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ABSTRACT: The muskox (Ovibos moschatus) population inhabiting the eastern North Slope (ENS) of
Alaska, US declined dramatically during 19992006, whereas populations in western Alaska (WA) were
stable or increasing. To understand morbidity and mortality factors contributing to the decline, Alaska
Department of Fish and Game conducted pathologic investigations of carcasses from 2005 until 2008.
Additionally, archived sera from both ENS and WA muskoxen collected during 1984-92, before the
documented beginning of the ENS decline; sera collected during 2000, near the beginning of the
decline; and contemporary sera (from live capture-release, adult females) collected during 2006, 2007,
and 2008 were analyzed to determine whether prevalence of antibody to potential pathogens differed in
the two areas or changed over time. The pathogens investigated were those that were believed could
cause lameness or poor reproduction or adversely affect general health. Furthermore, trace mineral
levels, hemograms, and gastrointestinal parasites were evaluated in live adult females captured 2006
08. Pathologic investigations identified several comorbid conditions, including predation, polyarthritis
caused by or consistent with Chlamydophila spp. infection, hoof lesions, copper deficiency, contagious
ecthyma, verminous pneumonia, hepatic lipidosis suggestive of negative energy balance, and bacterial
bronchopneumonia due to Trueperella pyogenes and Bibersteinia trehalosi. Pathogens suspected to be
newly introduced in the ENS muskox population on the basis of serologic detection include bovine viral
diarrhea, respiratory syncytial virus, Chlamydophila spp., Brucella spp., Coxiella burnetii, and
Leptospira spp., whereas parainfluenza virus-3 antibody prevalence has increased in the WA
population. Although multiple disease syndromes were identified that contributed to mortality and,
in combination, likely limited the ENS muskox population, further holistic investigations of disease
agents, trace mineral status, and nutritional factors in conjunction with intensive demographic and
environmental analyses would provide a better understanding of factors that influence Alaskan muskox
populations.
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INTRODUCTION the western coast of Alaska in 1935 and 1936

(Fig. 1). Descendants of these animals were

Muskoxen (Ovibos moschatus) were rare .0 docated to different parts of Alaska,

and restricted to certain parts of Alaska, US
before they disappeared in the late 19th or
early 20th century. Suggested explanations for
the disappearance include adverse climatic
conditions, fluctuations in food availability,
competition for resources, and hunting (Lent
1999). To restore muskoxen to Alaska, 31
muskoxen were brought from Greenland to
the University of Alaska, Fairbanks, and
subsequently released on Nunivak Island off

including 64 muskoxen released into the
eastern North Slope (ENS) in 1969-70 and
36 muskoxen released into Seward Peninsula
in 1970, followed by another 35 animals in
1977. Similarly, 36 muskoxen were released
into Cape Thompson in 1970, followed by 34
muskoxen in 1977 (Gunn et al. 2013). Annual
surveys in ENS indicated that the muskox
population increased between 1970 and 1995,
stabilized at approximately 650-800 animals
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Alaska Game Management Units with muskoxen (Ovibos moschatus) populations (number and

subunit letter designation) sampled. The eastern North Slope population range is cross-hatched, and the western

Alaska, USA population range is shaded in dark gray.

during 1995-98, then declined rapidly
through 2006 (Reynolds 1998a; Lenart
2011). Calf recruitment evidently declined
and predation losses increased during the
1990s (Reynolds 1998a; Reynolds et al. 2002).
However, to our knowledge, no observed
climatic, anthropogenic, or other environmen-
tal influences provided a plausible explanation
for these changes or the observed population
decline. Conversely, the muskox meta-popu-
lation on Seward Peninsula in western Alaska
(WA) increased rapidly to 2,700 animals by
2007 (Gunn et al. 2013); this population
continued to increase through at least 2009
(Gorn 2011). During this period, muskoxen on
Nunivak Island were hunted to maintain a
stable population, the population on Nelson
Island was increasing, and the population on
Cape Thompson also grew, although more

slowly than other restored populations in
Alaska (Gunn et al. 2013).

Previous studies have shown that muskox
population dynamics are influenced by nutri-
tional conditions, weather, predation, and
dispersal (Reynolds 1998b; Reynolds et al.
2002). Nutritional compromise of adult fe-
male muskoxen associated with low food
abundance and deep snow and evidenced by
low serum copper was thought to cause poor
calf production and limited herd numbers
(Barboza and Reynolds 2004). Disease also
influences muskox populations. For example,
Yersinia pseudotuberculosis serotype 1B ac-
counted for at least 69% of deaths among 67
carcasses and 53 skeletal remains recovered
from Banks Island, Canada, in 1986 (Blakley
et al. 2000). Also, between 2004 and 2012,
major disease outbreaks occurred in the
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muskox population on Dovre Mountain pla-
teau, Norway. In 2004, this population expe-
rienced a severe contagious ecthyma (CE)
outbreak (Vikgren et al. 2008), and in 2006, a
multifactorial outbreak of pneumonia oc-
curred during extreme weather events and
caused mortality of up to 26% (Ytrehus et al.
2008, 2015). In 2012, Mycoplasma ovipneu-
moniae was the primary cause of a severe
preumonia outbreak (Handeland et al. 2014).
Recently, Erysipelothrix rhusiopathiae was
identified as a significant cause of mortality
(Kutz et al. 2015) in Canadian muskoxen.

