
Quantifying the Mass Balance of Ice Caps on Severnaya
Zemlya, Russian High Arctic. III: Sensitivity of Ice Caps
in Severnaya Zemlya to Future Climate Change

Authors: Bassford, R. P., Siegert, M. J., and Dowdeswell, J. A.

Source: Arctic, Antarctic, and Alpine Research, 38(1) : 21-33

Published By: Institute of Arctic and Alpine Research (INSTAAR),
University of Colorado

URL: https://doi.org/10.1657/1523-
0430(2006)038[0021:QTMBOI]2.0.CO;2

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Arctic,-Antarctic,-and-Alpine-Research on 07 May 2024
Terms of Use: https://bioone.org/terms-of-use



Arctic, Antarctic, and Alpine Research, Vol. 38, No. 1, 2006, pp. 21–33

Quantifying the Mass Balance of Ice Caps on Severnaya Zemlya,
Russian High Arctic. III: Sensitivity of Ice Caps
in Severnaya Zemlya to Future Climate Change

R. P. Bassford*

M. J. Siegert*� and

J. A. Dowdeswell�
*Bristol Glaciology Centre, School of

Geographical Sciences, University of

Bristol, Bristol BS8 1SS, U.K.

�Scott Polar Research Institute, University

of Cambridge, Lensfield Road,

Cambridge CB2 1ER, U.K.

�To whom correspondence

should be addressed.

m.j.siegert@bristol.ac.uk

Abstract

A coupled surface mass balance and ice-flow model was used to predict the response of

three ice caps on Severnaya Zemlya, Russian Arctic, to the present climate and to future

climate changes as postulated by the Intergovernmental Panel on Climate Change (IPCC).

Ice cap boundary conditions are derived from recent airborne geophysical surveying

(Dowdeswell et al., 2002), and model inputs are constructed from available climate data.

Model results indicate that, currently, the state of balance of ice caps on Severnaya Zemlya

is dependent on their size. For small ice caps, such as Pioneer Ice Cap (area 199 km2),

mass balance is extremely negative. Under current climate conditions, these relatively

small ice caps are predicted to disappear within ;1000 years. For larger ice caps, however,

such as the Academy of Sciences Ice Cap (area 5586 km2), the accumulation zone is much

larger, which results in these ice caps being approximately in balance today, but still

susceptible to decay in future climate scenarios. When climate conditions are changed in

the model, as predicted by the IPCC, the mass balance of all ice caps in Severnaya Zemlya

is predicted to become negative within a 100 years or so. Although it is difficult to say with

certainty the exact rate of decay, it is likely that ice loss from Severnaya Zemlya will

contribute, over a period of a few hundred years, a rise in sea level of the order of

a few centimeters.

Introduction

Numerical modeling has shown that the climate sensitivity of

ice caps and glaciers from different climatic settings varies by over an

order of magnitude (e.g., Oerlemans and Fortuin, 1992; Fleming et al.,

1997; Braithwaite and Zhang, 2000). It is believed that the sensitivity

of ice masses is related to the annual precipitation, such that glaciers

with a maritime influence are more sensitive than continental ones to

climate change (Oerlemans and Fortuin, 1992). This notion is based on

field measurements of mass balance and the results of modeling

experiments for a selection of glaciers from across the globe. However,

the dry subpolar glaciers and ice caps are poorly represented in studies

of glacier responses to climate change, which are most often biased

towards temperate valley glaciers (Oerlemans and Fortuin, 1992).

The aim of this paper is to assess the sensitivity of dry subpolar

ice masses by quantifying the response of three ice caps in Severnaya

Zemlya (Academy of Sciences, Vavilov, and Pioneer ice caps; Fig. 1)

to climate change using a coupled mass balance ice-flow model

detailed in Bassford et al. (2006a, 2006b), together with data sets of

ice cap geometry derived from radio-echo sounding measurements

(Dowdeswell et al., 2002). Mass balance modeling of the Vavilov Ice

Cap reveals how refreezing of meltwater within the snowpack and

directly onto the ice surface provides the bulk of ice accumulation

(Bassford et al., 2006a). This modeling also reveals that there is a steep

gradient in precipitation from southwest to northeast across the ice cap.

