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                             Modeling bobcat Lynx rufus habitat associations using telemetry 
locations and citizen-scientist observations: are the results 
comparable?      

    Derek J. A.     Broman  ,       John A.     Litvaitis  ,       Mark     Ellingwood  ,       Patrick     Tate     and         Gregory C.     Reed            

  D. J. A. Broman, J. A. Litvaitis (john@unh.edu) and G. C. Reed, Dept of Natural Resources and the Environment, Univ. of New Hampshire, 
Durham, NH 03824 USA.  –  M. Ellingwood and P. Tate, New Hampshire Fish and Game Department, Concord, NH 03301 USA                               

 To understand large scale animal – habitat associations, biologists often rely on intensive home-range based studies, where 
a large number of locations are obtained from relatively few individuals equipped with radio transmitters and then extrapo-
late patterns of habitat use to much larger areas. Alternatively, extensive methods (e.g. incidental observations) that provide 
few observations per individual can be eff ectively used to sample large areas. Both methods have advantages, limitations, 
and potential sources of bias. We used these diff erent approaches in an eff ort to identify habitat features that may be impor-
tant to expanding populations of bobcats  Lynx rufus  in New Hampshire, USA. Twelve adult bobcats with GPS-equipped 
transmitters provided detailed summaries of movement patterns within a 2300-km 2  study area. We also solicited incidental 
observations from citizens throughout the state (24 200 km 2 ). Using locations from both methods, we developed logistic 
models based on a comparison of home range composition to study area composition (second-order habitat selection). 
We also explored an approach to reduce potential bias associated with incidental observations (overrepresentation of human 
population centers) by applying a weighing factor. Th e telemetry and uncorrected observation-based models overlapped 
substantially with eight common covariates. Th e telemetry-based model indicated that bobcats preferred areas with few 
roads, limited human development, high stream densities, and steep topography. In contrast, the adjusted (to reduce 
bias) observation-based model indicated bobcats preferred areas with an abundance of roads and development with few 
streams and limited topographic variation. Because of these diff erences, we recommend caution when using sightings to 
model habitat associations unless biases associated with such information can be identifi ed and overcome. Although public 
sightings had limited application for describing bobcat habitat, they were useful in documenting a recent range expansion 
and revealing novel prey use by bobcats.   

 Understanding wildlife – habitat associations is an essential 
cornerstone of eff ective conservation (Morrison 2001). As a 
result, a variety of approaches have emerged to identify the 
biotic and abiotic features that aff ect the distribution and 
abundance of a specifi c species (Litvaitis et   al. 1992, Pearce 
and Boyce 2006). Among the factors to consider when select-
ing an approach to investigate habitat affi  nities are the spatial 
scales at which information is gathered and then applied. For 
example, if the goal of an investigation is to obtain detailed 
information on demographics and patterns of habitat use 
within a local study area, live-captures or radio telemetry 
may be appropriate techniques (Litvaitis et   al. 1992). 
To address issues described at larger spatial scales (e.g. regional 
patterns of habitat suitability or population expansion), 
biologists may extrapolate from home-range based studies 
(Zimmermann and Breitenmoser 2007) or use extensive 
methods that include incidental observations (Woolf et   al. 
2002) or structured detection programs that rely on volun-
teers or citizen scientists (Sn ä ll et   al. 2011). Th ese extensive 
eff orts may be the only practical source of information to 

investigate the distribution or habitat associations of rare or 
secretive species (Palma et   al. 1999). 

 Regardless of the approach used, it is important to 
acknowledge the advantages, limitations, and potential 
biases of the selected method. For example, recent advances 
in telemetry (in particular the addition of global position-
ing systems, GPS) have provided biologists with an ability 
to obtain many locations that can reveal details of habitat 
use that previously were very diffi  cult to obtain (Johnson 
et   al. 2008, Martin et   al. 2009). However, the cost of GPS-
equipped telemetry may limit the number of individuals 
studied and, therefore, may not reveal habitat associations 
of all segments of a population (Hebblewhite and Haydon 
2010). Diff erential detection rates among available cover 
types also can aff ect interpretation of the resulting data sets 
(Friar et   al. 2010). Additionally, telemetry-based investiga-
tions are usually conducted at a local or landscape scale, 
and habitat associations may vary in response to the rela-
tive abundance of specifi c features that can change at larger 
spatial scales (Mosher et   al. 1986, Mysterud and Ims 1998). 