Other conditions of concern that may affect
muskox populations include rangiferine bru-
cellosis because it occurs in sympatric arctic
caribou (Rangifer tarandus granti) herds and
causes reproductive failure and joint lesions
(Neiland et al. 1968), although it is rarely
reported in muskoxen (Gates et al. 1984;
Forbes 1991; Tomaselli et al. 2016). Addition-
ally, Chlamydophila spp. (CLA) causes mul-
tiple clinical manifestations in domestic
ruminants, such as pneumonia, polyarthritis,
abortion, and infertility, that could affect
population dynamics (Kaltenboeck et al.
2005). Furthermore, parasitic infestations or
comorbidities could exacerbate existent health
conditions, resulting in poor disease out-
comes. For instance, gastrointestinal parasite
infestations occur in arctic ungulates (Kutz et
al. 2001, 2004). Notably, Umingmakstrongylus
pallikuukensis, a lung nematode, infects
muskoxen and may have contributed to a
50% decline in the population in Canada
(Kutz et al. 2004), although other organisms
are under consideration as causal and con-
tributory. Similarly, Teladorsagia boreoarcti-
cus, a nematode that causes severe abomasal
disease, has been observed in muskoxen in
Canada (Kutz et al. 2004).

In response to concerns over the ENS
muskox population decline, in 2005, the
Alaska Department of Fish and Game
(ADFG) initiated a preliminary assessment
of the occurrence and prevalence of a variety
of diseases and parasites, as well as the
nutritional status of muskoxen with regard to
important trace minerals. This study included
pathologic investigations of muskox carcasses

recovered during routine aerial population
surveillance. Pathologic examinations were
continued until 2008 to establish primary
and contributing causes of death. Archived
and contemporary sera were tested for
selected pathogens, and serologic prevalences
were compared during and before the period
of decline in both the decreasing ENS muskox
population and the increasing WA population.
Additionally, hematology, fecal parasites, and
trace mineral status were examined to under-
stand factors that may affect the health and
population status of Alaskan muskoxen.

MATERIALS AND METHODS
Study area

Sampling was conducted in the ENS area,
which had experienced a population decline, and
the WA area, where the population was stable or
increasing. For the purposes of this study, ENS
comprised the Arctic coastal plain north of the
Brooks Range mountains in northeastern Alaska,
including the Arctic National Wildlife Refuge, all
of state Game Management Unit 26B, and the
eastern portion of Game Management Unit 26A,
and WA comprised the Seward Peninsula, Cape
Thompson, Nunivak Island, and Nelson Islands in
coastal western Alaska (Fig. 1).

Carcass collection and pathology

Between 2005 and 2008, 13 intact carcasses,
and 23 partial remains of muskoxen were
recovered by the field staff (helicopter pilot,
wildlife biologists, and veterinarian) of ADFG
while conducting aerial surveillance of muskoxen.
The history, carcass condition, and postmortem
examinations of the remains are shown in Table 1.
Carcasses were recovered a few to several days
after death, except for a lethargic and limping calf
that was euthanatized. When carcasses could not
be transported intact to the laboratory, gross
postmortem examinations were performed in the
field, and partial remains such as available limbs
and organs (thoracic pluck, liver, kidneys, etc.)
were collected for further examination and
sampling. Predation, scavenging, autolysis, and
carcasses [rozen in place limited the ability to
perform complete postmortem examinations for
definitive diagnoses. Formalin-fixed tissues were
processed routinely for histopathologic evaluation
by a veterinary pathologist. Samples to be
examined by immunohistochemistry (IHC) for
CLA and Mycoplasma bovis antigens were
submitted to Iowa State University, Veterinary
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TasLE 2. Serologic and microbiologic assays used to test Alaskan muskox (Ovibos moschatus) samples and
laboratories where samples were processed.” — = not applicable.
Sensitivity and specificity, Laboratory where
Pathogens Test Titer test details” Reference” test performed”
Blue tongue virus  Agar gel Widely used, moderate Afshar et al. ~ WSVL
immunodiffusion sensitivity, not highly 1987
assay specific, semiquantitative
Bovine viral Serum neutralization 128  NVSL strain NADL (ATCC — WSVL
diarrhea virus VR-534) genotype 1,
1 cytopathic
Brucella suis Buffered Brucella — IDEXX Corp., Portland, OIE 2016a University of
serovar 4° antigen card test Maine, USA Alaska,
Institute of
Arctic Biology,
Fairbanks,
Alaska, USA
Card test — BBL microbiology systems,  OIE 2016a Environmental
Cockeysville, Maryland, Health
USA Laboratory,
Anchorage,
Alaska, USA
Chlamydophila Complement fixation 10 Widely used, recommended ~ Sachse et al. ~ NVSL
Spp. test by OIE, specificity 2009
83-98.1%, sensitivity
68.8-91.4%
Contagious Complement fixation 20 — Zarnke et al. NVSL
ecthyma test 1983
Epizootic Agar gel — Veterinary Diagnostic Pearson and ~ WSVL
hemorrhagic immunodiffusion Technology Inc., Wheat Jochim
disease assay Ridge, Colorado, USA 1979
Infectious bovine  Serum neutralization 32 Relevant diagnostic test, Ackermann et WSVL
rhinotracheitis moderate sensitivity, al. 1990
NVSL Colorado strain
Leptospira Modified All strains obtained from NVSL SOP-  WSVL
interrogans agglutination test NVSL, starting dilution BI-0038
1:100
Malignant Competitive enzyme- — Simple, high sensitivity and ~ Li et al. 2001 ~ Washington State
catarrhal fever linked specificity (95%), binding University,
immunosorbent >3 SDs compared with Pullman,
assay negative control sera Washington,
considered positive USA
Neospora Competitive enzyme- — Inhibition of >30% Stieve et al. University of
caninum® linked considered positive, 2010 Tennessee,
immunosorbent Immunlon, Thermo Knoxville,
assay Scientific, Milford, Tennessee,
Massachusetts, USA USA
Parainfluenza Hemagglutination 8 — — NVSL
virus type 3 inhibition
Serum neutralization 128 NVSL Reisinger SF-4 strain =~ — WSVL
Coxiella burnetii ~ Complement fixation 100  — OIE 2016b NVSL
test
Respiratory Serum neutralization 32 NVSL strain A51908 — WSVL

