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This paper seeks to

explain evidence of

distinctive late- and

post-Little Ice Age glacier

change in the Karakoram

Himalaya and a recent,

seemingly anomalous,

expansion. Attention is

directed to processes

that support and

concentrate glacier mass, including an all-year accumulation

regime, avalanche nourishment, and effects related to

elevation. Glacier basins have exceptional elevation ranges,

and rockwalls make up the larger part of their area.

However, more than 80% of the ice cover is concentrated

between 4000 and 5500 m elevation. Classification into

Turkestan-, Mustagh-, and Alpine-type glaciers is revisited to

help identify controls over mass balance. Estimates of

changes based on snowlines, equilibrium line altitudes, and

accumulation area ratio are shown to be problematic.

Extensive debris covers in ablation zone areas protect

glacier tongues. They are relatively insensitive to climate

change, and their importance for water supply has been

exaggerated compared to clean and thinly covered ablation

zone ice. Recent changes include shifts in seasonal

temperatures, snowfall, and snow cover at high elevations.

Understanding their significance involves rarely investigated

conditions at higher elevations that lack monitoring

programs.

Keywords: Avalanche nourishment; glacier classification;

ELA; AAR; rockwalls; debris-covered glaciers; elevation

effects.
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Introduction

In recent decades the consequences of climate change for
Himalayan glaciers has become of great concern. Glaciers
in much of High Asia appear to be declining, some at
globally extreme rates (Ageta 2001; Oerlemanns 2001). It
had been widely reported that the Indus basin is
threatened with severe losses. However, emerging
evidence suggests that such reports were, at best,
exaggerated (Raina 2009; Armstrong 2010).

Several inquiries have concluded that the behavior of
Karakoram glaciers differs from those in the rest of the
Himalaya and from the more intensively studied European
and North American glaciers (Mayewski and Jeschke 1979;
Kick 1989; Shroder et al 1993). If so, it suggests conditions
exist that distinguish Karakoram glacier environments. Here
attention is directed to high-altitude snowfall and
nourishment regimes, glacier typology, and ‘‘verticality,’’
especially the role of rockwalls, avalanches, and related
conditions above 4000 m elevation—hitherto rather
neglected concerns. What can reasonably be deduced about
the distribution of terrain and conditions in Karakoram
glacier basins from cartographic and satellite imagery is
examined as well as how these factors relate to available
high-elevation snowfall data. These reveal a distinctive

combination of conditions that lead to a strong spatial
concentration and intensification of glacier nourishment.
They explain and add to the significance of what have been
termed ‘‘Turkestan’’- and ‘‘Mustagh’’-type glaciers that prevail
in the Karakoram. Certain differences emerge, compared
with other High Asian mountains, which may explain the
seemingly anomalous response to global climate change.

However, it is important, first, to be aware of glacier
change in the region and that it involves a far from simple
picture of advances and retreats: Current knowledge is
limited by the fact that most reports are of changes in
termini, sometimes ice-tongue thicknesses at their lowest
elevations. One must be cautious in inferring what this
can tell us about the vast glacier areas up above.

Glacier changes in the last 150 years

The perennial snow and ice cover of the trans-Himalayan
upper Indus Basin is about 20,000 km2. The greatest share
is in the Karakoram Himalaya. Along its main axis the
cover exceeds 70%, and the largest glaciers are found
here. Most drain to the Indus, and some to the Yarkand
River in China’s Sinjiang Province. Although the number
of Karakoram glaciers may exceed 7000, the 15 largest
comprise about half the glacierized area (Yao 2007).
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Karakoram glaciers have declined by 5% or more
since the early 20th century, mainly between the 1920s
and 1960s. However, losses slowed in the 1970s (Mayewski
and Jensche 1979), and some glaciers underwent modest
advances, as elsewhere in the region (Kotlyakov 1997).
Retreat again prevailed from the mid-1980s through the
1990s, but without dramatic losses. Since the late 1990s we
have reports of glaciers stabilizing and, in the high
Karakoram, advancing (Hewitt 2005; Immerzeel et al
2009). Total snow cover has been increasing in the high
Karakoram (Naz et al 2009).