When coupled to ice flow, the model reveals that the ice cap is actively

migrating toward the moisture source across the land surface (Bassford

et al., 2006b). However, the time-dependent reaction of this or any

other ice cap on Severnaya Zemlya to future climate change has yet

to be quantified.

In the first half of this paper, the static mass balance sensitivity of

the three ice caps to climate change is examined. These results are

compared with calculations from past studies for a sample of ice

masses in different climate settings in order to test the idea that mass

balance sensitivity is closely related to annual precipitation. The

second half of this paper concerns the dynamic response of the Vavilov

and Pioneer ice caps to a series of future climate change scenarios that

have been used in an EISMINT modeling experiment on 12 different

glaciers (Oerlemans et al., 1998). The sample of ice masses used in the

EISMINT experiment was biased toward temperate valley glaciers. It is

intended that results for the ice caps in Severnaya Zemlya will help

to construct a more representative comprehension of the range in the

response of ice masses to climate warming by accounting for dry

subpolar ice caps. In a final simulation, the model is used to predict

the response of the Vavilov and Pioneer ice caps to a seasonally

differentiated climate change scenario specific to Severnaya Zemlya.

Static Mass Balance Sensitivity of Ice Caps

Mass balance models of varying complexity have been used to

predict the response of glaciers and ice caps around the world to

changes in climate. The majority of studies follow a fixed geometry

approach in which the sensitivity of mass balance to changes in

temperature is defined for the present geometry of an ice mass. This is

known as the static sensitivity to temperature ST of an ice cap or

glacier, with units cm of water equivalent (w.e.) a�1 8C�1, and is

calculated by

ST ¼
@Bm

@T
’

Bmðþ18CÞ � Bmð�18CÞ
2

; ð1Þ

where Bm(x) is the mean net mass balance corresponding to

a perturbation x in temperature T (Oerlemans et al., 1998). An estimate

of the change in volume of an ice mass �V in response to a change in
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temperature can be made by multiplying the static sensitivity with the

initial area of the ice mass A(t0) and the integral of the temperature

perturbation over the time period considered (t � t0):

�V ¼ STAðt0Þ
Z t

t0

T9dt: ð2Þ

Equations 1 and 2 can also be applied to calculate the static

sensitivity to perturbations in precipitation SP, with units cm w.e. a�1

%�1, and the resulting changes in ice volume.

The advantage of the fixed geometry approach is that the static

sensitivity can be readily calculated for many glaciers and ice caps

using a mass balance model with climate and hypsometry data (e.g.,

Oerlemans and Fortuin, 1992; Gregory and Oerlemans, 1998).

However, this approach is usually only valid for short time periods

because of the effect of changing geometry on mass balance.

Nonetheless, it is still interesting to examine the static sensitivity of

ice caps and glaciers since it represents the immediate response of ice

masses to climate change.

THE REFERENCE STATES

The first step in calculating the static sensitivity of an ice cap is to

use a model to define a reference mass balance, ideally representative

of the present state of the ice cap. This has been done for the Vavilov

Ice Cap by calibrating a distributed model using mass balance

measurements and a ‘‘reference climate’’ (Bassford et al., 2006a). The

reference climate is defined by Bassford et al. (2006a) as being

‘‘constructed from meteorological data and used to describe the

climatic regime of the Vavilov Ice Cap . . . for the periods 1974–1981

and 1985–1988’’. Unfortunately, there are relatively few mass balance

data available for the Academy of Sciences and Pioneer ice caps.