syncytial virus

(ATCC VR-794)
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TasLE 2. Continued.

Sensitivity and Laboratory where test
Pathogens Test Titer ~ specificity, test details” Reference” performed”
Toxoplasma Modified 100 Formalin-fixed Patton et al. University of Tennessee,
gondii agglutination tachyzoites antigen, 1990 Knoxville, Tennessee,
test bioMérieux USA

Laboratory
Reagents, Marcy-
I'Etoile, France

* Tests were conducted at diagnostic laboratories in-house utilizing National Veterinary Services Laboratory-standardized protocols and

reagents unless indicated otherwise.

b WSVL = Wyoming State Veterinary Laboratory, Laramie, Wyoming, USA; NVSL = National Veterinary Services Laboratory, Ames,

Towa, USA; OIE = Office International des Epizooties.

¢ Serum samples positive on card tests were evaluated by western blot at Louisiana State University Agricultural Center, Baton Rouge,

Louisiana, USA.

Diagnostic Laboratory (Ames, Iowa, USA). Swabs,
tissues, fluids, and aspirates obtained from
carcasses for bacterial culture and virology were
sent to Washington Animal Disease Diagnostic
Laboratory (WADDL; Pullman, Washington,
USA) and Wyoming State Veterinary Laboratory
(WSVL; Laramie, Wyoming, USA), respectively.

Live animal sampling

During 2006, 2007, and 2008, blood, serum,
fecal samples, and vaginal and conjunctival swabs
were collected from live capture-and-release
adult female muskoxen from the affected popu-
lation in ENS and, for comparison, the Seward
Peninsula (WA). Capture protocols were ap-
proved by the Division of Wildlife Conservation
Animal Care and Use Committee (protocols 04-
011, 06-08, 08-01). Muskoxen (n=38) were darted
from a helicopter using either carfentanil citrate
(Zoopharm, Laramie, Wyoming, USA) and xyla-
zine hydrochloride or a combination of medeto-
midine, ketamine hydrochloride (Zoopharm), and
Telazol® (tiletamine hydrochloride and zolazepam
hydrochloride, Fort Dodge Laboratories, Fort
Dodge, Iowa, USA). Blood was collected by
cephalic venipuncture into ethylenediaminetetra-
acetic acid and serum separator evacuated tubes
for hematology and serology. Blood was kept cool
up to 8 h until processed by centrifugation; serum
was separated and stored in cryopreservation vials
at —40 C until shipped for testing after the capture
season (autumn and spring). Vaginal and con-
junctival swabs were stored in dry sterile vials and
frozen at —20 C until shipped to the diagnostic
laboratories for processing. Fecal samples were
collected digitally from the rectum, placed in
Whirl-Pak bags (Nasco, Modesto, California,
USA) and refrigerated until examination.

Serology and microbiology

Archived sera collected in 1984-92 and 2000
and contemporary sera from 2006 to 2008 were
tested for antibodies to bovine viral diarrhea virus;
Brucella spp.; CLA; Coxiella burnetii; epizootic
hemorrhagic disease virus; infectious bovine
rhinotracheitis virus; Leptospira interrogans ser-
ovars Canicola, Grippotyphosa, Hardjo, Ictero-
haemorrhagiae, and Pomona; parainfluenza virus
type 3; and respiratory syncytial virus. Archived
sera had been evaluated for antibodies to
bluetongue virus, CE virus, and ovine-associated
malignant catarrhal fever virus. Only contempo-
rary sera were available for screening for anti-
bodies to Neospora caninum and Toxoplasma
gondii. Sera were sent to various laboratories and
processed using assays presented in Table 2. The
number of serum samples evaluated for each
pathogen varied depending on availability. Serum
samples were grouped into four categories
according to location and period of collection:
ENS before the population decline (1984-92),
ENS during the decline period (2000 and 2006
08), and nonaffected areas (WA) before and
during the decline period. Vaginal and conjunc-
tival swabs from adult females were tested by
PCR and enzyme-linked immunosorbent assay
(ELISA) for CLA at Nebraska Veterinary Diag-
nostic Laboratory (Lincoln, Nebraska, USA) and
at WADDL.

Trace minerals

When available, liver samples from dead
animals were analyzed by inductively coupled
mass spectroscopy for copper, iron, manganese,
molybdenum, selenium, and zinc levels. Similarly,
trace mineral levels in live capture-release female
muskoxen were assessed by testing blood for
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selenium and serum for copper, iron, manganese,
molybdenum, and zinc.