  ©  2014 Th e Authors. Th is article is Open Access 
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As a result, any extrapolation from a single study area to a 
regional or statewide scale may be compromised. On the 
other hand, observation-based investigations may be able to 
sample a large segment of the target population throughout 
the region of interest (Linde et   al. 2010, Cooper et   al. 2012). 
Yet such information may be prone to error or bias because 
observers may misidentify the target species (McKelvey et   al. 
2008), observers are not randomly distributed (Clements 
et   al. 2012), and detection rates may vary with covariates 
that determine the probability of occurrence (Yackulic et   al. 
2013). 

 We are interested in understanding bobcat  Lynx rufus  
habitat associations in New Hampshire, a region where this 
species has undergone dramatic changes in abundance dur-
ing the past 50 years (Litvaitis et   al. 2006). In the late 1950s, 
bobcat populations responded to the abundance of prey 
associated with large areas of reverting farmlands (Litvaitis 
et   al. 1984). At that time,  �    400 bobcats year �1  were har-
vested for bounty payment (Litvaitis 1993). Subsequently, 
shrubland habitats matured into closed-canopy forests and 
prey populations declined precipitously (Litvaitis 1993). By 
the mid 1980s,  �    20 bobcats year �1  were harvested during 
regulated trapping and hunting seasons (Litvaitis et   al. 2006). 
Since 1989, bobcats have been protected in New Hampshire 
and harvest seasons have been closed. In recent years, inci-
dental sightings and collisions with motor vehicles suggest 
that bobcats are becoming more abundant in New Hamp-
shire (Litvaitis et   al. 2006, Broman 2012), similar to other 
regions of North America (Roberts and Crimmins 2010). 

 To understand environmental features that may aff ect the 
vitality of bobcats in New Hampshire, we initiated a study to 
identify important habitat features. Our goal was to develop 
a statewide map of potential bobcat distribution based on 
habitat suitability. To achieve this, we explored the utility of 
two very diff erent approaches: an intensive, telemetry-based 
investigation within a restricted study area and an extensive 
eff ort that relied on incidental bobcat observations by citi-
zens throughout the state. Specifi cally, our objectives were 
to generate two very diff erent data sets on bobcat spatial 
distributions, apply similar analytical techniques, and then 
compare the resulting suitability models to determine if they 
revealed consistent patterns of habitat associations.  

 Material and methods  

 Habitat model based on telemetry  

 Study area 
 Bobcats were captured in an approximately 2300-km 2  region 
of southwest New Hampshire. Th is area had the greatest his-
torical harvests and frequent sightings (Litvaitis et   al. 2006). 
Dominant overstory species include eastern hemlock  Tsuga 
canadenesis , eastern white pine  Pinus strobus , American beech 
 Fagus grandifolia , yellow birch  Betula alleghaniensis , paper 
birch  Betula papyrifera , northern red oak  Quercus rubra , red 
maple  Acer rubrum , and sugar maple  Acer saccharum . Topog-
raphy is moderately rugged with elevation reaching 965 m 
above sea level at the peak of Mount Monadnock. Average 
annual snowfall is between 127 – 178 cm and average 
annual temperatures are  – 6 o C in the winter and 15 o C in 

the summer (NOAA 2011). Human population density 
is approximately 42 km �2  (Cheshire County, NH; US 
Census Bureau 2011). Maintained road density within the 
study area is 1.4 km km �2 .   

 Capture and monitoring 
 Licensed trappers were contracted by New Hampshire Fish 
and Game Department from November 2009 to March 
2010. Bobcats were captured with baited box traps. Males 
weighing more than 9.0 kg and females weighing more 
than 6.5 kg were assumed to be adults and equipped with 
a numbered ear tag and a radiocollar. Collars included 
Sirtrack drop-off  collars (Internal Release, 220 g, Sirtrack 
Ltd) and Lotek Wildcell collars (Wildcell, 270 g, Lotek 
Wireless). All study animals were handled in accordance 
with Univ. of New Hampshire Institutional Animal Care 
and Use Committee (protocol no. 081201). 

 Both collar models had VHF and GPS capabilities, as 
well as a timed mortality beacon. Sirtrack and Lotek GPS 
collars obtained a fi x every 7 and 5 h, respectively. Loca-
tions were downloaded from Sirtrack collars after dropoff  
(1 September 2010), whereas the Lotek collars sent loca-
tions via short message services (SMS messages) to a ground 
station. A GPS location screening technique consisted of 
removing two-dimensional (2D) fi xes with a dilution of 
precision greater than 5.0 (Lewis et   al. 2007). Th is technique 
was selected because it removed inaccurate locations while 
retaining as much data as possible (Lewis et   al. 2007).   

