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Applications
in Plant Sciences

Gene flow in plants is mediated by processes that cause 
changes in allele frequencies, including movement of gametes 
(gametophytes) or individuals (sporophytes) across the physical 
landscape (Slatkin, 1987). Movement by gametes occurs by dis-
persal of pollen (the male gametophyte) from the location of 
the pollen donor to the pollen recipient. In the sporophytic life 
stages, plants are either sessile or have limited mobility through 
vegetative growth, and dispersal of individuals is reduced to 
movement of vegetative propagules or seeds. Seed, propagule, 
and pollen dispersal contribute to gene flow, but of these, only 
dispersal of sporophytes has the potential to establish new popu-
lations through colonization of vacant sites (Howe and Small-
wood, 1982; Nathan and Muller-Landau, 2000).

Both pollen and seed dispersal contribute to gene flow and, 
consequently, affect the distribution of genetic variation within 
and among populations; however, population genetic studies 
rarely consider the separate effects of the movement of sporo-
phytes and gametophytes on population genetic structure (e.g., 
Ennos, 1994; McCauley, 1994; Ouborg et al., 1999). Seed dis-
persal is not only important for gene flow, but also responsible 

for the colonization of new sites and range expansion. Ecologi-
cal approaches to the measurement of seed dispersal can be dif-
ficult to implement and tend to overestimate short-distance seed 
dispersal while failing to detect long-distance dispersal events 
(Willson, 1993). Long-distance seed dispersal may be dispro-
portionately important for gene flow and establishing new popu-
lations (Cain et al., 2000; Trakhtenbrot et al., 2005). Maternally 
inherited genetic markers can be used to measure the influence 
of historical dispersal on gene flow and to make inferences about 
population history through the application of phylogeographic 
analyses (Cruzan and Templeton, 2000; Knowles, 2009; Nielsen 
and Beaumont, 2009). Chloroplast DNA (cpDNA) is inherited 
maternally in most angiosperms (Corriveau and Coleman, 1988), 
which means variation in these markers is only affected by the 
process of seed dispersal.

In the past, cpDNA markers have not been considered very 
useful due to the slow evolutionary rate of chloroplast ge-
nomes, which results in low intraspecific variation (Palmer, 
1987). This was particularly true for traditional methods for 
assaying sequence variation using restriction enzymes (e.g., 
McCauley, 1994; Soltis et al., 1997; Maskas and Cruzan, 
2000). Modern sequencing methods combined with targeted 
capture alleviate this problem by allowing the detection of 
larger numbers of sequence variants (single-nucleotide poly-
morphisms [SNPs]) across the entire chloroplast genome 
(Stull et al., 2013). Combinations of SNP alleles represent 
chloroplast haplotypes and are a valuable tool for examining 
genetic diversity and inferring historical patterns of dispersal 
and migration.
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•	 Premise of the study: Seed dispersal contributes to gene flow and is responsible for colonization of new sites and range expansion. 
Sequencing chloroplast haplotypes offers a way to estimate contributions of seed dispersal to population genetic structure 
and enables studies of population history. Whole-genome sequencing is expensive, but resources can be conserved by pooling 
samples. Unfortunately, haplotype associations among single-nucleotide polymorphisms (SNPs) are lost in pooled samples, and 
treating SNP allele frequencies as independent markers provides biased estimates of genetic structure.

•	 Methods: We developed sampling methodologies and an application, CallHap, that uses a least-squares algorithm to evaluate the 
fit between observed and predicted SNP allele frequencies from pooled samples based on haplotype network phylogeny struc-
ture, thus enabling pooling for chloroplast sequencing for large-scale studies of chloroplast genomic variation. This method was 
tested using artificially constructed test networks and pools, and pooled samples of Lasthenia californica (California goldfields) 
from southern Oregon, USA.

•	 Results: CallHap reliably recovered network topologies and haplotype frequencies from pooled samples.
•	 Discussion: The CallHap pipeline allows for the efficient use of resources for estimation of genetic structure for studies using 

nonrecombining haplotypes such as intraspecific variation in chloroplast, mitochondrial, bacterial, or viral DNA.

Key words:  chloroplast genome; gene flow; haplotypes; phylogeography; population genomics; single-nucleotide polymor-
phisms (SNPs).
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Using cpDNA variation (in the form of cpDNA SNPs) to 
measure genetic levels of genetic differentiation presents a few 
challenges. First, chloroplast genomes are nonrecombining and 
effectively haploid (Palmer, 1987), so SNP alleles common to 
the same haplotype are inherited together. This allows for the 
reconstruction of network phylogenies that illustrate the rela-
tionships among haplotypes, but it also means that, no matter 
how many cpDNA SNPs are found, the whole chloroplast can 
only be treated as a single locus. We found that treating cpDNA 
SNPs as independent markers tends to underestimate levels of 
differentiation and genetic distances among populations, espe-
cially when haplotypes share many SNP alleles (Fig. 1).