A complicated picture emerges from glaciers whose
terminus fluctuations can be reconstructed (Figure 1).
Developments seem almost chaotic from the mid-19th
through the early 20th centuries. Large, often rapid,
advances and retreats occurred, more or less out of phase
with one another. From the 1930s through the 1990s, a
net retreat affected most of them, with minor reversals in
the 1970s. Thus, by 2010 none were close to their
maximum extent of the last 130–150 years, with the
possible exception of Ghulkin. More surprising, however,
except for Chogo Lungma, they were not at their farthest
reported retreat. Meanwhile, Ghulkin is one of dozens of
glaciers that have undergone advance in recent years
(Scherler et al 2011).

These glaciers do differ in size and other
characteristics. Disparities remain even among those of
similar areas and lengths, for example, Biafo and Baltoro,
or Batura and Chogo Lungma, or Ghulkin and Minapin.
However, all Karakoram assessments have been for such
diverse sets because we have no standardized records
(Mason 1930; Mercer 1975; Goudie et al 1984; Zhang 1984;
Shroder and Bishop 2010).

Various enquiries conclude that the behavior of
Karakoram glaciers differs from the rest of the Himalaya
and the more intensively studied European and North
American glaciers (Mayewski and Jeschke 1979; Kick 1989;
Shroder et al 1993). If so, this suggests conditions that
distinguish Karakoram glacier environments. Here
attention is directed to the high-altitude snowfall and
nourishment regimes, glacier typology, and ‘‘verticality,’’
especially the role of rockwalls and related conditions
above 4000 m elevation—hitherto rather neglected
concerns.

Snowfall regimes and inputs to glaciers

The Karakoram used to be assigned to the Semiarid
Himalaya. As late as the 1970s maps showed very low
precipitation based on valley weather station records.
Explorers and mountaineers reported heavy snowfall at
high elevations, and, after the mid-1960s, gauging stations
confirmed water yields indicative of more humid
conditions. In the 1970s, Chinese glaciologists first
showed that, to sustain Batura Glacier, upper basin
snowfall had to be 1000–2000 mm water equivalent (w.e.),

and measured 1034 mm (w.e.) in a year at 4840 m
elevation (Batura Investigations Group 1979).

Avalanche-fed glaciers prevail in the Karakoram,
making measurements impossible except on a few glaciers
with extensive, high-altitude accumulation basins. Biafo
Glacier (35u550N; 75u400E) is one, and observations there
in the 1980s provide the only relatively comprehensive
data yet available (Hewitt et al 1989; Wake 1989). The sites
were between 4800 and 5800 m on Biafo and nearby
Hispar and Khurdopin Glaciers (Figure 2). Snow pits and
drill cores were used to establish vertical profiles and
retrieve samples for snow density and water equivalents,
chemistry, and isotope analyses (Wake 1987).

FIGURE 1 Terminus changes of selected Karakoram glaciers (after Mason
1930; Mayewski and Jensche 1979; Zhang, 1984; Goudie et al 1984; Hewitt et
al 1989).
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Measured averages at all sites exceed 1000 mm (w.e.)
annually, some over 2000 mm (Figure 3). Maximum
precipitation was shown to occur above 4800 elevation
in the accumulation zone. Various qualifications need to
be made. The highest values, at 5520 m on upper
Khurdopin Glacier, probably involve ‘‘over-catch’’ of
snow carried across the watershed by prevailing westerly
and southerly winds. Lower values at Shark Col could
reflect upwardly declining precipitation, but the site is
more exposed and may undergo wind stripping (Wake
1987: 71).

