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                             Ad hoc smoothing parameter performance in kernel estimates 
of GPS-derived home ranges      

    Krysten L.     Schuler  ,       Greg M.     Schroeder  ,       Jonathan A.     Jenks   and       John G.     Kie    

         K. L. Schuler (ks833@cornell.edu), Dept of Wildlife and Fisheries Sciences, South Dakota State Univ., Brookings, SD 57007, USA. Present 
address: Animal Health Diagnostic Center, Cornell Univ., 240 Farrier Rd., Ithaca, NY 14853, USA.  –  G. M. Schroeder, National Park 
Service, Wind Cave National Park, Hot Springs, SD 57747, USA.  –  J. A. Jenks, Dept of Wildlife and Fisheries Sciences, South Dakota State 
University, SNP 138, Box 2140B, Brookings, SD 57007, USA.  –  J. G. Kie, Dept of Biological Sciences, Idaho State Univ., 921 South 8th Ave. 
Stop 80007, Pocatello, ID 83209, USA                             

  Accuracy of home-range estimates in animals is infl uenced by a variety of factors, such as method of analysis and number of 
locations, but animal space use is less often considered and frequently over-generalized through simulations. Our objective 
was to assess eff ect of an ad hoc ( h_ad hoc ) smoothing parameter in kernel analysis from two species that were predicted 
to have diff erent patterns of utilization distributions across a range of sample sizes. We evaluated variation in home-
range estimates with location data collected from GPS collars on two species: mule deer  Odocoileus hemionus  and coyotes 
 Canis latrans . We calculated home ranges using 95% and 50% kernel contours using reference ( h_ref ) and  h_ad hoc  
smoothing parameters. To evaluate the infl uence of sample size, we calculated home ranges using both smoothing parameters 
for random subsamples of 5, 10, 25 and 50% of GPS locations and compared area estimates to estimates for 100% of 
GPS locations. On mule deer, we also conducted visual relocations using conventional radiotelemetry, which resulted in 
fewer locations than GPS collars. Area was overestimated at smaller sample sizes, but an interesting pattern was noted with 
higher relative bias at 60 – 100 locations than at sample sizes  �    50 locations. Relative bias was most likely due to increased 
smoothing of outer data points. Subsampling allowed us to examine relative bias across a range of samples sizes for the 
two smoothing parameters. Minimum number of points to obtain a consistent home range estimates varied by smoothing 
method, species, study duration, and volume contour (95% or 50%). While  h_ad hoc  performed consistently better over 
most sample sizes, there may not be a universal recommendation for all studies and species. Behavioral traits resulting in 
concentrated or disparate space use complicates comparisons among and between species. We suggest researchers examine 
their point distribution, justify their choice of smoothing parameter, and report their choices for home-range analysis based 
on their study objectives.   
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 Under ideal conditions, space use by animals would be 
defi ned by direct, continuous observations; advances in 
technology have yielded global positioning system (GPS) 
collars capable of automatically collecting copious amount 
of data to study animal behavior and ecology (Tomkiewicz 
et   al. 2010), primarily via animal locations. Historic issues 
arise over the biological concept of home range, statistical 
calculations and biases resulting from estimators. Th e mech-
anisms derived to examine home range have been simulated 
through various functions assuming a static landscape, but 
the home range size and shape depends entirely on choices 
made by the individual animal and therefore, is likely to 
vary by individual, species, and environmental conditions 
(B ö rger et   al. 2008, Moorcroft 2012). Our interest is the 
dynamic nature of home range, particularly associated with 
large volume GPS data. Th erefore, we will quantify variation 
in home range area estimates for consistent individuals of 
two diff erent species likely to have disparate space use using 
a traditional smoothing parameter and one established using 

a contiguous home range procedure over a range of sample 
sizes. Our objective in generating these home ranges is to 
produce consistent spatial representations of areas used by 
our study animals with a smoothing parameter appropriate 
for our data. Th e premise of this study was to look for a 
consistent home range across smoothing parameters over 
diff erent sample sizes, species, and distribution contours. 