When using chloroplast haplotypes for population genetic 
and phylogeographic studies, cpDNA from many individuals 
must be sequenced to generate adequate sample sizes for the 
estimation of genetic parameters. Although sequencing costs 
have decreased in recent years, sequencing enough samples for 
large-scale population genetic and phylogeographic studies 
still requires a significant resource investment (Sboner et al., 
2011). Pooling multiple individuals for sequencing has be-
come a common solution to this problem (Sham et al., 2002; 
Schlötterer et al., 2014). Unfortunately, pooling cpDNA samples 
results in the loss of information about the SNP allele associa-
tions that represent each haplotype because DNA sequencing only 
recovers SNP allele frequencies (Fig. 1). Although there are a 
number of haplotype reconstruction programs available, these 
are either aimed exclusively at diploid genomes or at resolving 

(nuclear) haplotypes over smaller genomic regions (i.e., phasing; 
Pe’er and Beckmann, 2003; Kirkpatrick et al., 2007; Gasbarra 
et al., 2011; Kofler et al., 2011). These methods assume some 
level of recombination and, ultimately, are not appropriate for 
the recovery of haplotypes from the nonrecombining chloroplast 
genome. To solve this problem, we have developed a new sam-
ple preparation and bioinformatics pipeline (Fig. 2) aimed at 
reducing the cost of population-level surveys of chloroplast 
diversity by reconstructing chloroplast haplotypes from pooled 
samples from an initial sample of sequenced individual chloro-
plast haplotypes.

Here, we describe sampling and bioinformatics protocols for 
the examination of haplotype-based population genomics and 
phylogeography (CallHap), which includes programs that con-
duct variant filtering, haplotype recovery, assembly of network 
phylogenies, and the estimation of haplotype frequencies from 
pooled samples. We then test the CallHap haplotype recovery 
program using a series of artificial networks and pools. Finally, we 
provide an example of CallHap processing using a set of Lasthenia 
californica DC. ex Lindl. (Asteraceae) samples collected from 
Whetstone Savanna Preserve near Medford, Oregon, USA.

THE CALLHAP PIPELINE

Experimental design, sampling, and sequencing library 
preparation— Experiments designed to use the CallHap pipeline 

Fig. 1.  SNP frequency contribution from multiple haplotypes where a SNP is shared between haplotypes. In this case, each population contains the same 
three haplotypes, with one being found at a constant frequency in all three populations, while the other two, which share a SNP allele, are found at varying 
frequencies in the three populations, such that the overall frequency of that SNP is constant. A network phylogeny showing the three haplotypes and their 
relatedness to each other is shown below the figure. Haps = haplotype.
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need to be planned carefully. First, multiple individuals from 
some number of populations or locations are sampled, and 
whole genomic DNA isolated and purified. Pools are constructed 
using equimolar amounts of DNA. We suggest a pool size of 20, 
but this can be adjusted based on the goals of the study (for more 
detail, see the discussion). Two types of sequencing libraries 
are prepared: (1) a representative sample of individual libraries 
(single-sample libraries [SSLs]) from across the range and (2) a 
set of pooled libraries (PLs). The SSL haplotypes are used to 
establish a skeleton phylogeny, so sampling should be adjusted 
to attempt to capture a wide range of variation. The PLs will be 
used to identify new haplotypes and to estimate pooled haplo-
type frequencies. As a general guideline, the number of SSLs 
should be about the same as the number of PLs. If there is reason 
to suspect large amounts of divergence between sampled popu-
lations, additional artificial pools containing individuals from 
different portions of the range should also be constructed (see 
explanation of artificial pools in the discussion).

Libraries (both PLs and SSLs) are multiplexed for cpDNA tar-
geted capture and sequencing. Equimolar contributions are used to 
combine up to 60 libraries for paired-end sequencing on a single 
lane of the Illumina 2500 HiSeq (Illumina, San Diego, California, 
USA) or equivalent instrument (multiplex size should be adjusted 
for instruments with different capacities). Chloroplast genomic 
DNA is captured from multiplexed libraries prior to sequencing 
using custom-designed RNA bait arrays (e.g., Stull et al., 2013; see 
below). Bioinformatics processing and filtering prior to CallHap 
analysis are described in Appendix S1.