Seasonal incidence and sources of snow are critical
concerns. In these records just more than half the
snowfall occurs in winter, slightly less than that in
summer. The latter is, however, much greater than for
low-elevation weather stations, which causes
underestimation of summer inputs to the glaciers (Archer
and Fowler 2004; Quincey et al 2009). Chemical signatures
show winter snowfall coming largely from westerly
sources: the Atlantic Ocean and Mediterranean and
Caspian Seas. In late spring and early summer, frontal
storms may draw Arabian Sea moisture into the
Karakoram (Wake 1989). However, all mid- to late-
summer snow samples had significant amounts with a
monsoon signature (Wake 1987).

Two key features of glacier nourishment are shown: a
distinctive seasonal regime and orographic
concentration, both relatively favorable to glacier
development. The regime is intermediate between the
‘‘winter accumulation’’ of the Caucasus and European
Alps and ‘‘summer accumulation’’ in the Greater Himalaya

(Ageta 2001). Given a ‘‘year-round ablation type’’
recognized for the inner tropics (Benn and Evans 1998:
86), the Karakoram defines a fourth, year-round
accumulation type (with summer ablation). Although
accumulation resembles the ‘‘Inner Tropics’’ type of Kaser
and Osmaston (2002: 25), the ablation regime is ‘‘Mid
Latitude’’ and distinctly different from their ‘‘Outer
Tropics’’ type.

Maximum precipitation occurs almost 2000 m higher
than in, say, the Nepal Himalaya, entirely as snowfall, and
displays no dramatic decline at the highest elevations. The
ice cover, size, and low-elevation reach of glaciers
continues to increase with height. Glaciers surrounding
massifs culminating at 7500–8000 m are more extensive
than those between 6500 and 7000 m. The highest massif
of K2 (8610 m) and Gasherbrum (8068 m) produces the
largest glaciers, including Siachen (76 km) and Baltoro
(62 km).

Mass balance calculations for Biafo, using concurrent
measurements of ablation, movement, and glacier
thickness, showed an approximate balance with the
accumulation data (Hewitt et al 1989). However, Biafo is
atypical of Karakoram glaciers. Avalanches nourish most
glaciers mainly or wholly, and many lack an accumulation
zone as normally understood. This must be addressed
indirectly.

Glacier nourishment and typologies

More than a century ago, distinctive glacier types were
recognized from High Asian experience. Avalanche-fed

FIGURE 2 The Biafo accumulation zone looking north to Lukpe Lawo Peak (6593 m) and
Khurdopin Pass (5790 m). Headwaters of Hispar Glacier are to the left side of the photograph.
(Photo by Kenneth Hewitt, 2002)
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glaciers were called ‘‘Turkestan’’ or ‘‘Lawinen’’
(5 avalanche) type (Klebelsberg 1925–26). Oestreich
(1911) referred specifically to a ‘‘Mustagh type,’’ also
largely avalanche nourished but with extensive, deeply
incised ice streams above the snowline. Since the
extended discussions by Visser and Visser-Hooft (1938)
and von Wissmann (1959), little interest has been
expressed in this, and only incidentally in English-
language studies (Mercer 1975; Shroder and Bishop 2010).
Yet the classes identify distinctive features, especially
glacier nourishment.

Four basic types can be recognized:

1. The ‘‘Turkestan’’ or Avalanche type: glaciers fed more
or less entirely by snow and ice avalanches. Main ice
streams commence near the snow line, often well below
it, and there is no ‘‘accumulation zone’’ as normally
understood (Figure 4).

2. The ‘‘Mustagh’’ type: also predominantly avalanche fed,
but with ice streams commencing in the accumulation
zone, some firn area, sometimes an identifiable firn
limit (Figure 5).

FIGURE 3 Accumulation zone snowfall in the Central Karakoram, as measured at Biafo Glacier
(after Wake 1987, 1989; Hewitt et al 1989).
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FIGURE 4 Upper source areas of Charakusa Glacier, south-central Karakoram, a Turkestan-type
glacier, showing avalanche nourishment from rockwalls and icefalls of disconnected tributaries.
(Photo by Kenneth Hewitt, 2005)

FIGURE 5 Upper Panmah Glacier, a Mustagh type in the Central Karakoram. It shows the deeply
incised main ice stream originating within an accumulation zone surrounded by steep rockwalls
and tributary icefalls. Elevation range from foreground ablation zone to distant peaks is about
2500 m. (Photo by Kenneth Hewitt, 2009)
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3. The ‘‘Alpine’’ type: predominantly snow fed, with
extensive accumulation zone and relatively well-de-
fined firn limit (Figure 2).