Fecal parasite examinations

Fecal samples were processed by standard
flotation and Baermann techniques and examined
for helminth eggs and larvae at WSVL or
WADDL. Parasites were identified to genus when
possible on the basis of size, color, shape, and
contents of the ova.

Statistical analysis

Point estimates and confidence intervals of
prevalences for each pathogen and parasite were
provided for the time periods and locations.
Analyses were conducted using R package Hmisc
function binconf (Harrell 2015). Because samples
were taken over protracted time periods and
sometimes processed using different methods of
analysis, we did not compare statistically but
instead provide descriptive statistics on which to
base your own conclusions. The mean, median,
SD, and range of hemograms and trace minerals
were computed and compared where appropriate.
Population means of hemogram results were
compared in StatsDirect 2.8.0 (StatsDirect Ltd.,
Altrincham, UK) using unpaired ¢-tests (when a
two-tailed F-test was not significant and we could
assume equal variances), or Mann-Whitney
U-tests when variances were unequal.

RESULTS
Postmortem findings

Major pathologic findings and suspected or
confirmed causes of death are presented in
Table 1. Mortality was classified as probable
predation when a brown bear (Ursus arctos)
was present at the scene or there was
evidence of massive antemortem hemorrhage
and bite wounds consistent with bear preda-
tion. Predation contributed to 42% of deaths
in the carcasses examined; however, some
cases classified as predation may have been
judged to be so as the result of scavenging,
and not all observed predation deaths were
sampled for this analysis. Preexisting condi-
tions were identified in five carcasses classified
as predation events as evidenced by hoof
lesions (Fig. 2a, b), polyarthritis, broncho-
pneumonia, hepatocellular vacuolar degener-
ation, and Sarcocystis spp. in cardiac or
skeletal muscles.

JOURNAL OF WILDLIFE DISEASES, VOL. 53, NO. 2, APRIL 2017

Gross and histopathologic lesions of poly-
arthritis without evidence of predation was
the primary lesion in a female calf found
abandoned in ENS and euthanatized in 2005.
Carpal and tarsal joints were externally grossly
distended with a thick fibrinohemorrhagic
exudate. Articular cartilage erosions and
thickening of the joint capsules with red,
edematous, synovial membranes were evident
(Fig. 3). Chlamydophila spp. antigen was
detected by THC of synovial cells of one of
the six affected joints. This pathogen was also
suspected to have caused necrotizing suppu-
rative arthritis of the elbow joint in an adult
female, but THC of the joint cartilage and
capsule for CLA was inconclusive, possibly
because of a lack of suitable synovium
samples. Other cases of polyarthritis were
documented (Table 1), but culture of joint
fluid and IHC of the articular surfaces,
capsules, and synovia of affected joints were
negative for CLA and M. bovis.

Bronchopneumonia was an important find-
ing, was often found with other conditions,
and likely contributed significantly to mortal-
ity in only one case (2007-081, Table 1) where
aspiration of plant material into the lungs
could have predisposed to infection with
Trueperella pyogenes and Pasteurella trehalo-
si, causing acute severe fibrinosuppurative
bronchopneumonia and consolidation of the
cranioventral right lung. In addition to causing
pneumonia, T. pyogenes caused septicemia
with peritonitis, omphalitis, hepatitis, and
enteritis in a calf. Notable pathologic findings
in calves included maternal abandonment
resulting in dehydration and starvation, pre-
mature birth, and jejunal intussusception.
Noteworthy findings in pregnant females were
hepatocellular vacuolar degeneration and
dystocia.

Serology

We detected evidence of exposure to all
pathogens of interest except for bluetongue
virus, infectious bovine rhinotracheitis virus,
and T. gondii (Table 3). Prevalence of
antibodies to CLA was relatively high in WA
during both periods; in contrast, prevalence
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Ficure 2. Dorsal (a) and plantar (b) views of postmortem hoof lesions in a muskox (Ovibos moschatus) with
deficient liver copper stores. Arrows indicate severe hoof wall separation from the laminae. Ruler in centimeters.

was low in ENS and was only detected during
the decline period. Antibodies against Brucel-
; la suis serovar 4 and bovine viral diarrhea
2305183 Mysicax ~_ virus were detected in ENS only during the
- icoooo—_ decline period, but not from WA during either
" period. Coxiella burnetii was detected at low
prevalence from both areas during the decline
period. Because of specimen availability and
funding sources, only archived sera were
tested for CE, and antibodies were detected
in ENS but not from WA.

WWT’TTVWTH/HH’”H/’W,
METRIC | 1 2 - 4

Microbiology

Both populations had evidence of CLA
infection by PCR—however, at different
times of the year. In ENS, CLA was detected
in 7 of 11 vaginal swabs collected in March
and July 2007 (during the calving season) and
none of 10 swabs collected in October 2007
(noncalving season). In contrast, in WA, CLA
was detected in vaginal swabs from female
muskoxen captured during October 2008
(Table 4). Vaginal and conjunctival swabs
were also analyzed by ELISA; however, all

FIcure 3. Synovitis positive for Chlamydophila sp.
on immunohistochemistry staining, in a swollen hock
joint of a copper-deficient muskox (Ovibos moschatus) ) i 3 ;
calf that displayed lameness before euthanasia. Ruler T esults were negative, even in situations for
in centimeters. which PCR results were positive.
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TasLE 3. Serologic data for selected pathogens in muskoxen (Ovibos moschatus) from the eastern North Slope
(ENS) and western Alaska (WA), USA, during the ENS predecline period (1984-92) and ENS decline period
(2000, 2006-08). — = no data; CI = confidence interval.