Variant filtering— Variant filtering is accomplished using 
the first of the two CallHap programs, CallHap_VCF_Filt.py 
(see the program flowchart in Appendix S2). This script filters 
raw variants. To ensure that they can be used by the main haplo-
type caller, the following variants are removed: (A) non-SNP 
variants (due to the difficulty in calling insertion- or deletion-
type variants [indels] as being in one of two states), (B) variants 
with low depth or quality, (C) variants that do not have a defined 
identity across all SSLs and PLs (because the haplotype caller 
application cannot handle missing values in the matrix of haplo-
type identities), and (D) SNPs in close proximity to indels (due 
to difficulties in creating correct alignments in these regions). 
Filters have a limit (depth filter, indel proximity, and quality filters) 
that can be modified by the user to meet the demands of a 
particular study. The variant filter outputs a file containing geno-
type data at all SNP loci for SSLs (Haps file), a separate file 
containing SNP reference allele frequency data for PLs (Pools 
file), and a NEXUS file for network phylogeny creation.

Haplotype identity and frequency determination— The 
CallHap Haplotype Caller (CallHap_HapCallr.py, Appendix S3)  
works by iterating through all the available SNPs in a pseudo-
random order, with polymorphic SNPs in SSL (known) haplo-
types being processed first. Processing a large number of 
these random orders increases certainty in haplotype calls. 
Within each order, the CallHap Haplotype Caller uses a least 
squares algorithm (Appendix S4) to solve the equation 

( )= ˆ
i iAx f b  for the minimum residual sum of squares (RSS) 

Fig. 2.  Overview of sampling, labwork, and bioinformatics protocols involved in a CallHap experiment.
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value, where A is the binary (1’s and 0’s) *n m matrix of haplo-
types, ib  is the *1n  vector of observed SNP frequencies in the thi  
pool, ( )ˆ

if b  is an estimator for ib , and ix  is the 1 * m estimated 
vector of haplotype frequencies in the thi  pool. Within the hap-
lotypes matrix A, each column represents a haplotype and each 
row represents a SNP locus; the value in that particular element 
of the haplotypes matrix indicates which allele of the given SNP 
is present in the given haplotype. When solving this equation 
within a round of haplotype estimation (A remains constant), 
each ix  is chosen such that ( )( )2ˆ

i i iRSS f b b= −∑  is minimized. 

Initially, A is composed entirely of haplotypes observed in the 
SSLs (as defined in the Haps file), but in later rounds of haplo-
type estimation, A expands to contain estimated novel haplo-
types in addition to the initial haplotypes. All instances of ib  are 
read from the Pools file produced by the VCF filter.

In each round of haplotype estimation, several values of A 
(each containing a different estimated haplotype) are tested. 
When creating new haplotypes, a SNP is only considered if 
there exists a nonzero residual in the current solution for that 
SNP locus (Appendix S5). If the current SNP is polymorphic in 
A, new haplotype creation only considers creating new hap-
lotypes based on the haplotypes at either end of the network 
phylogeny branch along which this SNP occurs. Otherwise, the 
algorithm considers every possible new haplotype (Fig. 3). At 
the end of each round, only those values of A with the lowest 

( ) / 1i
i i

RSS∑ ∑  are kept for further rounds of haplotype estima-

tion (Fig. 3). An example of the matrices is shown in Appendix S6. 
Once all SNPs have been processed, the haplotypes matrices 
are filtered to remove unused haplotypes. Haplotypes matrices 
are then filtered to keep only those with the lowest Akaike infor-
mation criterion (AIC; Li et al., 2002). The columns of these 
matrices (the haplotypes) are taken as binary numbers, with 1 
representing the reference and 0 the alternate allele, converted 
into decimal numbers representing the haplotypes, and saved 
along with the average RSS values produced by the matrices.

After completing all pseudo-random orders, output files are gen-
erated showing the raw haplotypes produced in each proposed  
solution, the percentage of random orderings for which a par-
ticular haplotype was produced, the number of times each unique 

Fig. 3.  Haplotype creation and selection of best position in a simple haplotype system. In each case, N represents the position of the newly created 
haplotype. Graphs show predicted vs. observed reference allele frequencies for SNPs. RSS = residual sum of squares.

topology was generated, and the average RSS value for each. In 
addition, the following files are generated: files containing haplo-
type frequencies in each pool and the RSS value for that pool, VCF 
files showing predicted SNP reference allele frequencies in each 
pool and RSS for each SNP, a CSV file comparing observed vs. 
predicted SNP frequencies, and a NEXUS file for examining the 
proposed network phylogeny. Optionally, a genpop file that can be 
imported into adegenet (Jombart, 2008) and a STRUCTURE-
formatted file (Pritchard et al., 2000; Raj et al., 2014) can be 
generated. Haplotype frequencies are represented as number of 
individuals in the pool with that haplotype, and haplotypes are rep-
resented as multiple alleles at a single locus (the chloroplast).