Probably the most useful information available about the mass balance

of these ice caps comprises measurements of the equilibrium line

altitude (ELA) during the period 1962–1966 (Table 1). The range of

430–500 m a.s.l. for the mean ELA of the Vavilov Ice Cap is

compatible with a mean value of 498 m a.s.l. for the period 1974–1988,

based on independent measurements (Barkov et al., 1992). This

suggests that data for all of the ice caps collected during the relatively

short period of 1962–1966 are probably representative of the mean

conditions between the years 1974 and 1988. Additional information

about the long-term mean annual mass balance at the summit of the

FIGURE 1. Map of Severnaya
Zemlya showing the locations of
the Vavilov, Pioneer, and Acade-
my of Sciences ice caps. The
location of Severnaya Zemlya
within the Eurasian Arctic is
inset.

TABLE 1

Mean equilibrium line altitude (ELA) of the Vavilov, Academy of
Sciences, and Pioneer ice caps for the period 1962–1966, based on
field measurements reported by Govorukha (1988). A range is
given for the Vavilov and Academy of Sciences ice caps, reflecting
the spatial variation in ELA caused by gradients in precipitation

(see Bassford et al., 2006b, for details of the Vavilov Ice Cap).

Ice cap Mean ELA (m a.s.l.)

Vavilov 430–500

Academy of Sciences 370–450

Pioneer 350
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Academy of Sciences Ice Cap has recently been obtained from a deep

ice core extracted in 1998 at the ice cap crest. Analyses of the upper

54 m of the core have detected the 1963 maximum of artificial

radioactivity from atmospheric nuclear tests, and 137Cesium marks the

depth of the layer corresponding to the Chernobyl disaster in 1986. The

resulting mean annual net mass balance at this site, integrated over

these periods, is 45 cm a�1 from 1963 and 55 cm a�1 from the 1986

horizon (Fritzsche et al., 2002).

Similarly, there is a lack of published climate data for the

Academy of Sciences and Pioneer ice caps. Meteorological data have

recently been recorded for short time periods of less than two years

at temporary stations in the accumulation areas of these ice caps, but

the data are fragmentary and may not be representative of typical

conditions (Koerner, personal communication).

The dearth of climate and mass balance data makes it difficult to

calibrate distributed mass balance models of the present state of the

Academy of Sciences and Pioneer ice caps. However, modeling can

still be used to assess the sensitivity of these ice caps to climate change.

Therefore, models were constructed for the Academy of Sciences and

Pioneer ice caps, based on the model applied to the Vavilov Ice Cap in

Bassford et al. (2006b). The reference climate defined for the Vavilov

Ice Cap was extrapolated to represent conditions on the other ice caps.

This is a viable approach since the distance between the Vavilov

Station and the central parts of the Academy of Sciences and Pioneer

ice caps is only about 125 km and 70 km, respectively. All other

parameters were set to the same values as those used in the coupled

model of the Vavilov Ice Cap (Bassford et al., 2006a, 2006b).

The main challenge in constructing the new models was

determining the distribution of precipitation over the Academy of

Sciences and Pioneer ice caps. The position of the transient snowline

identified in Landsat images acquired in late summer suggests that

a gradient in precipitation exists over these two ice caps, similar to that

observed for the Vavilov Ice Cap, i.e. snowfall is greatest in the

southwest and decreases moving northeast. However, it is very difficult

to determine an accurate precipitation field over the ice caps without

at least a few winter accumulation measurements to validate results.

Therefore, an assumption was made that precipitation is a function of

altitude. To calculate the gradient in precipitation with altitude for

the Academy of Sciences Ice Cap, the model was tuned by adjust-

ing the amount of precipitation to calculate the observed mass balance

at the following two points on the ice cap: (1) the equilibrium line,

assumed to have an altitude of 410 m a.s.l., falling in the center of the

range of values listed in Table 1, and (2) the summit of the ice cap at an

altitude of 749 m a.s.l., where the long-term mean annual net mass

balance is reported to be 45 cm a�1 (Fritzsche et al., 2002). Results

from this procedure, given in Table 2, appear plausible and are within

the range of annual precipitation determined for the Vavilov Ice Cap

(Bassford et al., 2006b).