 Field studies and computer simulations employing vari-
ous smoothing parameters and sample sizes on utilization 
distributions are not new exercises. Kernel analyses are pop-
ular because they are nonparametric (Silverman 1986) and 
produce consistent results (Worton 1989). Bandwidth or 
smoothing parameter ( h ) has been implicated as the critical 
choice in kernel density estimation (Kernohan et   al. 2001, 
Hemson et   al. 2005) because it determines the width of 
the kernel, yet there is no method of choosing the best  
h  value (Silverman 1986, Worton 1989, White and Garrott 
1990). Small values of  h  can cause the estimated kernel den-
sity function to break into constituent kernels or  ‘ islands ’  
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(i.e. undersmooth) while large smoothing parameters overly 
expand estimates (i.e. oversmooth, Kernohan et   al. 2001). 
Post hoc methods of choosing  h  may be warranted, particu-
larly with large sample sizes generated by GPS data. Th e ref-
erence ( h_ref )  smoothing parameter is calculated from the 
distribution of points, but it tends to oversmooth multimodal 
distributions from clumped locations resulting in overesti-
mated home-range sizes (Kernohan et   al. 2001). Use of a 
smoothing parameter that minimizes a least-squares cross-
validation score ( h_lscv ) has been advocated (Seaman et   al. 
1999, Kernohan et   al. 2001, Girard et   al. 2002, Gitzen and 
Millspaugh 2003), but problems result in undersmoothing 
GPS data because locations often occur at or near the same 
point (Hemson et   al. 2005, Gitzen et   al. 2006). An ad hoc 
( h_ad hoc ) smoothing parameter (not to be confused with
  h_opt  as described in Worton 1989) may be useful as an alter-
native to the reference bandwidth to reduce oversmoothing 
that requires investigators to visually inspect home ranges 
and manually adjust  h  values. Use of the  h_ad hoc  smooth-
ing parameter incorporates researcher examination applied 
under a consistent and replicable rule (Berger and Gese 
2007, Klaver et   al. 2008, Jacques et   al. 2009, Grovenburg 
et   al. 2011). 

 In addition to searching for an effi  cient and unbiased 
smoothing parameter, we chose to examine the resulting 
infl uence of sample size on area distributions (Harris et   al. 
1990, Powell 2000) to achieve consistent estimates. Th ere 
has been no universal method to determine necessary sample 
size, as evidenced by various recommendations, which range 
from 20 or 30 locations (Silverman 1986, Gese et   al. 1990, 
Seaman et   al. 1999, Pellerin et   al. 2008) to 200 (Laundr é  
and Keller 1984, Harris et   al. 1990, Garton et   al. 2001) or 
more (Gautestad and Mysterud 1995, Girard et   al. 2002) 
depending on methodology. Larger sample sizes that can be 
acquired with GPS technology may render this argument 
irrelevant (Walter et   al. 2011), although use of subsampling 
or incremental analysis for comparison studies revives the 
issue (B ö rger et   al. 2006, Pellerin et   al. 2008), especially in 
studies that deploy both VHF and GPS collars (Hebblewhite 
and Haydon 2010) such as ours. 

 Contour area is most commonly estimated for outer 
boundaries of animal use or for core areas that usually are an 
inner contour, which demonstrates multiple centers of activity 
(Harris et   al. 1990). Consequently, bias in one contour area 
may not be equivalent to biases in other estimates (Seaman et   al. 
1999) across diff erent smoothing parameters. Oversmoothing 
and undersmoothing were determined by comparing derived 
area to our largest sample size to obtain a relative bias value 
assuming that home range estimates reach an asymptote with 
adequate sample size (McLoughlin and Ferguson 2000). 

 We evaluated GPS data from coyotes  Canis latrans , as well 
as GPS and VHF-telemetry data from mule deer  Odocoileus 
hemionus  in South Dakota, USA. Locations for mule deer 
were collected throughout the year whereas those for coyotes 
were collected around the period when adults were rearing 
pups. We visually observed these species to have divergent 
generalized behaviors and foraging patterns (scattered patch 
searches by mule deer or foraging around a den site by 
coyotes). Behavioral characteristics of species that vary by 
season, sex, and available resources resulting in diff erent 
usage distributions (Gitzen et   al. 2006) are rarely considered 

when making inferences about shared space (Powell and 
Mitchell 2012).  