After CallHap generates outputs, users can examine the re-
sulting topologies and select a final topology based on (1) the 
average RSS value of the solution, (2) the frequency with which 
a given topology occurred, and (3) the commonality of the root 
haplotype for any ambiguous new haplotypes not resolved by 
the first two criteria (Templeton et al., 1992).

MATERIALS AND METHODS

Testing with artificial networks and pools—We tested the CallHap pipeline 
using a set of artificially created network phylogenies and pool frequencies. 
Test networks were created to represent different types of network topologies 
(Fig. 4). Seven artificial pools containing 20 individuals each were created 
based on each network, with each pool containing three random haplotypes at 
frequencies approximating the Poisson distribution. The Poisson distribution 
was chosen because it often reflects natural frequency distributions, and the 
results obtained were not sensitive to haplotype frequencies within pools. Each 
set of artificial pools was processed with the haplotype caller using 100 random 
orders, with two iterations per order and different combinations of “known” 
haplotypes to determine whether both the correct haplotype network phylogeny 
and haplotype frequencies were recovered by the best solution.

Testing with pooled population samples—Leaf tissue was collected from 
400 individuals across 20 populations of L. californica located within a 16-ha 
area of Whetstone Savanna Preserve, near Medford, Oregon, USA (P. Thomp-
son et al., unpublished data). Leaf tissue was dried using silica beads as a desic-
cant, and DNA was extracted using a QIAGEN Plant DNeasy 96 kit (QIAGEN, 
Germantown, Maryland, USA). After DNA extraction, DNA concentration was 
quantified on a Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) and pooled by population in an equimolar fashion (20 sam-
ples per PL). Library preparation was conducted using a NEBNext Ultra DNA 
Library Prep Kit (E7370) with NEBNext Multiplex Oligos (E7600; New England 
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Biolabs, Ipswich, Massachusetts, USA). SSLs were constructed for at least one 
individual from each population.

SSLs and PLs were captured using a MYbaits-3 custom cpDNA capture  
array from MYcroarray (Ann Arbor, Michigan, USA; Appendix S7). DNA was 
sequenced on an Illumina HiSeq 2500 Sequencer (Illumina), with 100-bp 
paired-end reads generated for all but six samples, which had 100-bp single-end 
reads (Massively Parallel Sequencing Shared Resource Facility, Oregon 
Health and Science University, Portland, Oregon, USA). The contents of each 
lane are summarized in Table 1. Sequence alignment was performed to an in-
house L. californica chloroplast genome assembly (GenBank KY965816). SNP 
calling, variant filtering, and haplotype calling were performed using the pipe-
line as described above with a minimum read depth of 600 and a minimum vari-
ant quality of 20. Haplotype calling was performed using information from the 
L. californica sequence alignments. For the full data set, haplotype calling was 
run a second time with any new haplotypes that were consistently added placed 
in the input haplotypes to help resolve ambiguous haplotypes.

RESULTS

Test networks— Correct haplotype networks were recovered 
as single lowest RSS value solutions in all starting conditions for 
three out of four test networks. For the fourth, the correct haplo-
type network was recovered as the more common of two possible 
solutions with the lowest RSS value (Fig. 5).

Sequencing and variant calling— Sequencing performed 
for L. californica produced 67 libraries (47 SSLs and 20 PLs), 

which amounted to 753,355,673 raw reads. After variant calling, 
978 initial variants were recovered, which simplified to 39 SNPs  
in 19 unique haplotypes after filtering. Initial haplotype calling 
produced two solutions at a minimum RSS value of 0.003002, with 
seven new haplotypes common to all the top three solutions 
and three ambiguous haplotypes. Rerunning CallHap with the 
common haplotypes added to the SSL haplotypes returned three 
solutions: one with an RSS value of 0.003002, one with an RSS 
value of 0.003077, and one with an RSS value of 0.003165 (these 
topologies are summarized in Fig. 6, and RSS values are summa-
rized in Tables 2 and 3). Although the best RSS value solution was 
not the most common solution, the difference in the RSS values 
was small enough that the solutions are essentially equivalent. Ad-
ditionally, there were only minor differences in haplotype fre-
quency between the best RSS value solution and the second best 
RSS value solution. Because the RSS values for the best two solu-
tions were effectively the same (i.e., within 5% of each other), the 
more common topology was selected as the best solution.