The two values of precipitation were then used to derive the

following equation, expressing precipitation p as a linear function of

altitude h:

p ¼ 0:021hþ 46:4; ð3Þ

where p has units cm w.e. a�1 and h has units m a.s.l. A similar

procedure was repeated for the Pioneer Ice Cap using an ELA of 350 m

a.s.l. (Table 1) and a precipitation gradient equal to that determined

for the Academy of Sciences Ice Cap. The resulting equation is

p ¼ 0:021hþ 51:7: ð4Þ

The models of the Academy of Sciences and Pioneer ice caps

were then used to calculate a reference mass balance for each ice cap.

The reference states of these ice caps, together with that calculated for

the Vavilov Ice Cap in Bassford et al. (2006b), are shown in Figure 2

and their characteristics are summarized in Table 3.

With the exception of Vavilov Ice Cap, the model results in Table

3 cannot be interpreted as an accurate calculation of the present state of

the ice caps. However, the results suggest that the Pioneer Ice Cap

has a significantly negative mass balance under present conditions,

reflected by a low accumulation area ratio, while the surface mass

balance of the Academy of Sciences Ice Cap is approximately zero.

The volume of ice lost by iceberg calving at the marine margins of the

Academy of Sciences Ice Cap is estimated to be about 0.65 km3 a�1

(Dowdeswell et al., 2002), equivalent to a mean mass loss of 12 cm a�1

over the whole of the ice cap. Therefore, the overall mean net mass

balance of the Academy of Sciences Ice Cap, including the mass lost

through calving, is calculated to be�13 cm a�1 for the reference state.

However, mass loss through iceberg calving is neglected in the rest of

this paper since the focus is on the sensitivity of surface mass balance

to climate change.

CLIMATE SENSITIVITY

After defining the reference states for the Vavilov, Academy of

Sciences, and Pioneer ice caps, the static sensitivity of these ice caps

was determined by recalculating the mass balance with uniform

changes of 618C in air temperature throughout the year. Similarly, the

effects of changes in precipitation on mass balance were assessed by

running the models with changes of 610% in precipitation. Results

from these simulations and the corresponding sensitivities of each ice

cap are presented in Tables 4 and 5, while modeled mass balance

profiles are shown in Figure 3.

The static sensitivity of mean net mass balance to temperature

change is similar for each ice cap (Table 5), with a mean value of�36

cm w.e. a�1 8C�1. In general, the greatest changes in mass balance

occur at the margins of the three ice caps, with a progressively lower

sensitivity with increasing altitude, in agreement with other mass

balance modeling studies (e.g., Oerlemans and Hoogendoorn, 1989;

Fleming et al., 1997). Two factors are responsible for this: (1) the

albedo feedback is stronger in the ablation zone, and (2) the amount of

meltwater refreezing in the snowpack and on the ice surface to form

superimposed ice tends to buffer changes in the intensity of surface

melting in the accumulation zone. Modeling results suggest that the

three ice caps have a much lower sensitivity to precipitation than to

temperature change, reflected by small changes of about 1 cm w.e. a�1

%�1 in mean net mass balance.

Perturbations in temperature result in considerable changes in the

ELA, ranging from 175 to 241 m 8C�1. Since the altitudinal range of

the three ice caps is quite small, changes in the ELA of this order will

have a large effect on the size of the ablation and accumulation zones.

In fact, an increase in temperature of 18C causes the ELA to rise above

the summit of Pioneer Ice Cap (Fig. 3), resulting eventually in the

complete wastage of the ice cap. The ELA of the Vavilov Ice Cap is

significantly less sensitive to changes in temperature relative to the

TABLE 2

Results from tuning the mass balance model to determine the
precipitation at two points on the Academy of Sciences Ice Cap.

Location on the ice cap

ELA (410 m a.s.l.) Summit (749 m a.s.l.)

Observed mass balance 0 cm w.e. a�1 45 cm w.e. a�1

Calculated mass balance 0 cm w.e. a�1 45 cm w.e. a�1

Derived precipitation 55 cm w.e. a�1 62 cm w.e. a�1
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other ice caps. This is because of the steeper gradients of mass balance

with altitude close to the ELA of the Vavilov Ice Cap, associated with

the precipitation field over the ice cap (Fig. 3). The fact that the

Vavilov Ice Cap has a similar mass balance sensitivity to the other

ice caps, despite the much lower sensitivity of the ELA, is due to a

combination of the different mass balance gradients and hypsometries

of the three ice caps.