 Home-range estimation 
 Home ranges were calculated using a fi xed-kernel density 
estimator with least squares cross-validation (Worton 1989, 
Seaman and Powell 1996, Millspaugh et   al. 2006) using the 
Animal Movement extension (Hooge and Eichenlaub 1997) 
for ArcView 3. Home ranges were based on a minimum of 
30 locations (Seaman and Powell 1996) and 95% utilization 
distributions (UD) and core areas (50% UD, Powell 2000, 
Tucker et   al. 2008) were plotted.   

 Habitat modeling 
 Habitat selection was based on resource-selection func-
tions (RSF) and a use versus available design fi t to logistic-
regression functions (Boyce et   al. 2002, Manly et   al. 2002). 
Resource selection in this design is defi ned at the unit of a 
home range and as using a habitat feature disproportionately 
to its availability (second-order selection, Johnson 1980). 
Eleven candidate features were selected to describe bobcat 
habitat (Table 1) based on reviews of studies conducted in 
nearby states (McCord 1974, Fox 1990, Donovan et   al. 
2011) and other northern regions (Koehler and Hornocker 
1991, Lovallo and Anderson 1996). Map extent (i.e. grid 
size) for habitat features was 30    �    30 m, expect for snowfall 
data, which was 1    �    1 km. 

 Use versus available comparisons followed a sampling 
design of 1:1. Bobcat GPS locations that fell within the 95% 
UD were compared to an equal number of randomly gener-
ated locations within a minimum convex polygon (MCP) 
around all bobcat locations (the eff ective study area). Th is 
comparison of home-range habitat selection versus available 
habitat within the study area habitat is common practice and 
satisfi es RSF assumptions that each bobcat has access to all 
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  Table 1. Variables used to investigate bobcat habitat associations based on telemetry locations of marked animals in southwestern 
New Hampshire or incidental observations from volunteers collected statewide. For most features, information was obtained at telemetry 
locations, incidental observations, or random points. However, the method used to describe land cover, roads, and streams differed between 
telemetry and observation-based assessments.  

  Habitat measurement Justifi cation GIS data source  

  Elevation (m)   Bobcats prefer areas of low elevation 
(Lovallo and Anderson 1996)

  USGS Digital Elevation Model (DEM)

Slope (degrees) Bobcats have been found in ledges and 
areas of high slope (McCord 1974)

DEM Spatial Analyst calculation  

Northwest aspect (present/absent) Aspect infl uences sun exposure and 
consequently snow depth and 
vegetation   (Koehler and Hornocker 
1991)

DEM Spatial Analyst calculation  

Land cover (development, scrubland, forest, 
and wetland): for the telemetry-based 
model, this was the land cover associated 
with individual telemetry or random 
locations. For the observation-based 
model, this was the percent coverage of 
each land cover type within simulated 
home ranges centered on observations or 
random locations.

Bobcats prefer certain land cover types 
(Freeman 2010, Broman 2012)

2006 National Land Cover Dataset 
(Fry et al. 2011)

Snowfall (mm) Snowfall has negative impacts on 
  movement and survival (Litvaitis 
et   al. 1986a,b)

Compiled from the NOAA National 
Weather Service’s National 
Operational Hydrologic Remote 
Sensing Center ’ s (NOHRSC) Snow 
Data Assimilation System 
(SNODAS; NOHRSC 2004) by 
NHFG

  
Ruggedness (vector ruggedness measure-

ment)
Bobcats have been found in ledges and 

rugged terrain (McCord 1974)
VRM Tool calculation (Sappington 

et   al. 2007)
Road density: For the telemetry-based 

model, this was the density of all roads 
(km km �2 ) around each location of 
marked bobcats or random locations 
within the telemetry study area. For the 
observation-based model, this was the 
total length of roads within simulated 
home ranges centered on observations or 
random points in the state.)

Roads have a negative impact on 
bobcat survival (Litvaitis and Tash 
2008)

Spatial Analyst calculation  

Stream density: For the telemetry-based 
model, this was the density of all streams 
(km km �2 ) around each location of 
marked bobcats or random locations 
within the telemetry study area. For the 
observation-based model, this was the 
total length of streams within simulated 
home ranges centered on observations or 
random points in the state.)