DISCUSSION

We have developed a pipeline, CallHap, for efficient exami-
nation of cpDNA variation and tested it using a variety of test 
networks and a real data set of L. californica samples from 
Whetstone Savanna Preserve. Here, we present: (1) an examination 

Fig. 4.  Test network phylogenies. These phylogenies were designed to test the ability of CallHap to recover different topological patterns when starting 
with different haplotypes: (A) a long branch with every haplotype defined, (B) two long branches with all haplotypes defined, (C) a long branch with some 
haplotypes defined, and (D) a cluster with one haplotype further out.

Table 1.  Summary of sequencing lane contents, showing number of Lasthenia californica single-sample libraries and pooled libraries used in analysis 
on each lane, number of other libraries on each lane, percentage L. californica returns from each lane, and type (single end or paired end) of each run.

L. californica

Lane No. of SSLsa No. of PLsa Other librariesb % Returns L. californicaa Run type

1 5 0 1 99.02 SE
2 13 4 7 61.39 PE
3 20 0 28 17.53 PE
4 7 16 31 12.42 PE
5 2 0 52 2.14 PE

Note: PE = paired end; PL = pooled library; SE = single end; SSL = single-sample library.
a Number only reflects libraries used in analysis.
b These libraries were made using species other than L. californica, or were L. californica libraries unused in this analysis.
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of test results, (2) considerations for the design of experiments 
using CallHap, and (3) appropriate protocols for analysis of 
CallHap outputs. In addition, we provide an explanation for the 
magnitude of RSS values calculated by CallHap and a discus-
sion of potential applications for this protocol.

Test results— Examining the test network pools reveals consis-
tent recovery of haplotype networks from a starting point of two or 
more haplotypes (SSLs) in the absence of any sequencing error. 
The presence of two possible solutions in the fourth test network 
reveals one potential problem that could arise during haplotype 
construction; if the frequency of a new haplotype is less than the 
frequencies of multiple other haplotypes across all PLs, the new 
haplotype may be placed ambiguously among multiple locations 
on the network. When the false haplotype position was not one of 
the known haplotypes, the correct solution was always the most 
common solution. One remedy to this issue would be to add new 
haplotypes that were found consistently among the solutions with 
the best RSS values to the starting haplotypes array, and then rerun 
the program as was done above with the Lasthenia data. By using 
the expanded array of haplotypes as a starting point, differences 
among solutions with the same RSS value may be resolved. An-
other method involves taking the source DNA samples and creat-
ing extra PLs by reshuffling the samples in ways that do not reflect 
the geographic areas in which the samples were collected (i.e., 
artificial pools [discussed in more detail later]).

Testing also revealed that, with minimal sampling of SSLs, 
convergence to a best solution was proportional to the centrality 
of the starting haplotype. As an example, for one of the test 
pools, all 100 orders converged to the lowest RSS value when 
the starting haplotype was the most central haplotype, as opposed 
to 13/100 and 3/100 for starting haplotypes one and two SNPs 
different from the most central haplotype, respectively. Fur-
thermore, the presence of long branches in the correct topology 
reduced the frequency with which that topology came up. In 

cases where CallHap is finding a large number of topologies, it 
would be advisable to rerun CallHap with a larger number of 
random orderings along with augmenting the known haplotypes 
with any new haplotypes found universally. In addition, starting 
with more than one SSL per population (pool) sampled will 
increase the likelihood that the most central haplotype will be 
included in the SSL haplotypes.

It is apparent from examining the inferred haplotype frequen-
cies for L. californica that RSS values for individual populations 
differ substantially. There can be many reasons for this. In some 
cases, high RSS values may be due to low-quality SNPs that 
escaped filtering. For this reason, even after automated SNP fil-
tering, any remaining SNPs should be visualized using Integra-
tive Genomics Viewer (IGV; Thorvaldsdóttir et al., 2013) or 
other similar programs to verify quality. Potential issues include 
SNPs that occur at approximately the same frequency across 
populations while the other SNPs in the pool change frequencies 
(especially if the major SNP present in the pool changes fre-
quency). In these cases, the SNPs displaying consistent frequen-
cies are most likely artificial and should be removed.

Another potential source of error is heteroplasmy (multiple 
chloroplast haplotypes within a single individual), which is 
caused by biparental inheritance of chloroplast genomes and 
somatic mutation. Past studies on heteroplasmy suggest that 
paternal inheritance occurs at a rate of about 1–2% (Cruzan 
et al., 1993; Ellis et al., 2008). Inferred haplotype frequencies for 
L. californica had very small errors around expected values 
(see below), suggesting that heteroplasmy is not common in this 
species. In species where biparental inheritance is known to be 
common, the potential for heteroplasmy should be taken into 
account during experimental design and interpretation of results.