Since there have been few mass balance modeling studies of High

Arctic glaciers and ice caps, it is worthwhile comparing the static

sensitivities of the Vavilov, Academy of Sciences, and Pioneer ice caps

with results from previous energy balance calculations for glaciers in

different climate regimes (Oerlemans and Fortuin, 1992; Fleming et al.,

1997). Figure 4 shows a compilation of results for changes in mean net

mass balance resulting from a 18C increase in temperature, plotted

against the mean annual precipitation for a variety of ice caps and

glaciers. Changes on the order of �40 cm w.e. a�1 in the net mass

balance of ice caps on Severnaya Zemlya compare with values around

�12 cm w.e. a�1 for ice masses in the Canadian High Arctic and values

ranging between�60 and�80 cm w.e. a�1 for alpine glaciers. The most

sensitive ice masses from those shown in Figure 4 are the glaciers

in western Norway with predicted changes in mass balance of up to

�115 cm w.e. a�1.

The calculated mass balance sensitivity of ice caps on Severnaya

Zemlya supports the idea that ice masses located in a wetter climate

(i.e., greater accumulation) are more sensitive to climate change.

Several factors explain this relationship (Oerlemans and Fortuin,

1992). Glaciers with a large mass turnover usually extend to lower

altitudes with a warmer climate. Under these conditions, changes in

temperature have a large effect on accumulation by changing the

proportion of precipitation falling as snow. This effect is much less

important for the drier subpolar glaciers and ice caps, where virtually

all precipitation falls as snow. Furthermore, the relation between

surface melting and air temperature is not linear since melting only

occurs when temperatures approach 08C. Therefore, a rise in

TABLE 3

Characteristics of the reference mass balance calculated by mod-
elling the Vavilov, Academy of Sciences, and Pioneer ice caps.

Ice cap

Vavilov Academy of Sciences Pioneer

Area of accumulation zone (km2) 810 2885 21

Area of ablation zone (km2) 961 2701 178

Accumulation area ratio 0.45 0.52 0.12

Equilibrium line altitude (m a.s.l.) 350–621 410 350

Mean net surface mass

balance (cm w.e. a�1) �2 �1 �25

TABLE 4

Mean net mass balance (Bm) and mean equilibrium line altitude
(ELA) of the Vavilov, Academy of Sciences, and Pioneer ice caps
for four climate change experiments. Bm and ELA have units of
cm w.e. a�1 and m a.s.l., respectively. The ELA exceeds the summit

of the Pioneer Ice Cap for a 18C warming.

Model run

Vavilov Academy of Sciences Pioneer

Bm ELA Bm ELA Bm ELA

Reference state �2 498 �1 410 �25 350

18C warming �40 664 �40 636 �66 >410

18C cooling 28 315 29 155 14 109

þ10% precipitation 11 437 7 339 �14 288

�10% precipitation �10 543 �9 450 �35 398

FIGURE 2. Modeled mass balance of three ice caps in Severnaya
Zemlya (using the reference climate). (a) Academy of Sciences Ice
Cap. Isolines are at intervals of 10 cm w.e. a�1. (b) Vavilov Ice Cap.
Mass balance profiles N-X, E-X, S-X, and W-X are shown in
Figure 3. (c) Pioneer Ice Cap. Isolines are at intervals of 10 cm
w.e. a�1.
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temperature in a maritime regime is likely to significantly increase the

length of the melting season, while a similar change in climate will

have little effect in a subpolar region where temperatures will remain

well below zero for much of the year.