High stream densities are associated 
with areas of high historical harvest 
in New Hampshire (Broman 2012)

Spatial Analyst calculation
  

available habitats (Manly et   al. 2002). Geospatial Modeling 
Environment (Beyer 2012) in ArcGIS 10.0 were used to 
generate random locations and derive habitat measurements 
for each location.   

 Data evaluation 
 Prior to model development, a Spearman rank correlation 
was used to identify collinearity between continuous 
variables. If | r |   �   0.70, the more practical variable (i.e. 
easier to recognize on the landscape) was retained (Broman 
2012); however, no continuous variables were removed. 
To address the correlation of GPS data in space and time 
(Boyce 2006, Dormann et   al. 2007), individual bobcats 
were used as a random intercept in a mixed-eff ect logistic 
regression model to allow for spatial autocorrelation between 
locations and unbalanced numbers of locations (Breslow 
and Clayton 1993, Gillies et   al. 2006). Th e issue of temporal 

autocorrelation can be problematic (Dormann et   al. 2007, 
Boyce et   al. 2010, Fieberg et   al. 2010), but the statistical 
package used (lmer function in lme4 package, Bates et   al. 
2011; in R) limited our abilities to address correlations in the 
model framework. Rather than censor data until statistical 
independence was met (e.g. destructive sampling, Swihart 
and Slade 1985), we elected not to account for temporal 
autocorrelation and contend information derived from large 
datasets is more valuable than information derived from 
statistically independent yet substantially smaller datasets. 

 GPS bias was addressed by weighing locations by the 
inverse probability of successfully acquiring a GPS fi x (Friar 
et   al. 2004, Hebblewhite et   al. 2007). Collar test data were 
generated by D. Mallett (Dept of Wildlife Ecology, Univ. 
of Maine; pers. comm.) in nearby Maine, enabling us to 
calculate the probability of acquiring a GPS fi x ( Pfi x ) for 
three land cover types (light development, shrub/scrub and 
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within  ‘ used home ranges ’  (polygons centered on observa-
tions) to the habitat within  ‘ available home ranges ’  (polygons 
centered on random locations). Th is approach diff ered from 
the analysis used with telemetry locations. Because individu-
als were not identifi ed, we considered our samples to rep-
resent selection at a population level with available habitat 
described statewide. 

 We suspected that our observation-based locations were 
biased by the distribution of observers (e.g. more frequently 
associated with human settlements) and by increased vis-
ibility of bobcats in some portions of the environment (e.g. 
backyards, roadsides and agricultural fi elds). To address 
these issues, we attempted to correct for observation bias by 
developing a weighing factor (modifi ed from Clements et   al. 
2012). Th is approach was originally designed for use with 
the program MaxEnt (Philips et   al. 2006), and therefore, 
some modifi cations were made to accommodate our analysis. 
Essentially, a bias layer was generated by weighing each observ-
er-based location in relation to surrounding observer-based 
locations with a Gaussian kernel. Following recommendations 
by Clements et   al. (2012), a standard deviation equal to the 
radius of the marked female bobcat (3.1 km) was used. Next, 
the inverse of these values were taken and scaled with values 
centered on 1 to avoid infl ating the eff ective sample size. Th ese 
values were then included in the modeling framework in the 
same manner as the GPS bias was addressed in the telemetry-
based model. Th is technique is meant to put less weight on 
sightings that occur in areas with high human densities that 
often result in higher recorded observations and more weight 
on those observations that occur away from population centers. 
As a result, the eff ect of sampling certain individuals multiple 
times is reduced while giving additional weight to bobcats that 
were less likely to be detected. 

 Variable screening and model development and validation 
followed procedures for the habitat model based on telem-
etry locations except that individuals were not identifi ed in 
the sightings, therefore data was pooled for the population 
and no random intercept was included. 

 Development of a habitat suitability map followed simi-
lar methods used in the telemetry-based approach, with the 
exception that percentages of land cover and total length of 
roads and streams (km) within each buff er were used. We 
estimated the amount of suitable habitat within the state for 
each model by fi rst generating mean RSF scores for actual 
and simulated home ranges. We then used the minimum 
mean RSF score of transmitter-equipped bobcats to estimate 
the amount of suitable habitat in New Hampshire and used 
a similar approach for simulated homes centered on inciden-
tal observations.     