Experimental design considerations for CallHap analy-
ses— When designing an experiment to feed into the CallHap 
pipeline, consideration must be given to (1) the spatial scale of 

Fig. 5.  Resulting phylogeny from one starting condition from Test Network D. (A) Green haplotypes were known at the beginning, blue haplotypes were 
present in all solutions at the lowest RSS value, and orange haplotypes had ambiguous positions between different solutions. Branch thickness is scaled by 
how many times a solution with the branch occurred, and percentages give exact percent of time a branch occurred. Hash marks indicate number of SNPs 
along a branch. (B) Regression plot for these solutions.
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sampling, (2) the size of pooled libraries, (3) the choice of an 
appropriate reference genome for sequence alignment and vari-
ant discovery, and (4) the minimum read depth used. Each of 
these are discussed in turn below.

Spatial scale of sampling—Experimental designs that pro-
duce data for the CallHap pipeline will differ primarily on the 
geographic scale of sampling. For this purpose, small-scale 
sampling (e.g., for population genetics) indicates that popula-
tions are sampled at distances smaller than the hypothesized 
average dispersal distance of the target species, and large-
scale sampling (e.g., for phylogeography) indicates that popu-
lations are sampled at distances greater than the hypothesized 
average dispersal distance. In population genetic studies, we 
expect that genetic structure is governed by gene flow and 
genetic drift such that all haplotypes have a reasonable chance 
of being sampled from any populations. At larger spatial scales, 
mutation rates exceed gene flow such that different regions 
may be characterized by different groups of closely related 
haplotypes.

At small scales, dispersal is great enough that each haplotype 
may be found in any location. Because of this, populations 
are differentiated primarily by differences in the frequencies of 
shared haplotypes, meaning that experiments should be designed 
with one SSL and one PL per population. In this type of experi-
ment, there is a lowered likelihood of difficulties in recovering 
the correct haplotype network phylogeny and frequencies. At 
large scales, populations in close proximity to each other may 
represent a unique clade of related haplotypes. As shown in the 
test networks, it becomes difficult to place new haplotypes 
within clades when only one SSL is available for each clade. 
Additionally, if a haplotype is only present in a single population 
(pool), it is difficult to accurately place the haplotype within the 
network phylogeny. For large-scale studies, it would be advis-
able to create artificial pools by pooling samples from individuals 
from across the entire range. Notably, these pools should not 
include the samples used for SSLs. In addition, artificial pools 
should be constructed to consist of each sample at a different 
concentration in order to resolve the frequencies of SNP alleles 
that are shared among haplotypes, which will allow for a more 

Fig. 6.  Haplotypes solution for Lasthenia californica de novo alignment. (A) Consolidated network phylogeny for CallHap solutions with the lowest 
RSS value (0.003002). Black indicates starting haplotypes, blue indicates new haplotypes fixed in the best solutions from the initial haplotype calling run, 
and green indicates new haplotypes found in the second haplotype calling run. For the second run, node size is scaled to indicate the number of output solu-
tions in which a new haplotype occurred. Hash marks indicate number of SNPs that change identity along a branch. (B) Regression plot for lowest–RSS value 
CallHap solutions.
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robust inference of the phylogeny. Sequencing more than one 
SSL per population should also be considered in these cases. 
Sequencing multiple SSLs per region combined with artificial 
PLs will help resolve topologies and haplotype frequencies 
when the distance among populations within each region occurs 
at a small scale and sampled regions occur at a large scale.

One final complication is that the true scale of a project may 
not become evident until after completing data analysis. For 
example, when the L. californica experiment was designed, the 
hypothesized dispersal range was greater than the distance 
among populations. However, after sequencing, we realized that 
seed dispersal in L. californica is much more limited than antici-
pated. In retrospect, creating artificial pools to help resolve the 
haplotype network phylogeny would have facilitated the estima-
tion of the network phylogeny and haplotype frequencies.

Pooling and pooled library size—Many Pool-Seq protocols 
combine samples before DNA extraction (Kofler et al., 2012; 
Martins et al., 2014; Bélanger et al., 2016), but this will generate 
higher errors in SNP frequencies because equal amounts of 

tissue may not contain equal amounts of genomic DNA. In con-
trast, data for use in CallHap should come from libraries where 
DNA is extracted before being pooled to ensure equimolar pro-
portions of DNA from each individual. Although populations of 
any size could be analyzed, sequencing error, pipette volume, 
DNA concentration, and consideration of sequencing limitations 
(see below) limit the number of individuals that can be placed in 
a single pool and still give accurate resolution of haplotype 
frequencies. On the other hand, if too few individuals per popu-
lation are used, some haplotypes present in the population may 
be missed.