4. The ‘‘Wind-Fed’’ type: not previously considered or
investigated, it is added for completeness. Small ice
masses are involved, but innumerable at higher
elevations and in some of the lesser ranges.

Hitherto, measurable boundaries between the types
were not specified. Here the Turkestan type is taken to
have less than 20% of its area above the snowline. One

might prefer ‘‘zero,’’ but actual snowlines are complicated
by rugged terrain, orientation, shading, and prevailing
and local wind action, whereas upper glacier areas are
smothered by avalanche cones and aprons. For the
Mustagh type, areas above the snowline are at least 20%,
but less than 50%, of the lower cutoff for the Alpine type.

Morphological criteria have also been applied. The
Mustagh type was subdivided into Firnkessel (5 firn
caldron) and Firnstrom (5 firn stream) types (von
Wissmann 1959). However, the terminology is confusing.
‘‘Firn’’ infers a significant role for direct snowfall when

TABLE 1 Revised classification for the Karakoram valley glaciers with examples discussed in the text.

Nourishment type ‘‘Caldron’’ type ‘‘Ice stream’’ type, narrow, incised

Turkestan type Hinarche, Surgin, Masherbrum, Kukuar Charakusa, Karambar, Hasanabad, Toltar

Mustagh type Kutiah, Skamri, Khurdopin, Kondus Baltoro, Batura, N. Shukpa, Panmah, Hispar,
Chogo Lungma

Alpine type Chiantar, Sarpo Laggo Siachen, Biafo, Rimo

FIGURE 6 Long profiles of the main ice streams of Baltoro (top left), Biafo (bottom left) and Toltar-
Baltar Glaciers, representing the three glacier types.

MountainResearch

Mountain Research and Development http://dx.doi.org/10.1659/MRD-JOURNAL-D-11-00020.1193Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 03 May 2024
Terms of Use: https://bioone.org/terms-of-use



avalanche nourishment is more important, and, in these
glaciers, firn is often mixed with and disturbed by
avalanched material. It makes more sense to call Biafo a
‘‘Firnstream’’ glacier, as von Wissmann (1959) does, but it
is more logical to refer to it as an Alpine type (Visser and
Visser-Hooft 1938). Meanwhile, the incised ‘‘stream’’ and
‘‘caldron’’ forms occur with all classes, not just the
Mustagh type. Turkestan-type glaciers have extensive,
deeply incised, narrow ice streams, if entirely in the
ablation zone.

No unique division combines morphology and
nourishment, and the typology is revised here to reflect
this (Table 1). More usefully, the classes help identify key
aspects of glacier maintenance, notably the critical roles
of elevation and steepness (Kerr 1993).

Elevation range and distribution of ice masses

The entire Karakoram glacial zone spans about 6300 m
vertically, from K2 (8610 m) to the lowest termini, which,
in the Hunza valley, reach down to 2300 m (Hewitt 2006).
The highest elevations are matched in other parts of the
Himalaya, but glaciers are smaller and few descend as low.

Five of the larger Karakoram glaciers span 5000 m, and 34
more than 3000 m.

The importance of elevation range also depends on
the altitudinal distribution of ice. Long profiles of larger
glaciers emphasize two features (Figure 6). About 60–80%
of vertical descent occurs in less than 10% of length,
mainly in the upper basin, and the extensive midsections
are of relatively gentle gradient. However, this reflects but
differs in key aspects from the vertical distribution of
basin conditions involved in glacierization and glacier
systems (Table 2).