ENS
(1984-92, 2000)

ENS
(2006-08)

WA
(1984-92, 2000)

WA
(2006-08)

Pathogen or disease n % (95% CI) n % 95%CI) n % 95%CI) n % (95% CI)
Blue tongue virus 39 0 (0.0-9.0) 0o — 71 0 (0.0-5.1) 0o —
Bovine viral diarrhea virus 1 37 0.0 (0.0-9.4) 21 95(2.7-289) 71 0.0 (0.0-5.1) 26 0.0 (0.0-12.9)
Brucella suis serovar 4 33 0(0.0-10.4) 34 11.8 (4.7-26.6) 43 0 (0.0-8.2) 25 0.0 (0.0-13.3)
Chlamydophila spp. 39 0(0.0-9.0) 34 59(1.6-19.1) 37 24 3 (13.4-40.1) 26 10.7 (3.7-27.2)
Contagious ecthylna 22 13.6 (4.7-33.3) 0 — 43 0.0 (0.0-8.2) 0 —
Epizootic hemorrhagic disease 39 6 (0.13-13.2) 3 0 (0.0-56.1) 71 0 (0.0-5.1) 10 0.0 (0.0-27.8)
Infectious bovine rhinotracheitis 41 0(0.0-8.6) 21 0(0.0-154) 71 0 (0.0-5.1) 26 0.0 (0.0-12.9)
Leptospira (5 serovars) 2 0.0 (0.0-65.8) 18 6 (0.28-25.8) 43 14.7 (1.3-154)" 25 8.0 (2.2—25.())11
Malignant catarrhal fever 28 89 3(72.8-96.3) 6 100 (61.0-100) 27 100 (87.5-100) 0
Neospora caninum 14 1(0.4-31.5) 31 5 (1.8-20.7) 0 — 25 (0 0-13.3)
Parainfluenza virus type 3 41 36.6 (23.6-51.9) 17 29 4 (13.3-53.1) 79 0.0 (0.0-4.6) 25 80. (60.9-91.1)
Couxiella burnetii 23 0 (0.0-14.3) 17 9 (0.3-27.0) 56 0.0 (0.0-6.4) 25 0 (0.2-19.5)
Respiratory syncytial virus 38 0(0.0-9.2) 21 8 (0.2-22.7) 58 0.0 (0.0-6.2) 26 0 (0.0-12.9)
T()x()pl(LS'ma g()n(lii 0 — 13 0.0 (0.0-22.8) 0 — 25 0.0 (0-13.3)

* Antibodies to Leptospira interrogans serovar Canicola.
" Antibodies to L. interrogans serovar Icterohaemorrhagiae and L. interrogans serovar Pomona.

Trace minerals Barboza et al. 2003) are included for compar-

ison. Generally, copper, iron, molybdenum,

Trace mineral concentrations in serum and
blood from live-captured adult females and in
livers of dead muskoxen are given in Tables 5
and 6, respectively. Muskox liver range (Puls
1994) and published muskox values (Salisbury
et al. 1992; Puls 1994; Blakley et al. 2000;

and zinc levels in serum of live adult female
muskoxen in both areas were similar. Blood
selenium levels in ENS were low compared
with WA, and manganese levels in animals
from both areas were below adequate when
compared with sheep (Ovis aries; Puls 1994).

TasLE 4. Prevalence of Chlamydophila spp. in conjunctival and vaginal swabs of adult female muskoxen
(Ovibos moschatus) captured from the eastern North Slope and western Alaska, USA, 2006-08. — = no data.

Eastern North Slope

Western Alaska

% %

Matrix Test n (95% Confidence interval) n (95% Confidence interval)
Conjunctival swab PCR 10 0.0 (0.0-27.8) 28 10.7 (3.7-27.2)
Conjunctival swab Enzyme-linked 9 0.0 (0.0-29.9) 9 0.0 (0.0-29.9)

immunosorbent
assay
Vaginal swab PCR 21 33.3 (17.2-54.6) 30 10.0 (3.5-25.6)
Vaginal swab Enzyme-linked 0 — 29 0
immunosorbent
assay
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TaBLE 5. Trace mineral levels (parts per million wet weight) in serum and blood (selenium) of adult female
muskoxen (Ovibos moschatus) captured from the eastern North Slope and western Alaska, USA, in 2006-08.

— =no data.