 Results 

 Twelve adult bobcats (10 M, 2 F) were captured and 
fi tted with GPS collars (Broman 2012). Data were obtained 
from 11 (10 M, 1 F), with 115 – 970 locations per individual 
(54.7% fi x success). After screening for error, 4583 locations 
(86% of original data) collected from November 2009 to 
December 2010 were used for home range calculation. Mean 
home range of males was 93.5 km 2 , whereas the female home 
range was 29.7 km 2 . Additional details of bobcat movements 

forest) using logistic regression to model the probability 
of a fi x attempt being successful (1) or unsuccessful (0). 
However, addressing GPS bias ultimately had little infl uence 
on model fi tness and training.   

 Model training and testing 
 A multivariate model containing the 11 habitat covariates 
was fi t to the telemetry data. Th e Akaike information cri-
terion (AIC) value was used to assess model fi t. Validation 
of the model was done using a  k -fold cross-validation 
technique that evaluates a model on its ability to predict 
animal locations (Boyce et   al. 2002, Johnson et   al. 2006). 
Th is technique used a normalized, equal area, moving-
window average binning technique (Wiens et   al. 2008), and 
technique products (mean fold Spearman rank correlation 
coeffi  cient  ‘  r  s  ’ , standard deviation, and p-value) were used 
to identify the model ’ s ability to predict locations (Wiens 
et   al. 2008).   

 Development of a statewide map of suitable habitats based 
on telemetry locations 
 Th e home range habitat selection RSF model was used to 
develop a statewide map of bobcat habitat. Th is approach 
also seemed appropriate for the analysis of sighting locations. 
RSF values were normalized (0 to 1) producing a relative 
probability of use. Map units were resampled to 1    �    1 km 
during model development, using the Raster Calculator tool, 
to refl ect the coarsest resolution of the habitat variables.     

 Habitat model based on incidental observations 

 Observations of bobcats by citizens throughout the state were 
solicited from a project-based website ( � http://mlitvaitis.
unh.edu/Research/BobcatWeb/bobcats.htm � ). Observa-
tions included incidental sightings of bobcats or coincidental 
photographs taken by camera traps. Locations of observa-
tions from May 2008 through February 2011 were ranked 
based on the level of precision that the observer recorded, 
where: 1    �    recorded as geographic coordinates, 2    �    location 
described by the observer (e.g. distance and direction from 
a major road intersection), or 3    �    only general vicinity was 
recorded (e.g. sighted on Route 4 in the town of Concord). 
Only locations ranked a 1 or 2 were retained for our analysis. 

 We assumed that each incidental observation was the prod-
uct of a spatial intersection of human and animal. Although 
it is possible that some of the observations were of transient 
bobcats, we assumed that bobcats were selecting immediate 
or local habitat features within established home ranges. To 
examine selection patterns, we used the same scale of analysis 
(second order) as the telemetry-based model. Similar to the 
methods used by Palma et   al. (1999) and Woolf et   al. (2002), 
we buff ered each eligible observation with an area equivalent 
to the home range of a female bobcat (29.7 km 2 ) and did the 
same for an equal number of locations that were randomly 
generated throughout the state using Hawth ’ s Tools (Beyer 
2004). For most habitat features, information was obtained 
at individual telemetry locations, incidental observations, 
or random points. However, the methods used to describe 
land cover, road density, and stream density diff ered between 
models to enable us to examine the composition of simulated 
home ranges (Table 1). Essentially, we compared the habitat 
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  Table 2. Fit and predictability of habitat-selection models based 
on bobcat telemetry locations from southwest New Hampshire 
(November 2009 to December 2010) and incidental sightings 
collected statewide (May 2008 to February 2011). The telemetry-
based model was developed using a mixed effect logistic regression 
and the observation-based model was developed using logistic 
regression; therefore direct comparisons between models are inap-
propriate. The closer the model mean  r  s  value is to 1.0, the higher 
correlation between frequencies of resource selection function 
values and bin number and thus the higher the model predictability.    

k-fold validation

Habitat model n variables AIC score Mean  r  s Mean SD Mean p

Telemetry 
locations

11 12570 0.981 0.031  �    0.001

  Incidental 
observations

11 3034 0.434 0.353 0.182

  Table 3. Variables (coeffi cients, standard errors, and p-values) associated with habitat-selection models generated from telemetry locations 
and incidental observations of bobcats in New Hampshire. Values are displayed for the observation-based model with and without a weigh-
ing factor to reduce observer bias. All models were created using resource selection functions following a used versus available design.  