We can use the pool SNP frequencies from the L. californica 
study to estimate the error, which will provide a guideline for the 
maximum pool size. Examination of deviations from the expected 
values of the nearest multiple of 5% (i.e., for a pool size of 20) 
reveals an average error of 0.37% with more than 70% of devia-
tions less than 0.25%, and only 5% greater than 2.0%. This error 
is very small and indicates that well over 200 samples could be 
included in each pool. Although a large number of individuals 
per population could be used to average out differences in  
cpDNA relative to total genomic DNA and experimenter error, 
there will be diminishing returns due to the resources required to 
isolate and quantify DNA from larger numbers of samples per 
pool, and fewer libraries can be multiplexed for capture and 
sequencing (see the section on read depth). In the L. californica 
study, a sample size of 20 individuals per population was used; 
this number provided reasonable accuracy in SNP frequency 
estimates while still capturing adequate haplotype diversity pres-
ent in populations.

Choosing a reference genome—CallHap assumes that SNPs 
detected by variant calling arise from closely related haplo-
types. Because of this, the CallHap pipeline requires that all 
libraries be aligned to a single reference genome. Because the 
genome used will have a large influence on the number and 
quality of SNPs generated, genome selection is an important 
aspect of any study using CallHap. In choosing a reference 

Table 3.  RSS values and residual statistics for Lasthenia californica 
calculated by population. For the sample size of 20 individuals per 
population, the 5% frequency separating estimates of the number 
of individuals carrying a haplotype is approximately the same as a 
squared residual value of 0.0025.

Population RSS value

1 0.004688
2 0.000322
3 0.005565
4 0.001729
5 0.005304
6 0.002121
7 0.000042
8 0.003693
9 0.000446
10 0.005215
11 0.004026
12 0.006501
13 0.003062
14 0.004435
15 0.000325
16 0.002084
17 0.000382
18 0.006086
19 0.001960
20 0.003560

Table 2.  RSS values and residual statistics for Lasthenia californica 
calculated by SNPs. For the sample size of 20 individuals per population, 
the 5% frequency separating estimates of the number of individuals 
carrying a haplotype is approximately the same as a squared residual 
value of 0.0025.

SNP no. RSS value
Average squared  

residual
Standard deviation of 

squared residuals

0 0.000176 0.000009 0.000032
1 0.002585 0.000129 0.000429
2 0.000040 0.000002 0.000006
3 0.000128 0.000006 0.000026
4 0.000071 0.000004 0.000012
5 0.000459 0.000023 0.000058
6 0.001599 0.000080 0.000154
7 0.004566 0.000228 0.000262
8 0.001141 0.000057 0.000142
9 0.006557 0.000328 0.000486
10 0.004619 0.000231 0.000390
11 0.000200 0.000010 0.000043
12 0.000147 0.000007 0.000032
13 0.002009 0.000100 0.000294
14 0.001082 0.000054 0.000141
15 0.000552 0.000028 0.000107
16 0.001887 0.000094 0.000249
17 0.002112 0.000106 0.000239
18 0.000791 0.000040 0.000099
19 0.002005 0.000100 0.000198
20 0.000606 0.000030 0.000134
21 0.000714 0.000036 0.000119
22 0.003955 0.000198 0.000366
23 0.000143 0.000007 0.000028
24 0.000416 0.000021 0.000090
25 0.004510 0.000226 0.000283
26 0.000026 0.000001 0.000002
27 0.010800 0.000540 0.001008
28 0.000448 0.000022 0.000085
29 0.000131 0.000007 0.000008
30 0.001441 0.000072 0.000318
31 0.000947 0.000047 0.000145
32 0.000180 0.000009 0.000036
33 0.000173 0.000009 0.000024
34 0.000744 0.000037 0.000156
35 0.000354 0.000018 0.000011
36 0.000064 0.000003 0.000008
37 0.003147 0.000157 0.000276
38 0.000020 0.000001 0.000001
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genome to use for CallHap analysis, preference should be 
given to conspecific genomes. If no such reference exists, one 
library of whole-genome shotgun sequencing (i.e., not sub-
jected to targeted capture) should be included in the Illumina 
multiplex for de novo genome assembly. Although a de novo 
genome can be created using captured cpDNA, based on our 
experience, the incomplete nature of the capture makes it 
more difficult to carry out the de novo assembly. If creating a 
de novo reference is infeasible, adequate SNP calling can be 
conducted using a more distantly related reference. Limita-
tions of interspecific references include the addition of artifi-
cial SNPs introduced due to alignment ambiguities that may 
be caused by fixed differences between the chloroplast ge-
nomes of the two species.