 Material and methods 

 For all animal captures, we used standard techniques 
approved by the American Society of Mammalogists (1998), 
National Park Service (Badlands National Park 2000), and 
South Dakota State University (Institutional Animal Care 
and Use Committee Approval no. 02-A036 [mule deer] 
and no. 02-A042 [coyotes]). In February 2002, we cap-
tured and fi tted 20 non-migratory adult mule deer (8 males, 
12 females) within the Wind Cave National Park, South 
Dakota, USA with GPS collars (Table 1). Eighteen had data 
suitable for this study; two deer mortalities resulted in dura-
tions  �    3 months and were not included. All collars were 
recovered by November after mortality or remote-release 
mechanism deployment with an average of 623 locations/
deer. An additional 20 mule deer (6 males, 14 females) were 
GPS collared in the park in January 2003. We released the 
GPS collars in May 2004 and obtained an average of 1130 
locations per deer, 18 had data suitable for this study. GPS 
collars also were equipped with very high frequency (VHF) 
radiotransmitters; visual relocations were obtained on mule 
deer 1 – 3 times week -1 . We recorded deer locations using a 
handheld GPS unit. 

 For coyotes, we captured and collared coyotes at Badlands 
National Park, South Dakota, USA from 2003 – 2005 in win-
ter and/or early spring (Table 1). Collars were programmed 
to drop off  animals during August after  �    6 months of opera-
tion. We attempted to catch at least one adult per family unit. 
Th irty-eight coyotes were fi tted with GPS collars during the 
three years of this project. Data from 14 adult, breeding coy-
otes (six males, eight females) were used for this analysis. Juve-
niles and non-breeding adults were not included in this study 
because data were truncated to only include locations taken 
during pup-rearing, 1 May to 31 July (Smith et   al. 1981). 

 We analyzed data using Home Range Tools for ArcGIS 
9.1 (Rodgers et   al. 2007) with default resolution grids and 
percent volume contours. Locations were converted to 
shapefi les and mapped. Analyzing GPS and VHF radiote-
lemetry (from deer) data separately, we calculated 95% and 
50% volume contours simultaneously with adaptive kernel 
analysis (ADK) using two smoothing parameters: 1) refer-
ence bandwidth ( h_ref ) and 2) ad hoc bandwidth ( h_ad hoc ) 
were created by reducing  h_ref  by 10% in successive steps 
until the 95% contour fractured into two or more polygons 
(Berger and Gese 2007, Jacques et   al. 2009). Adaptive kernel 
was chosen over fi xed kernel based on better performance 
at the tails of distributions (Worton 1989). Because the 
researcher chose the  h_ad hoc  bandwidth as the bandwidth 
applied just prior to fracturing of the outer contour, this pro-
cess required visual inspection and was not automated. Both 
contours (95% and 50%) for our home-range estimates 
were determined using the same smoothing parameter. 
We did not evaluate  h_lscv  because initial analysis showed 
that it fractured home ranges into multiple polygons with 
GPS data because of undersmoothing (Blundell et   al. 2001, 
Seaman and Powell 1996). If  h_lscv  fails,  h_ref  is often used 
as a default depending on the home-range software (Hemson 

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 08 May 2024
Terms of Use: https://bioone.org/terms-of-use



261

et   al. 2005, Rodgers et   al. 2007). We also compared home 
ranges against 100% minimum convex polygon (MCP) area 
estimates for 100% of points for  h_ref  and  h_ad hoc . 

 To evaluate sample size eff ects, we created a random 
subsample without restrictions for 5, 10, 25 and 50% of 
available locations for each mule deer and coyote (Create 
Random Selection Tool in ArcGIS 9.1; Hemson et   al. 2005, 
Girard et   al. 2006). We assumed the estimate with all the 
data points was closest to the true value (Girard et   al. 2002, 
Pellerin et   al. 2008). To determine relative bias, we divided 
area generated from each subsample by area calculated from 
100% of available locations (Horne et   al. 2007). Relative 
bias was estimated for each individual deer by: 

 Relative bias    �    [Area estimate 
      (subsample)    �    area estimate (all locations)]/
      area estimate (all locations) 