The areas and zones of interest are the following:

1. Basin area, above and draining to main glacier
terminus.

2. Perennial snow and ice cover above snowline and glacier
ice below it.

3. Glacier cover:
a. The main continuous, connected ice stream.
b. Ice of disconnected tributaries.

4. Source zone of main connected ice mass above snowline:
a. Conventional accumulation zone (firn basins and

ice streams).
b. Steep rockwalls (the same as 7a).

TABLE 2 Principal environmental zones and their areas for three glacier basins of Turkestan-, Mustagh-, and Alpine-type.

Biafo Glacier Baltoro Glacier Toltar-Baltar Glacier

Characteristics

Latitude and longitude (35u559N; 75u409E) (35u469N; 76u159E) (36u279N; 74u249E)

Glacier type Alpine Mustagh Turkestan

Dimensions and zones

Length (km) 68 62 17

Elevation range (m) 4215 5010 4779

1. Basin area (km2) 855 1400 202

2. Perennial snow and ice (km2) 630 (74%) 990 (70%) 156 (77%)

3. Total glacier (km2) 470 (55) 538 (38.5) 84 (42)

Main glacier 460 (54) 530 (38) 72 (36)

4. Source zone (km2) 500 (58) 720 (51) 75 (37)

Firn basins 330 (39) 250 (18) 3 (1.5)

5. Ablation zone (km2) 130 (15) 280 (20) 69 (34)

a. Clean-dusty ice 100 (12) 185 (13) 37 (18)

b. Heavy debris 30 (4) 95 (10) 32 (16)

6. Ice- and seasonally snow-free (km2) 220 (26) 510 (37) 46 (23)

7. Rockwalls (km2) 380 (44) 975 (69) 114 (56)

a. Above snowlines (avalanched) 170 (20) 470 (34) 71 (35.5)

b. Below snowlines 210 (25) 500 (36) 43 (21)
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5. Ablation zone of the main connected ice mass:
a. Clean, dusty, dirt-veneered ice surface.
b. Heavy supraglacial debris.

6. Snow- and ice-free (off-ice) areas (below the snowline and
not glacierized).

7. Steep rockwalls, slopes generally in excess of a 35u angle:
a. In the perennial snow and ice zone.
b. In the zone seasonally free of snow and ice or below

4800 m.

Distributions differ markedly by glacier type. The profile
for Biafo Glacier is not unlike valley glaciers familiar to
researchers elsewhere. The perennial snow and ice cover of
Baltoro Glacier is about 990 km2, or 70% of the basin area,
but almost half is not ‘‘glacier.’’ Careful examination of
satellite imagery shows glacier ice is generally absent at
slopes steeper than about 20u including icefalls. Cones and
aprons of avalanche snow rarely exceed 30u. However, about
70% of the entire basin is steeper than this, and almost 50%
of the perennial snow zone. Glacier ice is absent from much

of the upper basin, where rockwalls prevail. Less than half of
the connected glacier system is accumulation zone.

The main Baltar-Toltar Glacier covers a third of its
basin, a typical Turkestan-type with almost no
accumulation zone (Figure 7). The main ice streams
commence below rockwalls at about 4800 m on south-
facing slopes, and 4500 m on north-facing, and snowlines
or firn limits are obliterated by avalanches.

The importance of rockwalls above the snowline can
hardly be overstated (Table 3). They make up over 60% of
source zones for Mustagh-type glaciers and over 70% of
basin areas. In a majority of glaciers, maximum snowfall,
as determined at Biafo, occurs where slopes are too steep
for it to stay in place, and avalanches funnel snow more or
less quickly to the glaciers below.

That the glacierized area is overwhelmingly concentrated
within a quite narrow elevation range is clear. Half of Biafo’s
area is between 4500 and 5500 m elevation (Hewitt 2005).
Over 60% of Baltoro’s and Toltar-Baltar’s occurs between

FIGURE 7 The Toltar-Baltar Glacier, to show the organization of a Turkestan-type glacier system.
Data from the 1:100,000 map (1995). ‘‘Hunza Karakorum’’ Deutschen Alpenverein, Munich, and
2006 and 2009 late summer satellite imagery. (Map by Pam Schaus)
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4200 and 5000 m, as with most larger glaciers. However,
basin organization highlights the importance of steep,
mainly rockwall areas. The bulk of the ice cover originates in,
or is fed from, the highest and steepest parts.