Telemetry 
locations

Incidental observations    
(bias addressed)

Incidental observations
   (bias not addressed)

Variable Beta SE p Beta SE p Beta SE p

Intercept 1.602 0.168  �    0.001  � 0.518 1.01 0.608  � 0.631 1.037 0.543
Elevation  � 0.004  �    0.001  �    0.001  � 0.008  �    0.001 0.055  � 0.002 0.001 0.074
Slope 0.020 0.005  �    0.001  � 0.003 0.022 0.161  � 0.050 0.026 0.056
Snow  � 0.003 0.001  �    0.001  � 0.002 0.001 0.191  � 0.004 0.002 0.003
Ruggedness 89.615 15.303  �    0.001 143.900 73.400 0.050 93.466 81.533 0.252
Wetland * 1.383 0.114  �    0.001 5.377 2.583 0.037 7.206 2.693 0.007
Scrubland * 0.760 0.180  �    0.001 0.086 3.560 0.711  � 2.328 4.164 0.576
Development *  � 0.186 0.123 0.129 0.401 3.736 0.915  � 5.720 3.796 0.132
NW aspect  � 0.095 0.067 0.155  � 0.210 0.260 0.420  � 0.336 0.280 0.231
Forest * 0.034 0.080 0.674 1.314 1.155 0.255 1.911 1.215 0.116
Stream density *  * 0.194 0.019  �    0.001  � 0.007 0.004 0.114 0.003 0.004 0.538
Roads density *  *  � 0.295 0.026  �    0.001 0.010 0.009 0.261 0.021 0.009 0.016

     * For the telemetry-based model, land cover was described at individual locations; whereas for the observation-based model, this was the 
percent coverage of each land cover within simulated home ranges centered on observations or random points.   
  *  * For telemetry-based model, road and stream density were measured at bobcat telemetry locations and a comparable number of random 
points within the telemetry study area (km/km 2 ). For the observation-based model, we compared total length of roads and streams within 
simulated homes ranges centered on observations and an equivalent number of random points distributed throughout the state.   

were summarized by Broman (2012). Removing data points 
that fell outside the 95% UD left 4,412 locations available 
for habitat analysis.   

 Habitat model based on telemetry 

 Th e telemetry-based model (second-order selection) predicted 
well based on  k -fold outputs (Table 2). Bobcats selected areas 
with low road densities and limited snow depth, at lower 
elevations, with high stream densities, and areas with rugged 
topography (Table 3). Wetlands, scrubland, and forest were 
favored, whereas development and northwest aspects were 
used proportionally less than their availability (Table 3). 
Th e minimum mean RSF score of all collared bobcat home 
ranges used in the telemetry-based model was 0.40. Apply-
ing this criterion throughout the state yielded 14 010 km 2  
(58% of the state) of suitable habitat (Fig. 1).    

 Habitat model based on incidental observations 

 A total of 411 sightings were reported from 162 townships, 
throughout the period of solicitation, and included radio-

equipped bobcats. Of these observations, 298 were ranked 
as category 1 or 2 and used in our analysis. Th e observation-
based model was not a good predictor of habitat use based 
on  k -fold outputs (Table 2). Based on the unadjusted version 
of this model, bobcats selected areas with low snow depth, 
at lower elevations, more streams and roads, and areas with 
low slope, but high ruggedness (Table 3). Simulated home 
ranges centered on observations contained more wetlands 
and forest but less scrubland and development than home 
ranges centered on random locations throughout the state 
(Table 3). 

 Th e telemetry-based and unadjusted version of obser-
vation-based models diff ered on coeffi  cient sign ( � / – ) for 
slope, scrubland, and road density whereas the telemetry-
based and bias adjusted version of the observation-based 
model diff ered for slope, development, stream and road 
densities (Table 3). From those discrepancies, we conclude 
that the distribution of observers or their detection rates 
were clearly biased toward human population centers (more 
development, abundant roadways, and riparian areas) and 
habitats where bobcats were conspicuous (relatively fl at 
and developed). Th e apparent preference for anthropogenic 
features (roads and development) suggests that our eff orts 
to correct observer biases were not suffi  cient. Using the bias 
adjusted version, the minimum mean RSF score of simu-
lated home ranges centered on incidental observations was 
0.05 and yielded 13 497 km 2  (56% of the state) of suitable 
habitat (Fig. 1).    

