by using the Local Effect Model. We find a good agreement of our simulations with experimental fragment distributions derived from atomic force microscopy (AFM) studies by including experimental constraints typical for AFM. Our calculations reveal that by comparing the fragmentation in terms of fluence, we can uniquely distinguish the effect of different radiation qualities. For very high-LET irradiation using nickel or uranium ions, no difference between their fragment distributions can be expected for the same dose level. However, for carbon ions with an intermediate LET, the fragmentation pattern differs from the distribution for very high-LET particles. The results of the model calculations can be used to determine the optimal experimental parameters for a demonstration of the influence of track structure on primary radiation damage. Additionally, we compare the results of our model for two different plasmid geometries.

Thilo Elsässer, Stephan Brons, Katarzyna Psonka, Michael Scholz, Ewa Gudowska-Nowak, and Gisela Taucher-Scholz "Biophysical Modeling of Fragment Length Distributions of DNA Plasmids after X and Heavy-Ion Irradiation Analyzed by Atomic Force Microscopy," Radiation Research 169(6), 649-659, (1 June 2008). https://doi.org/10.1667/RR1028.1
Received: 15 March 2007; Accepted: 1 February 2008; Published: 1 June 2008
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top