Eastern North Slope

Western Alaska Banks Island, Canada®

Males Females
(n=10), (n=9),
Trace mineral n Median Mean*SD  Range n Median Mean*SD  Range Mean*SD Mean*SD
Copper 20 0.96  0.98*0.21 0.69-1.74 15 0.87 091*0.16 0.76-1.45 0.79%£0.01 0.67%£0.22
Iron 20 1.93  1.98*047 1.14-293 15 1.92 1.94+024 1.58-2.33 — —
Manganese 20 0.003 0.10*0.18" 0.00-0.61 15 0.007 0.04*+0.10 0.005-0.354 — —
Molybdenum 20 0.025 0.02+0.01 0.01-0.03 15 0.025 0.03*0.00 0.03-0.03 — —
Selenium 16 0.245 0.24+0.05 0.15-0.34 16 0.400 0.39%0.09 0.21-0.54 — —
Zinc 20 0.82  0.87%0.15 0.67-1.24 15 0.51 0.55£0.24 0.33-1.39  0.91x0.19 0.77+0.17

# Barboza et al. 2003.

Although mean liver copper levels were
marginal to adequate in both areas compared
with Canadian muskoxen (Salisbury et al
1992), the median liver copper was low from
the ENS, and some animals were low enough
to be deemed deficient. Liver molybdenum
was low when compared with muskoxen from
Victoria Island, Canada (Blakley et al. 2000).
However, liver zinc was high compared with
muskoxen from Victoria and Banks Islands
(Salisbury et al. 1992; Barboza et al. 2003) and
the range provided by Puls (1994). The mean
and median liver selenium values were higher
in WA than ENS samples, but both were
higher than Canadian muskoxen.

Hemogram

Adult female muskoxen from ENS had
higher total leukocyte counts (P=0.013,
=2.69, df=24), monocyte counts (P=0.06
t=1.95, df=24), and total eosinophil
(P<0.0001, Mann-Whitney) and lower hemat-
ocrit (P=0.013, t=2.68, df=24) compared with
those in WA (Table 7).

Fecal parasites

The prevalence of parasite stages and their
likely identities based on Kutz et al. (2012) are
detailed in Table 8. Infestation with more than
one parasite was more common in ENS than
WA. Parasites that occurred at high preva-
lence in ENS include Protostrongylus spp.,

small trichostrongylids, and Nematodirinae,
whereas dorsal-spined larvae were detected in
all feces from muskoxen in WA.

DISCUSSION

Wildlife population declines are often the
result of complex combinations of interrelated
mortality factors, including nutritional imbal-
ances, disease agents, and adverse climatic
and environmental conditions. Predation and
human take can also be significant contribu-
tors to demographic changes. We identified
several comorbidity conditions that could have
contributed to mortality and limited ENS
muskox population numbers.

Pathologic investigations were challenged
by examination of incomplete carcasses, as
well as carcasses that had undergone various
degrees of autolysis, producing poor-quality
samples. Nonetheless, these examinations
revealed important findings. Preexisting con-
ditions in animals apparently succumbing to
predation included hoof abnormalities, poly-
arthritis, pneumonia, and pregnancy. When
good-quality samples were available (e.g.,
euthanasia of the sick calf), a definitive
diagnosis could be made, such as that of
polyarthritis caused by CLA. Some cases of
polyarthritis were suspected to have been
caused by CLA or Mycoplasma; unfortunate-
ly, tests were inconclusive. Chlamydophila
spp. can cause stiff gait, lameness, weakness,
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TaBLE 6. Trace mineral levels in liver (parts per million [ppm] wet weight) of muskoxen (Ovibos moschatus)
found dead in the eastern North Slope and western Alaska, USA, 2005-08. All values have been adjusted to ppm

for comparison. — = no data.

Eastern North Slope

Western Alaska

Trace mineral n Median Mean*SD Range n Median Mean+SD Range
Copper 22 24.7 38.9+33.4 2.2-102.2 3 41.7 51.6+46 11.7-101.5
Iron 22 202.6 354+362 16.7-1156 3 169 487.4+588 127-1,166.2
Manganese 22 2.2 24+1.3 0.2-15 3 1.7 1.7+1 0.7-2.7
Molybdenum 22 0.42 0.54+0.43 0.07-1.5 3 0.18 0.17+0.07 0.09-0.24
Selenium 21 0.4 0.41+0.14 0.15-0.84 3 0.9 12*+1.2 0.14-2.5
Zinc 21 68.2 87.8+69.4 8.5-234 3 39.7 65.5+53.5 27.8-127

* Puls 1994.

b Blakley 1998.

¢ Salisbury et al. 1992.
d J. Blake and J. Rowell, pers. comm., in Salisbury et al. (1992).

abortion, retained placenta, infertility, and
prenatal death in domestic ruminants (Kal-
tenboeck et al. 2005). This pathogen has also
been implicated in polyarthritis, keratocon-
junctivitis, and death in bighorn sheep (Ovis
canadensis) in Yellowstone National Park,
Wyoming, and may have predisposed individ-
uals to predation (Meagher et al. 1992).

The high prevalence of CLA antibody in
samples from WA during both periods sug-
gests it has established host-pathogen balance
in that population. On the other hand,
detection of CLA from ENS only during the
decline period is consistent with that of a

naive population with recent pathogen intro-
duction. Furthermore, the confirmation of
CLA in the synovium of a polyarthritis case
and detection in vaginal tissue of adult
females suggests active disease and transmis-
sion in ENS. Also, detection of CLA in vaginal
tissue of adult female muskoxen without
demonstrable antibodies in their serum sug-
gests antibodies are not always produced
rapidly at detectable levels. It could also be
that those antibody levels wane quickly—a
situation similar to Alaskan caribou which,
when sampled repeatedly over a 2-yr period,
had transient antibody titers (K.B.B. unpubl.

TasLE 7. Hemogram for adult female muskoxen (Ovibos moschatus) from the eastern North Slope and western

Alaska, USA, 2007-08.