 We tested the infl uence on relative bias (arcsine-
transformed dependent variable) for 95% (Y 1 ) and 50% 
(Y 2 ) contours from the following independent factors (main 
eff ects): individual animals (X 1 ), smoothing parameter (X 2 , 
 h_ref  or  h_ad hoc ), species (X 3 , mule deer or coyote), and 
number of locations (X 4 ) using a general linear model with 
repeated measures (GLM, Systat software 2002, Hemson 
et   al. 2005). We also tested for interactions between all inde-
pendent factors with GLM. Th e general linear model pres-
ents advantages over multiple regression by allowing linear 
combinations of multiple correlated variables and ability 
to analyze eff ects of repeated measures. Home range area 
estimates for 100% of GPS data were assessed by adjusted 
least-square means (LSM, Systat software 2002) for each 
smoothing parameter. We evaluated subsampled data by 
95% confi dence intervals (CI) for relative bias estimates to 
determine if there was overlap with zero, which indicated 
no diff erence in relative bias from 100% of GPS locations 
(Johnson 1999). We also compared 100% of GPS data to 
VHF radiotelemetry locations of mule deer to determine 
smoothing parameter performance between methods of data 
collection (Pellerin et   al. 2008). We randomly subsampled 
GPS data to compare GPS to VHF radiotelemetry with an 
equal number of locations and generated home range esti-
mates using  h_ad hoc  and  h_ref . We compared the relative 
bias and used 95% CI to determine if there was overlap with 
zero, indicating no diff erence between VHF and 100% of 
GPS locations (Johnson 1999), as well as comparison with 
the subsampled GPS derived home range estimates.   

 Results 

 Animal space use and resulting home-range estimates using 
 h_ref  and  h_ad hoc  smoothing parameters often demonstrated 
diff erent patterns (Fig. 1, 2). Relative bias for 95% contours (Y 1 ) 
was infl uenced by only individual animal (X 1 , F 47,339     �    2.326, 
p    �    0.001); the interaction term of smoothing parameter (X 2 ) 
and number of locations (X 4 ) was signifi cant (F 1,339     �    4.660, 
p    �    0.032) indicating that the impact of number of locations 
may depend on the smoothing parameter used. Relative bias 
estimates for 50% contours (Y 2 ) were infl uenced by individual 
animal (X 1 , F 47,330     �    1.551, p    �    0.016), smoothing parameter 
(X 2 , F 1,330     �    10.063, p    �    0.002), and number of locations   Ta
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as is typically seen in area-observation curves (McLoughlin 
and Ferguson 2000). For deer GPS data, relative bias actu-
ally increased for home ranges in the 60 to 100 point range 
compared with lower sample sizes ( �    50 points). With 
the exception of this range (60 – 100 points), most 95% 
confi dence intervals for point estimates overlapped zero 
bias for the 95% contour (Fig. 3A, 4A) indicating bias 
did not diff er signifi cantly between subsamples and the 
full data-set. Confi dence intervals overlapped zero bias at 
higher point values ( �    150 – 250) for the 50% contour than 
the 95% contour using  h_ad hoc;   h_ref  had fewer instances 
where relative bias CI overlapped zero (Fig. 3B, 4B). 
Because these point values were derived from subsamples, 
they should not be subject to autocorrelation. Th e coy-
ote data exemplifi ed some of the issues with home-range 
calculations. We found a similar peak in relative bias for 
both  h_ref  and  h_ad hoc  at 125 points for the 95% contour 
(Fig. 4A). Relative bias decreased beyond 125 points with 
increasing number of points for  h_ad hoc . Relative bias was 
 �    10% for  h_ref  for 200 points. Confi dence intervals for 
all 95% contour estimates overlapped 0 for  h_ad hoc , and 
at highest (CI: 0.00, 0.04) and lowest number of locations 
(CI:  – 0.06, 0.26) for coyote home ranges. For the 50% 
contour, both parameters provided relative bias values that 
were similar (Fig. 4B). Relative bias values did not decrease 
to  �    10% until about 300 points for both smoothing 
parameters. 

(X 4 , F 1,330     �    47.249, p    �    0.001); interaction of smoothing 
parameter (X 2 ) and number of locations (X 4 ) was not signifi -
cant (F 1,330     �    1.713, p    �    0.191). Species (X 3 ) did not aff ect 
relative bias estimates for either contour (95%: F 1,339     �    0.008, 
p    �    0.928; 50%: F 1,330     �    1.714, p    �    0.191). 

 Overall, home range area estimates using 100% of 
the data were two and a half to three times higher for 
 h_ref  (adjusted LSM: 95% contour    �    0.152, 50% con-
tour    �    0.117) than  h_ad hoc  (adjusted LSM: 95% con-
tour    �    0.048, 50% contour    �    0.045) for both contours. 
Estimates for 100% MCP (adjusted LSM    �    0.16) were also 
consistently higher than 95% contour  h_ad hoc . Relative 
bias estimates for the two smoothing parameters were 
not congruent and varied by number of points; as num-
ber of points increased, bias decreased (Fig. 3, 4B). Biases 
for  h_ad hoc  smoothing parameter decreased to  �    10% 
between 100 – 125 points and at about 200 points for  h_ref  
for both the 95% and 50% contours. 