Mass balance parameters

It is has long been recognized that avalanche nourishment
complicates mass balance terms (Meier 1962; Kasser
1967), but it is rarely investigated. Difficult or impossible
to measure, such glaciers are avoided in systematic
monitoring (WGMS 2009). In other contexts, indirect
estimates of mass balance and its changes have utilized
equilibrium line altitudes (ELAs), and the ratio of
accumulation zone to whole glacier area (AAR) (Cogley
and McIntyre 2003). Snowlines, or firn limits on glaciers,
are widely seen as fair approximations to ELAs, and year-
to-year AARs are understood to reflect mass balance
changes (Dyurgerov and Meier 2000).

In the Karakoram, however, despite more than
150 years of snowline height reports (von Wissmann
1959), they are of doubtful value for establishing ELAs. In
Turkestan-, and Mustagh-type glaciers, as described, the
heaviest snowfall moves rapidly from extensive, steep
upper basin areas into the relatively small midbasin,
glacierized areas. ‘‘Accumulation’’ undergoes a huge
downward shift compared to snowfall, and it is likely that
ELAs_where net annual additions balance ablation
losses_are hundreds of meters below snowlines. In
traveling below the snowlines, avalanche inputs create
complicated overlaps or mosaics of ‘‘accumulation’’ and
ablation, and over elevation ranges exceeding the totals
for the best-monitored glaciers (Figure 8). Snow
avalanches are of prime importance, but icefalls, and ice
avalanches from countless small, steep, disconnected ice
masses, may play large and complicated roles.

Similar problems arise for AARs. In any year a
complete spectrum exists for different glaciers (Table 4).
However, they do differ systematically with nourishment
classes, providing a way to define and distinguish them.

The fact that measurements are lacking raises
questions about any estimates of mass balance, climate,
and glacier change based on snowlines. It seems likely that
avalanches, wind action, and summer snowfall will render
measureable year-to-year shifts very erratic and complex.
Processes that intervene between climate and glaciers to
redistribute and concentrate ice mass seem to
compromise standard methods. In the absence of
measurements a useful ‘‘concentration factor’’ is the ratio
of conventional accumulation zones to total contributing
area (Table 4). It is 2 to 5 times larger in Mustagh types
than Alpine types, and 5 to 15 times in Turkestan types.

Avalanching also causes rapid, direct transport of
glacier inputs to warmer elevations, and their immediate
conversion to much denser material, accelerating the
transformation to glacier ice. Avalanching and icefalls

TABLE 3 Rockwalls as a proportion of areas above the snowline, and for basins
as a whole. The slopes in rockwall areas are generally steeper than 35u and
large parts exceed 55u.

Glacier type and

glacier

Rockwalls

(% SI area)

Rockwalls

(% basin area)

Alpine

Biafo 28 44

Chiantar 28 40

Siachen 42 49

Sarpo Laggo 39 47

Mean 37 45

Mustagh

N. Shukpa 68 71

N. Gasherb’m 59 70

Baltoro 48 69

Panmah 69 73

Batura 53 60

Khurdopin 73 81

Hispar 54 62

Chogo Lungma 60 71

Kutiah 70 73

Skamri 53 86

Kondus-Kab. 67 74

Virjerab 62 77

Ghondoghoro 71 76

Braldu (Sh.) 84 60

Mean 64 71

Turkestan

Charakusa 55 72

Karambar 66 76

Hinarche 50 86

Surgin 61 58

Masherbrum 53 74

Hasanabad 80 84

Kukuar 53 63

Toltar-Baltar 46 56

Mean 58 71

All glacier types

Mean total 56 69
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carry relatively cold, high-altitude (‘‘Polar’’) snowfall, to
the warmer (‘‘Sub-Polar’’ or ‘‘Temperate’’) environments of
main ice streams. This is an important if not decisive
factor in the thermally complex nature of the glaciers,
perhaps in the instabilities observed as large fluctuations
in movement rates on a wide spectrum of temporal and
spatial scales (Batura Investigations Group 1979; Quincey
et al 2009). Then there is the exceptional incidence of
surging glaciers, all known ones being predominantly
avalanche fed (Hewitt 2007; Shroder and Bishop 2010).