Eastern North Slope (n=10)

Seward Peninsula, Western Alaska (n=16)

Mean*SD Median Range Mean*SD Median Range
Hematocrit (%) 37.2%+3.2 38.8 31.5-40.3 40.6+3.2 40.5 35.0-47.0
Total protein (g/dL) 74*0.5 74 6.8-8 6.2x0.8 6.0 5.6-9.0
Total leucocytes/ul.  9,462.5+3,143.6 9,000 5,625-16,750  6,585.9+2,310.6 6,125 4,500-12,750
Eosinophils/pL 2,230.6+1,287.3 1,743.8 991.3-5,192.5 707%=436.9 628.8 183.8-1,656.3
Eosinophils (%) 23.7+10.7 23 12-46 10.9%6 10.5 3.0-25.0
Monocytes/uL 1,212.3+636.3 1,187.5  607.5-2,847.5 830.5£366.1 735 428.8-1,725.0
Monocytes (%) 12.6+3.2 13 6-17 12.8+4.3 11.5 7.0-23.0
Lymphocytes/pL 3,055.4+1,382.9 28275 1,590-5,527.5 2,227.2+887 2,040.6 1,286.2—4,600.0
Lymphocytes (%) 31.8+8 31.5 16-44 34+75 35.0 21.0-48.0
Neutrophils/pL 2913.1x1,254.7 27975 993.8-5,670 2,823.4+1,350.5  2,511.2 1,387.5-6,757.5
Neutrophils (%) 31.3*x11.6 31 15-56 42.4+11.7 43.0 26.0-69.0
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TaBLE 6. Extended.

Victoria Island 1995"

Victoria Island 1989¢ Banks Island 1985¢

Published®
range Mean*=SD Range Mean*=SD Range Mean*=SD
22-114 16.52+1.02 3.81-45.1 66.5+23.4 21.4-119 28.9+17.8
2.30-4.88 — — 3.21%+0.52 2.3-4.88 3.8£0.5
2.6-6.0 1.10%0.007 0.51-1.84 — — —
0.04-0.27 0.082+0.005 0.016-0.11 0.1x0.07 0.04-0.27 0.260.02
19-58 — — 28.1+6.94 18.8-57.9 35.3%£8.1

data). The detection of low antibody titers to
CLA in serum of adult female muskoxen from
WA without detection of CLA in vaginal tissue
from the same animals suggests these animals
could have been infected but were no longer
shedding CLA, or the bacteria might not have
localized in the reproductive tract. Both PCR
and ELISA were used to evaluate CLA in
vaginal and conjunctival tissue. The ELISA
failed to detect CLA in any of the samples,
including those positive by PCR. The ELISA
used here may have limited utility for
screening muskox tissues for CLA, although
neither assay has been validated for use in
muskoxen.

Another condition that appeared to con-
tribute to morbidity and mortality was ver-
minous, bacterial, or aspiration pneumonia.
Multifactorial pneumonia, including contrib-
uting pasteurellosis has caused mortality in
Norwegian muskoxen during extreme weather
events (Ytrehus et al. 2008), and recently, M.
ovipneumoniae has been suggested as the
primary cause of a severe pneumonia out-
break in Norwegian muskoxen (Handeland et
al. 2014). In our study, culture and IHC of
lung tissues with pneumonia that were nega-
tive for M. bovis. T. pyogenes, P. trehalosi, and
lungworms (Parelaphostrongylus odocoilei)
have also been identified as causes of pneu-

TABLE 8. Prevalence (%) of parasite stages in feces from adult female muskoxen (Ovibos moschatus) in eastern

North Slope and western Alaska, USA, 2007-08.

Eastern North Slope (n=22)

Western Alaska (n=21)

Positive 95% Confidence  Positive 95% Confidence

Egg or larval group® samples % Positive interval samples % Positive interval
Dictyocaulus sp.” 4.5 0.23-21.8 5 23.8 10.6-45.1
Eimeria spp. 0.0 0.0-14.9 5 23.8 10.6-45.1
Monieza sp. 1 4.5 0.23-21.8 0 0.0 0.0-15.5
Nematodirinae® 19 86.4 66.7-95.3 6 28.6 13.8-49.9
Protostrongylus spp. 20 90.9 722-97.5 0 0.0 0.0-15.5
Small trichostrongylids® 12 54.5 34.7-73.1 1 4.7 0.2-22.7
Dorsal spine larvae' 2 9.1 2.5-27.8 21 100.0 84.5-100

a

Parasite stage detected.

b Dictyocaulus eckerti found in lungs postmortem in this study.

¢ Nematodirus sp. and Nematodirella sp. adults previously identified.

d Protostrongylus stilesi found in sympatric ungulates.

¢ Teladorsagia boreoarcticus adults previously identified, Ostertagia grueheri and Marshallagia sp. in sympatric caribou.

f Parelaphostrongylus andersoni infections and coinfections with Varestrongylus eleguneniensis sp. n., identified in sympatric ungulates.
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monia-associated mortalities in Dall’s sheep
(Ovis dalli dalli) (Jenkins et al. 2007), and one
lamb mortality was identified in a sheep
population sympatric with ENS muskoxen
(K.B.B. unpubl. data).