 In some analyses, we saw a new trend in relative bias 
that did not decay as expected. We expected an asymptotic 
decrease in estimate bias with increasing number of points 

  Figure 1.     95% and 50% home-range contours and GPS locations 
for a female mule deer in Wind Cave National Park, South Dakota 
in 2003. For home ranges created from 100% GPS locations 
(n    �    610, top row), the  h_ref  smoothing parameter (left column) 
resulted in oversmoothing of the point distribution for both 
95% and 50% contours. Th e  h_ad hoc  smoothing parameter 
(right column) had a tighter boundary for the 95% contour to the 
point distribution. For home ranges created from 10% randomly 
subsampled locations (n    �    58, bottom row),  h_ref  resulted in 
oversmoothing and incorporated areas not used by deer; whereas, 
 h_ad hoc  demonstrated multiple 50% contour areas similar to 
that with 100% of GPS locations. Multiple core use areas were 
not included using the  h_ref  smoothing parameter, especially at 
low sample sizes.  

  Figure 2.     Coyote GPS data (n    �    1011) for 95% and 50% contours 
for a female coyote in Badlands National Park, South Dakota in 
2004. Home ranges created using 100% of GPS points (top row) 
had higher oversmoothing and fewer defi ned core areas with  h_ref  
than  h_ad hoc . Random subsampling for 10% of GPS locations 
(n    �    101, black squares) produced home ranges that were consider-
ably oversmoothed for  h_ref . Th e  h_ad hoc  smoothing parameter 
demonstrated a similar boundary pattern for 10% as 100% GPS 
and delineated similar core use areas.  
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of GPS locations and found that 95% CI included zero for 
both smoothing parameters at 95% contour (95% CI for 
 h_ref , 2002:  – 0.30, 0.16; 2003:  – 0.20, 0.34.  h_ad hoc,  2002: 
 – 0.21, 0.23; 2003:  – 0.27, 0.13) or 50% contour (95% CI for 
 h_ref , 2002:  – 0.1, 0.48; 2003:  – 0.07, 0.27.  h_ad hoc,  2002: 
 – 0.88, 0.64; 2003:  – 0.10, 0.30), indicating correspondence 
between area estimates for both smoothing methods.   

 Discussion 

 Kernel estimators combined with technological advances, 
such as GPS collars, require evaluation of performance 
with larger datasets (Kie et   al. 2010, Tomkiewicz et   al. 2010, 
Walter et   al. 2011). Our analysis focused on issues fi eld 
investigators are capable of manipulating after data collec-
tion, such as smoothing parameters, that may be infl uenced 
by number of locations, species behavior, and resources. 
Current recommendations also include evaluation of sam-
pling regime (intensity and duration) to ensure temporal 
standardization (B ö rger et   al. 2006, Fieberg 2007), begin-
ning before collar deployment. In many situations, visual 
inspection of GPS data indicated a grouped abundance of 
locations (Fig. 1, 2). However, we did not know the true 
home range of the animals for our bias calculations (Seaman 

 Traditional VHF radiotelemetry for mule deer resulted 
in fewer locations (mean    �    55.7    �    7.2 deer -1 ) than GPS data 
and overestimated home range area when compared with 
estimates derived from all GPS locations at both contours, 
which was variable across smoothing parameter. Th e 95% 
CI for relative bias from the  h_ref  smoothing parameter 
did not overlap zero for either 95% contour (95% CI for 
2002: 0.21, 0.76; 2003: 0.05, 0.39) or 50% contour (95% 
CI for 2002: 0.05, 0.55; 2003: 0.01, 0.47); in contrast, the 
 h_ad hoc  smoothing parameter did overlap zero for both 
95% contour (95% CI for 2002:  – 0.26, 0.38; 2003:  – 0.19, 
0.11) and 50% contour (95% CI for 2002:  – 0.31, 0.33; 
2003:  – 0.15, 0.03). We compared VHF-telemetry data to 
a comparable sample size derived from a random sample 
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  Figure 4.     Relative bias plots for 95% (A) and 50% (B) contours 
( �    95% CI) for coyote GPS data from Badlands National Park, 
South Dakota. For 95% contours,  h_ad hoc ( ° ) smoothing param-
eter provided estimates with less bias than  h_ref  ( · ) and more CI 
overlapping zero. For 50% contours, there was no diff erence 
between smoothing parameters at higher sample sizes.  
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(defi ned core areas) are often calculated using the same 
smoothing parameter as the outer contour. In this analysis, 
we did not stipulate that the 50% polygon must not fracture, 
which resulted in multiple use centers. As such, we did not 
see the consistency across a range of sample sizes in the 50% 
contour that was evident with the outer 95% contour. 