Debris-covered glaciers

The prevalence of debris-covered ice has been seen to
explain unusual climatic responses in the Karakoram
(Kick 1989; Shroder and Bishop 2010). It is important in
glacial and geomorphologic processes, and in why many
glaciers penetrate into warmer, lower elevations and will
persist there longer when mass balance is negative.
However, it hardly seems to be a differentiating factor for
Karakoram glaciers, being equally or more prevalent
elsewhere in the Himalaya and Hindu Kush (Nakawo et al

2000). Rather, with respect to climate response, for water
conservation and supply, its importance has been
exaggerated. Research shows it slows responses and can
make termini fairly insensitive to climate change
(Scherler et al 2011). Greatly reduced ablation in these
areas means they make the smaller contributions to rivers,
with or without glacier change.

The term ‘‘debris-covered glaciers’’ can be misleading.
Less than a quarter of Karakoram glaciers are heavily
covered—barely a third of their ablation zone areas
(Table 5). Moreover, figures from satellite images are
likely to overestimate the ‘‘thick,’’ ablation-suppressing
cover. It has been found that as much as 20% can be less
than 3 cm thick, the cutoff between debris-reduced and
enhanced ablation (Khan 1989; Mattson and Gardner
1989). More critical in responses to climate change and
especially for water supply are the larger areas of mid-to-
upper ablation zones with clean, dusty, or dirt-veneered
ice. Here the largest ablation losses and water yields
occur, generally between about 3800 m and 4800 m
elevation. These areas, unlike debris-covered ice, are very
sensitive to summer weather and, hence, to climate
change (Hewitt 2005). It is entirely possible that this is one—

FIGURE 8 Upper Barpu Glacier, a Turkestan type with extended zone of avalanche inputs to
glacier surface below the snowline, from 4900 m in the foreground to 4200 m in the distance.
Additional inputs to all-year snow deposits continue out of sight down to 3700 m. (Photo by
Kenneth Hewitt, 1987)
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perhaps the greatest—factor differentiating the Karakoram
and other mountain ranges, whether in terms of ‘‘naturally’’
generated or artificial particulates, especially soot. Their
amounts may well change as a result of climatic and related
land-cover changes, industrial and transportation
emissions, and human land-use changes, or in relation to
sunshine hours in ablation seasons whose length is critical
to their concentration on ice and snow surfaces.

Concluding remarks

In the Karakoram, high mountain processes serve to
concentrate climatic conditions for glacierization,
notably:

1. Processes that enhance and concentrate snowfall:
an orographic condition that generates maximum

TABLE 4 The accumulation area ratio (AAR) offers a way to differentiate selected glaciers by nourishment types. The ratio
of the conventional accumulation zone, to all upper basin areas contributing to the main glacier serves to define a
‘Concentration’ factor (see text).