 Discussion 

 Our telemetry-based model indicated that bobcats selected 
areas with an abundance of wetlands at low elevations, 
with limited heavy development, and few roads. Selection 
for wetlands (or bogs) by bobcats has been detected in the 
neighboring states of Maine (Major and Sherburne 1987), 
Massachusetts (Beredzen 1985), and Vermont (Donovan 
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  Figure 1.     Bobcat habitat-suitability maps based on telemetry loca-
tions and incidental observations. Th e telemetry-based model was 
developed using locations obtained from transmitter-equipped 
bobcats in southwest New Hampshire that were monitored from 
November 2009 to December 2010. Th e observation-based model 
was developed using incidental sightings collected by the public-at-
large from May 2008 to February 2011. Telemetry locations and 
observations were analyzed at second order of habitat selection 
(selection for home ranges). Maps were constructed by calculating 
a resource-selection function (RSF) value for each 1    �    1-km map 
unit. Map units were determined to be suitable if they had scores 
greater than the minimum mean RSF score for the home ranges of 
the collared bobcats. Th e telemetry study area was the area con-
tained by a minimum convex polygon generated around locations 
of transmitter – equipped animals. Bobcat sightings (white circles) 
and major roads (black lines) are shown for reference. Map of con-
tiguous United States indicates location of our study (shaded 
black).  

et   al. 2011). Other studies have also reported that bobcats 
prefer low elevations (Koehler and Hornocker 1989, Fox 
1990, Lovallo and Anderson 1996). Bobcat avoidance of 
roads and developed areas is supported by Crooks (2002), 
Riley et   al. (2006), and Donovan et   al. (2011). Additionally, 
Litvaitis and Tash (2008) suggested that the abundance of 
high-traffi  c volume roads in southeastern New Hampshire 
could eff ectively limit the viability of bobcat populations 
in that region. Suitability maps generated by both models 
showed substantial overlap (Fig. 1). However, we suggest 
that the observation-based model identifi ed productive 
habitat features (forests and wetlands) but failed to iden-
tify detrimental habitat features (roads and development) 
and therefore, may have included high-risk or sink habitats 
(based on apparent elevated mortality rates associated with 
roads and contact with humans in developed areas). 

 Previous eff orts that relied on observation-based data 
have eff ectively described carnivore-habitat association at 
large spatial scales (Carroll et   al. 2001), including bobcats 
in New Hampshire (Litvaitis et   al. 2006). In that study, 
investigators relied on observations and incidental cap-
tures of bobcats reported by conservation offi  cers, coop-
erating amateur naturalists, and licensed trappers from 
1990 – 2004, presumably when bobcats were at densities 
lower than present-day populations. Using those observa-
tions to describe home-range composition (second-order 
selection), bobcats seemed to select areas with large blocks 
of forest, less developed land, less annual snowfall, and 
fewer highways and primary roads in comparison to ran-
dom locations distributed throughout the state (Litvai-
tis et   al. 2006). Th ose features are quite similar to those 
included in our telemetry-based model but diff er from our 
observation-based model (Table 3). 

 Few studies have compared citizen scientist data to 
telemetry-based eff orts used to identify carnivore-habitat 
associations. Among those that did, Quinn (1995) found 
that public observations of coyotes  Canis latrans  were biased 
toward habitats where people were concentrated and coyotes 
easily seen, similar to our results. Although there were some 
diff erences, the major habitat association of coyotes to wood-
lands was similar between observation and telemetry-derived 
locations. Quinn (1995) suggested that observation-based 
investigations of habitat use may be most eff ective in regions 
where habitat patch sizes are relatively small and human 
accessibility and sighting distances among patches are simi-
lar. Even if access or visibility within a patch is low, analyses 
of animal distribution relative to distance from habitat com-
ponents can help identify important habitat patches when 
visibility around these patches is high (Quinn 1995). In our 
study, habitat patches were large. As a result, observations of 
bobcats were likely biased toward openings (near develop-
ments and roadsides) where detection rates were higher than 
other portions of the landscape.   