 Along with choice of smoothing parameter, investigators 
must decide on use of global or local bandwidth (Gitzen and 
Millspaugh 2003, Kernohan et   al. 2001). Choice of fi xed 
versus adaptive kernel bandwidth does not aff ect  h_ref  (Sea-
man et   al. 1999) or  h_ad hoc  smoothing parameters. Our 
study employed a local bandwidth (adaptive kernel) that 
assigns more uncertainty to the outer edges of the home 
range where there are fewer points. Th is algorithm resulted 
in higher bias in the 50% contour than the 95% contour, 
which was similar to fi ndings of Seaman et   al. (1999) for 
fi xed kernel analyses. 

 Given that animals had variable distributions not only 
between species but during the course of a year and in diff er-
ent habitats (Girard et   al. 2002, B ö rger et   al. 2006, Moorcroft 
2012), a single standard for minimum number of points is 
diffi  cult to establish. Examination of chronological location 
data may provide more insight as to locations that are actu-
ally included in a home range versus outliers or occasional 
sallies as defi ned by Burt (1943, Powell and Mitchell 2012). 
Th ere did not appear to be a universal minimum number 
of locations for home-range estimation for either smoothing 
parameter. Relative bias increased with number of points for 
 h_ad hoc  in a range between 60 – 100 points compared with 
lower bias at smaller sample sizes ( �    50) which was unex-
pected, although Gautestad and Mysterud (1995) stated that 
area-observations curves are only valid for unimodal distri-
butions. Th is increase in bias likely resulted from multimodal 
distributions that required oversmoothing (i.e. larger value 
of  h_ad hoc ) because more subsampled points were from the 
periphery of the distribution; the point distribution was not 
dense enough near the edges of the home range to prevent 
fracture of the 95% contour. Th is was not as apparent for the 
50% contour because fracture of the core area contour was 
permitted. A similar pattern was evident for  h_ref , but not as 
consistently. In the range of 60 – 100 points, both smoothing 
parameters were likely to oversmooth, but  h_ad hoc  typically 
had lower relative bias than  h_ref . Th is area of increased bias 
could present serious complications at a point range com-
monly found in VHF-telemetry data. 

 Our VHF-telemetry data had substantially fewer loca-
tions than GPS data, but  h_ad hoc  produced comparable 
estimates despite sample diff erences, akin to the fi ndings of 
Kochanny et   al. (2009), in quantifying home range over-
lap. Because comparison between animals should employ 
equivalent sample sizes (de Solla et   al. 1999), subsampling 
can modify sample sizes or timeframe to appropriate levels 
(Girard et   al. 2002, B ö rger et   al. 2006) if necessary, par-
ticularly for studies that deploy both GPS and VHF collars 
(Hebblewhite and Haydon 2010). Reducing the number 
of GPS locations gave home-range area estimates that were 
equivalent when compared with VHF-telemetry data using 
both smoothing parameters. Comparisons by time period 
also can be achieved via subsampling (de Solla et   al. 1999, 
Pellerin et   al. 2008). 

and Powell 1996, Blundell et   al. 2001); rather, we chose to 
use a best-estimate home range that was based on the larg-
est number of locations (Girard et   al. 2002, Horne et   al. 
2007, Pellerin et   al. 2008) and look for consistency with that 
measurement (B ö rger et   al. 2008). Using locations from real 
animals eliminates the artifi cial environment and distribu-
tions created by simulated data that may not accurate refl ect 
animal space use in a dynamic environment. 