Glacier type and glacier AAR ‘‘Concentration’’ factor

Alpine

Biafo 0.70 1.5

Chiantar 0.66 1.6

Siachen 0.56 2.0

Sarpo Laggo 0.53 2.2

Mustagh

N. Shukpa 0.49 5.0

N. Gasherb’m 0.48 4.4

Baltoro 0.47 2.9

Panmah 0.37 5.3

Batura 0.34 4.4

Khurdopin 0.32 9.5

Hispar 0.29 5.1

Chogo Lungma 0.29 6.2

Kutiah 0.29 9.3

Skamri 0.29 4.9

Kondus-Kab. 0.29 8.2

Virjerab 0.28 6.7

Ghondoghoro 0.24 13.4

Charakusa 0.21 6.3

Braldu (Sh.) 0.21 4.2

Turkestan

Karambar 0.19 10.0

Hinarche 0.15 10.0

Surgin 0.12 22.0

Masherbrum 0.11 15.0

Hasanabad 0.10 36.0

Kukuar 0.07 16.3

Toltar-Baltar 0.04 25.0
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precipitation in glacier source areas. Inputs of
1000–2000 mm (w.e.) are an order of magnitude
greater than at valley weather stations and comparable
to ‘‘maritime’’ glaciers, despite the extreme continen-
tality. An all-year accumulation regime magnifies the
effect.

2. Avalanche concentration: a terrain or ruggedness
effect in glacier source areas, of which 60–90% are
steep rockwalls. Snowfall, rapidly concentrated down
slope, is deposited near or below snowlines, accelerat-
ing transformation to glacier ice.

3. Ablation buffering: ice tongues at lower elevations,
where temperatures are higher and the ablation season
longer, are protected by heavy debris
covers.

4. Areas with the greatest ablation losses and water yield:
these occur where debris covers are thin or absent but
have short ablation seasons and respond sensitively to
summer weather. On the one hand, increases in ‘‘thin’’
debris cover here are likely to increase ablation. On the
other hand, if ablation seasons get shorter or cloudi-
ness and summer precipitation increase, their impact
on ablation will diminish.

These are all effects related to altitude and elevation
range, in summary, elevation or verticality effects. Since
they apply to other High Asian mountains, only some of
them, their intensity or a particular combination, may
distinguish the Karakoram. The sheer extent and
sustained high elevations of the main Karakoram seem
critical, combined with the all-year accumulation regime.
Both help to buffer glaciers against ‘‘warming,’’ and, with
high-altitude precipitation occurring as snowfall in
summer and winter, they may benefit from increased
moisture transport from warmer oceans. Various
investigations report cooler summers recently and greater
summer cloudiness and snow covers (Fowler and Archer
2006; Naz et al 2009; Scherler et al 2011). These can also
reduce average ablation rates or numbers of ‘‘ablation
days’’ and seem especially sensitive to the direction of
future climate change.

Compared with other areas, and past predictions for
the upper Indus, these observations seem good news.
Yet glacier expansion is not without its perils. Historically
the greater hazards in upper Indus valleys come from
advancing glaciers, especially during the Little Ice Age
(Kreutzmann 1994; chapter 7 of Grove 1988). Among
the worst, large ice dams and outburst floods have
involved some recently advancing glaciers (Hewitt and
Liu 2010). However, planning and decisions that
assume the opposite of what is happening may pose
greater risks, a result of our limited understanding of
the glaciers and inadequate monitoring of their
environments.

TABLE 5 Relative proportions of heavy debris cover for main glacier area, and
for ablation zone. Areas were determined from inspection of satellite imagery
where no clean ice was visible at the surface, and likely to overestimate ‘thick’
ablation-reducing covers (see text).

Glacier type and

glacier

Debriscovered

(% main

glacier area)

Debris

covered (%

ablation zone)

Alpine

Biafo 7 23

Chiantar 4 12

Siachen 17 38

Sarpo Laggo 7 14

Mean 9 22

Mustagh

N. Shukpa 10 18

N. Gasherb’m 10 19

Baltoro 18 34

Gharesa 7 13

Panmah 27 43

Batura 32 48

Khurdopin 31 46

Hispar 15 46

Chogo Lungma 34 47

Kutiah 21 30

Skamri 17 25

Kondus-Kab. 29 41

Virjerab 16 30

Ghondoghoro 19 24

Braldu (Sh.) 19 31

Mean 20 33

Turkestan

Charakusa 21 26

Karambar 25 31

Hinarche 20 23

Surgin 38 43

Masherbrum 37 44

Hasanabad 62 70

Kukuar 18 19

Toltar-Baltar 44 46

Mean 33 38

All glacier types

Mean total 22 32
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