We record the first case of dystocia in free-
ranging muskoxen. In wild ruminants, dysto-
cias are rare and difficult to detect. The
muskox fetus was in breech presentation, and
the dystocia was most likely caused by mal-
presentation. However, concurrent findings of
bacterial bronchopneumonia and low hepatic
copper in the fetus (which should be at its
highest at birth) and verminous pneumonia,
septicemia, and low hepatic copper in the dam
points toward a complex diagnosis, likely
involving comorbidities. Also, finding hepato-
cellular vacuolar degeneration in pregnant
females suggests these animals were in
negative energy balance and could have had
other toxicities (Cal et al. 2009).

Other indicators of complex interactions
between nutritional status and diseases, lead-
ing to impaired health in this study, include
hoof lesions that could be attributed to copper
deficiency—a condition that can cause abnor-
mal hoof keratinization and population de-
clines (Flynn et al. 1977). Other trace mineral
aberrations (elevated hepatic zinc and iron)
could have exacerbated copper deficiency,
since these minerals can be copper antago-
nists (Puls 1994). Average liver zinc levels in
both areas were high when compared with
muskoxen from Victoria Islands and Banks
Island (Salisbury et al. 1992), and some
individual levels were in the range considered
toxic for sheep (Puls 1994). Hepatic storage of
iron is reported to increase in sheep during
copper deficiency, so detection of high liver
iron in both areas could be further evidence of
copper deficiency (Puls 1994).

The serum copper levels in adult females in
both areas were above mean levels reported in
copper-deficient free-ranging Alaskan musk-
oxen (Barboza and Reynolds 2004). Although
the serum copper levels we observed in adult
females may appear adequate because of
homeostatic mechanisms, the liver stores
may be inadequate for optimal reproduction
and fetal growth. We also found evidence of
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manganese and zinc deficiencies in both areas
and low selenium in ENS. Manganese defi-
ciency is associated with silent estrus, reduced
reproductive performance, abortions, and
weak calves. Selenium deficiency can cause
reduced calf survival and reproductive per-
formance (Flueck 1994). Copper deficiency
and other trace mineral perturbations could
be indicators of poor nutritional status in both
ENS and WA muskox populations and could
be affecting population health and reproduc-
tion.

Although Zarnke (1983) did not detect
antibodies to B. suis serovar 4 in Alaskan
muskoxen, recent exposure of ENS muskoxen
to B. suis was an important finding of our
study and that of Nymo et al. (2016). In
contrast, WA muskoxen were negative despite
exposure to the caribou herd with the highest
B. suis serovar 4 antibody prevalence in
Alaska and proximity to herds of infected
reindeer (Dieterich et al. 1990). Rangiferine
brucellosis has not been recognized as an
important disease in muskoxen until recently,
when a case was diagnosed concurrently with
CE and lungworm in a hunter-harvested male
(Tomaselli et al. 2016). In Alaskan caribou, it
causes chronic infections that manifest as
reproductive failure, abortions, lameness,
metritis, bursitis, epididymitis, orchitis, and
infertility (Neiland et al. 1968), warranting
further evaluation in muskox populations.

We also report CE-like lesions in dead
animals and low CE antibody prevalence in
ENS muskoxen. Subsequently, we identified
parapoxvirus by PCR and amplicon sequenc-
ing from interdigital or mucocutaneous lesions
of one ENS and two WA muskoxen from the
ENS population (M. Tryland pers. comm.),
and a case was reported in Canada (Tomaselli
et al. 2016). Considered a disease of domestic
sheep and goats (Capra aegagrus hircus), CE
occurred in an outbreak in muskoxen in
Norway, where infected cows with udder
and teat lesions refused to let calves suckle.
Also, lesions on the lips and interdigits of
calves might have contributed to decreased
calf survival (Vikgren et al. 2008).

Blood cell counts and fecal parasite exam-
inations are often used to evaluate the general
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health status of animal populations. The ENS
group had significantly higher total leukocyte,
monocyte, and eosinophil counts than the WA
group, strengthening concern about this
population’s overall health status and suscep-
tibility to infectious diseases. Monocytosis
occurs with chronic inflammation and is often
caused by chronic bacterial infections, such as
brucellosis and chlamydiosis (Weiss and
Wardrop 2010). The eosinophilia was most
likely due to high parasite prevalence and
multiple parasitic infestations. High parasite
loads, especially during stressful periods,
could exacerbate other health conditions
(Kutz et al. 2004).

Unlike muskox population declines docu-
mented elsewhere, the ENS population did
not exhibit a sudden, large-scale die-off that
could be attributed to adverse weather or a
particular disease or nutritional limitation
(e.g., Ytrehus et al. 2008; Kutz et al. 2015).
Rather, considering all of the evidence
collected during this study, we conclude that
the ENS muskox population was adversely
affected by complex nutritional and infectious
disease dynamics resulting in comorbidity that
also likely increased susceptibility to preda-
tion. We documented pathogens that have
been newly detected in Alaskan muskoxen and
are worthy of continued monitoring, especially
considering the effects of global climate
variability in the arctic region (Kutz et al
2009). We most strongly recommend contin-
ued serologic surveillance and pathologic
investigation of CLA, brucellosis, and CE.
Furthermore, nutritional and trace mineral
investigations should be expanded because of
the evidence of copper deficiency and the
possible relationship between poor nutrition
and disease. It is likely that, for the ENS
muskox population and other wildlife popula-
tions experiencing the complex stressors of
our modern times, more significant health
insights and well-informed management rec-
ommendations could be best realized through
holistic investigations of disease agents, trace
minerals status, and nutritional factors in
conjunction with intensive demographic and
environmental analyses.
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