 Variability among individual animals, however, may have 
resulted in unimodal and multimodal distributions within 
the same species (Boulanger and White 1990, B ö rger et   al. 
2006, Horne and Garton 2006, Moorcroft 2012). Because 
 h_ref  uses a unimodal normal distribution, it attributed too 
much variance to multimodal distributions, which resulted 
in oversmoothing of the data. For example, mule deer data 
demonstrated larger biases in  h_ref  than coyote GPS data 
that was collected during pup rearing, when activity likely 
focused around a central location or multiple centers (i.e. 
 �    1 natal dens, Smith et   al. 1981, Boulanger and White 
1990). Investigators using  h_ad hoc  can recognize situations 
where an animal has multiple centers of activity and decrease 
the smoothing parameter to account for those areas. 

 As a tradeoff  between smoothing parameters produced by 
reference and least-squares cross-validation algorithms, we 
modifi ed the reference bandwidth and then used the smallest 
value of  h  that resulted in a contiguous polygon ( h_ad hoc , 
Berger and Gese 2007, Jacques et   al. 2009), rather than a set 
reduction to the  h  value (Pellerin et   al. 2008). Th is method 
was a consistent rule that eliminated excess area not used 
by the study animal. Hemson et   al. (2005) concluded this 
type of modifi cation to a smaller multiple of  h_ref  lacked a 
stable relationship with sample size and was an unsuitable 
substitute for  h_lscv  failure. We found that  h_ref  was incon-
sistent and did not have a stable relationship with sample 
size across species with variable distributions. Generally, less 
smoothing at large sample sizes reduces bias produced by 
kernel methods (Fieberg 2007, Downs and Horner 2008); 
however, we found home range area estimates produced 
by  h_ref  using 100% of GPS locations was slightly lower 
than those produced by 100% MCP, but consistently larger 
than  h_ad hoc.  Across a range of sample sizes,  h_ad hoc  mini-
mized oversmoothing as evidenced by confi dence intervals 
overlapping zero for relative bias more often than  h_ref  in 
both species for the outer contour. 

 Without a standardized methodology for home-range 
generation, justifi cation of analyses chosen should be an 
integral part of studies using home-range methods (Harris 
et   al. 1990). While fi xed kernel with  h_lscv  has been rec-
ommended because it minimizes the mean integrated square 
error (Seaman and Powell 1996, Seaman et   al. 1999, Gitzen 
and Millspaugh 2003), we did not evaluate GPS data with 
 h_lscv  because it resulted in a highly fractured home range 
that was not suitable for our study goals. Other studies using 
GPS collars also indicated that  h_lscv  with fi xed kernel failed 
at higher sample sizes with identical or highly clustered loca-
tions typically obtained with GPS data (Gallerani Lawson 
and Rodgers 1997, Hemson et   al. 2005) or linear home 
ranges (de Solla et   al. 1999, Blundell et   al. 2001). Other 
studies used diff erent contour values suitable to their pur-
pose (Marzluff  et   al. 2004, Kie et   al. 2010). Inner contours 
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Researchers can chose a method a priori, but should con-
sider how that method reacts when applied to their study 
questions and consider additional sensitivity analyses for 
variance or relative bias (Fieberg and B ö rger 2012). In this 
instance for both coyote and mule deer data,  h_ad hoc  was 
less sensitive to changes in sample size than  h_ref  . However, 
there were issues at certain ranges of locations with increased 
bias due to oversmoothing at moderate sample sizes. Least-
squares cross-validation may be an option with small sample 
sizes ( �    100 locations), but it quickly becomes negatively 
biased with increasing sample size and was not appropriate 
for our GPS data (Hemson et   al. 2005, Gitzen et. al. 2006). 
Th e best home-range model was the one that has the most 
support from the data (Horne and Garton 2006). By exam-
ining 95% and 50% contours for two species, we noted dif-
ferences even when using similar numbers of locations and 
smoothing parameters. Mule deer had greater bias in 95% 
contours whereas coyotes had more bias in 50% contours. 
Th ese diff erences were likely tied to how the animals were 
using resources in their home range. Th us, behavior can 
impact home-range estimates and is a necessary component 
of researcher considerations. As a result, care must be taken 
not only when comparing between animals of the same spe-
cies with regard to sample size, smoothing parameter, soft-
ware, time of year, age, and sex, but also between species for 
area overlap (Berger and Gese 2007) because they are likely 
to have variable distributions on the landscape due to their 
ecological needs (Moorcroft 2012).          
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