Minimum read depth—Another important parameter to con-
sider when analyzing sequence data is the minimum read depth 
required to confidently identify genomic variants. To determine 
the minimum depth for the Lasthenia data, we ran the VCF  
filter multiple times with different depths and counted the num-
ber of unique haplotypes obtained each time. In general, mini-
mum depth should be no less than 15 times the number of 
individuals in a pool (Sims et al., 2014), which would be 300 
for a pool size of 20 individuals. Note that pooling larger num-
bers of individuals will require greater read depth and will in-
duce limits on the number of SSLs and PLs that can be 
multiplexed for sequencing. For robust haplotype estimation, 
we suggest increasing the read depth until the number of haplo-
types starts to decrease substantially (Fig. 7). We found that the 
optimum read depth value changes depending on the peculiari-
ties of different species and sequencing runs; for L. californica, 
the optimum read depth was around 600, whereas for a sepa-
rate study with Ranunculus occidentalis Nutt., the optimum 

minimum depth was found to be about 400 reads (J. Persinger 
et al., unpublished data).

Analysis of CallHap outputs— Methods used for analysis of 
haplotype frequency data from CallHap will vary depending on the 
goals of the study. Population genetic studies utilizing nuclear 
genetic markers in diploid organisms typically use Wright’s  
FST (Wright, 1949) or a similar analogue (GST, G′ST, DST, etc.; 
Whitlock, 2011). However, FST is based on comparisons of ob-
served and expected heterozygosity at different scales and, conse-
quently, is inappropriate for use with haplotype data. Instead, 
genetic distance measures that allow for variable ploidies and 
number of alleles per locus, and are not reliant on heterozygosity, 
such as Nei’s genetic distance (Nei’s D; Nei, 1973), Cavalli-Sforza 
and Edwards’ chord distance (Cavalli-Sforza and Edwards, 1967;  
Edwards, 1971; Hartl et al., 1997), Φ-statistics (Meirmans, 2006), 
or haplotype genetic diversity measures (e.g., unbiased haplotype 
diversity; Gardner et al., 2015), should be used.

Methods such as Nei’s D rely on calculations of the probabil-
ity that the same combination of alleles will be found in two 
different populations; consequently, such methods are more 
appropriate for small-scale studies. When no haplotypes are shared 
between two populations, Nei’s D gives an infinite distance 
between those populations; such a pattern indicates that dispersal 
rates among the populations sampled are very low, and that the 
accumulation of local mutations is the primary factor contribut-
ing to the genetic structure of populations. Limited dispersal 
relative to the scale of sampling will lead to haplotypes within 
populations being more closely related than to haplotypes in 
different populations. In these cases, methods such as chord 
distance or Φ-statistics may be more appropriate.

When genetic structure is governed primarily by limited  
dispersal leading to limited sharing of haplotypes across the 

Fig. 7.  Depth analysis for Lasthenia californica. The number of unique single-sample library haplotypes shows a substantial decrease at around 600 
depth.
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sampled region, phylogeographic methods (Templeton, 1998, 
2009; but see Knowles, 2008) or other methods of statistical 
phylogeography (Nielsen and Beaumont, 2009; Csilléry et al., 
2010) should be used. These methods explain distributions of 
genetic variation using statistical inference and simulations of 
population history events by comparing observed data to differ-
ent modeled population histories.

Applications— The CallHap pipeline has the potential to cre-
ate a range of new opportunities for studies of cpDNA popula-
tion genetic structure and phylogeography. This method provides 
accurate and economical estimates of seed-mediated gene flow 
by allowing for the use of pooled population sequencing data 
for cpDNA. Data for use in the CallHap pipeline come from 
population-level sampling of haploid genomes, including plant 
chloroplast genomes, mitochondrial genomes, and prokaryotic 
bacterial genomes. Because CallHap assumes all generated hap-
lotypes are closely related and requires that all libraries exam-
ined be aligned to a single reference genome, this protocol 
should not be used for microbiome and microbial community 
studies. Outputs generated by CallHap can be analyzed using a 
variety of methods, including Nei’s genetic distance, Cavalli-
Sforza and Edwards’ chord distance, Φ-statistics, and a variety 
of phylogeographic analysis methods in statistical phylogeogra-
phy. The CallHap program, along with sample data and output 
files, is available at https://github.com/cruzan-lab/CallHap.
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