 Reducing observer bias 

 Our attempts to correct for observer bias did not reconcile 
the contradictions between observation and telemetry-based 
eff orts and may have actually increased the discrepancy by 
changing coeffi  cients to suggest selection for development. 
We caution that the technique we applied (e.g. inversely 
weighting observations by their proximity to others) may 
not be suitable for other situations. Should a concentrated 
abundance of observations occur as the product of quality 
habitat (instead of observer density), this technique would 
penalize those observations by adding a low weighting fac-
tor. We suspect that bobcats observed in close proximity to 
roads are moving between more productive portions of their 
individual home ranges when they are observed. Citizen 
reporting rates were likely a function of human population 
density, road density, and observer motivation (e.g. residents 
of suburban southern New Hampshire are less familiar with 
species such as bobcats and hence more likely to report their 
observations). In reviewing our observation-based locations, 
we found that 272 of 298 (91%) were within 0.5 km of 
a road, and 129 of 298 (43%) were within 0.5 km of a 
major road or highway. As a result, it may be very diffi  cult 
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still provide useful information for large-scale investigations. 
For example, public sightings tended to occur in portions 
of the state with less snow depth than randomly distrib-
uted locations (Table 3). Th is agrees with previous eff orts to 
describe bobcat habitat in New Hampshire (Litvaitis et   al. 
2006). Snow depth can aff ect bobcat mobility (McCord 1974, 
Koehler and Hornocker 1989), prey acquisition (Petraborg 
and Gunvalson 1962), and survival (Litvaitis et   al. 1986b). 
Yet it is an environmental feature that varies at a relatively 
large-spatial scale and thus, is less likely aff ected by observer 
distribution in comparison to such features as development 
or road density. Telemetry data collected within the study 
area is likely insuffi  cient for providing insight on the infl u-
ence of such features at a statewide scale. 

 Cataloguing incidental observations may be an effi  cient 
method to monitor large-scale changes in the distribution of 
a low-density species like bobcats. For example, comparing 
incidental observations collected in New Hampshire during 
1990 – 2004 (Litvaitis et   al. 2006) to those used in this study 
(from 2008 to 2011), we identifi ed an obvious expansion 
of bobcats into the southeastern portion of the state. Sight-
ings and accompanying photographs also revealed previously 
unknown prey associations that may aff ect winter survival, 
especially in human-dominated landscapes. Specifi cally, a 
number of winter sightings occurred at or near bird feeders, 
where bobcats were photographed ambushing gray squir-
rels  Sciurus canadensis  and wild turkeys  Meleagris gallopavo  
(Fig. 2). Such adaptations to human-facilitated prey may 
partially explain the increase in bobcat abundance and also 
the expansion of bobcats into more developed portions of 
New Hampshire where they were previously absent (Litvaitis 
et   al. 2006). 

 In conclusion, we recommend that future eff orts that 
rely on public observations to describe animal – habitat asso-
ciations proceed with caution. Such data are inexpensive 
to gather and have the added benefi t of increasing public 
awareness. However, investigators should explore potential 
sources of detection bias that may subsequently confound 
the patterns that are revealed and consider modifi cations that 
may reduce biases (e.g. assign randomly-distributed areas to 
search for evidence of presence/absence or provide a detailed 
protocol that avoids conditions that may compromise subse-
quent analysis). Identifying environmental features that are 
less prone to detection or observer-distribution bias can also 
provide opportunities for using observational data to com-
pliment other sources of information (e.g. local telemetry-
based studies). In our experience, citizen scientists provided 
reliable information on regional patterns of bobcat distribu-
tion, identifi ed a recent range extension within the state, and 
revealed a possible explanation for how this species is coping 
with increasing human populations.              
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to substantially reduce the biases associated with these data 
after they were collected. 

 One modifi cation that might reduce detection bias is to 
restrict participants. For example, Linde et   al. (2010) and 
Cooper et   al. (2012) relied on observations of archery hunters 
to model large-scale features of bobcat and gray fox  Urocyon 
cinereoargenteus  habitats, respectively. Although hunters are 
not randomly distributed, their detection rates of carnivores 
may be infl uenced less by features that facilitate observation 
(e.g. cleared land or roadsides) and thus, provide a more 
representative sample of carnivore habitat preferences. Stan-
dardizing hunter observations by eff ort (e.g. observations / 
1000 h in the fi eld) may provide additional opportunities to 
monitor changes in population size (Kindberg et   al. 2009). 
Alternatively, it may be possible to develop a program that 
incorporates occupancy models. For example, volunteers 
could be encouraged to report detections of several species 
of woodland carnivores (including bobcats). Under these 
circumstances, the essential non-detections of bobcats could 
be extracted from records of those volunteers that reported 
detections of other carnivores but did not observe bobcats 
(van Strien et   al. 2013).   

 Value of incidental observations 

 Although our application of observations by citizen scientists 
proved ineff ective for modeling habitat, bobcat sightings may 

  Figure 2.     Photographs of bobcats in suburban New Hampshire back-
yards. Top: a bobcat is loafi ng underneath two bird feeders (credit: B. 
Quinn). Bottom: a juvenile bobcat has just captured a gray squirrel that 
was attempting to forage at a bird feeder (credit: H. and A. Swartz).  
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