SEASONAL SENSITIVITY CHARACTERISTIC

Atmospheric general circulation models predict that future

changes in temperature associated with an enhanced greenhouse effect

will be greatest in winter months and somewhat smaller during the

summer at high northern latitudes (IPCC, 2001). It is, therefore,

interesting to examine how climatic changes in different seasons

influence the mass balance of ice caps on Severnaya Zemlya. Seasonal

changes were investigated using a method known as the seasonal

sensitivity characteristic (SSC) which describes the dependence of the

mean net mass balance of an ice mass on monthly perturbations in

temperature and precipitation (Oerlemans and Reichert, 2000). The

general idea is that changes in mass balance in a particular year, �Bm,

relative to a reference mass balance, Bm,ref, can be related to monthly

mean temperature, Tk, and precipitation, Pk, by

�Bm ¼ Bm � Bm;ref

¼
X12

k¼1

CT;kðTk � Tref;kÞ þ CP;k

Pk

Pref;k

� 1

� �� �
þ H; ð5Þ

where

CT;k ¼
@B

@Tk

ð6Þ

CP;k ¼
@B

@ðPk=Pref;kÞ
: ð7Þ

The subscript k refers to the month and takes the values k ¼ 1,

2 . . . 12. Tref,k and Pref,k are the monthly mean values of temperature

and precipitation associated with the reference mass balance. CT,k and

CP,k have units cm w.e. 8C�1 and cm w.e., respectively (Oerlemans and

Reichert, 2000). The term H represents all nonlinear terms, including

feedbacks in the system and mutual interference of monthly

perturbations. For example, the effect of a temperature perturbation

in July may be affected to some extent by a change in precipitation

during the previous month. Oerlemans and Reichert (2000) found that

such effects are not very significant if the perturbations in monthly

mean temperature and precipitation do not exceed about 28C and

40%, respectively. Therefore, H is neglected in this study. The SSC

comprises a 2 3 12 matrix of values for CT,k and CP,k which were

determined by running the mass balance model for monthly

perturbations in temperature (þ0.58C and �0.58C) and precipitation

(�10% andþ10%). For a more detailed description of the calculation of

the SSC see Oerlemans and Reichert (2000).

The SSC for the Vavilov, Academy of Sciences, and Pioneer ice

caps are shown in Figure 5, together with results from Oerlemans and

Reichert (2000) for three other glaciers in different climatic regimes. A

striking feature of the SSC of the three ice caps in Severnaya Zemlya is

that the temperature sensitivity is determined almost entirely by the

summer months (June, July, and August). Temperature perturbations in

other months have a negligible effect on mass balance. This is also the

case for White Glacier in the Canadian High Arctic which is located

at a similar latitude (;798N) to the ice caps in Severnaya Zemlya,

although the climate is even drier there, with a mean annual

precipitation of about 25 cm w.e. The melt season is much longer

for Hintereisferner, and changes in temperature between March and

October have a significant effect on mass balance. In the most extreme

case of Franz Josef Glacier in New Zealand, which has a strong

maritime influence and a mean annual precipitation of ;6 m w.e., mass

balance is very sensitive to changes in temperature throughout the year,

including the winter months.

Seasonal variations in CP,k for the ice caps in Severnaya Zemlya

reflect to a large extent the distribution of precipitation through the year,

although the very low values of CP,k in July and August occur because

a significant fraction of precipitation falls as rain in these months and is

lost from the ice cap as runoff. This implies that summer precipitation is

less important for mass balance than precipitation falling as snow

during the rest of the year. The greater sensitivity to fractional changes

in precipitation of Hintereisferner and Franz Josef Glacier reflects the

much wetter climate in these locations, particularly in the latter case. In

contrast to ice caps in Severnaya Zemlya, summer precipitation makes

a significant contribution to the annual balance of these glaciers because

of summer snowfall high up in the accumulation zone.

An interesting result from this comparison is the high value of

CT,7 (i.e., July) for ice caps in Severnaya Zemlya, which is much

greater than that of White Glacier and Hintereisferner and of a similar

magnitude to Franz Josef Glacier in mid-summer. Probably the most

important factor explaining this is the hypsometry of the ice caps in

Severnaya Zemlya, which is characterized by a small altitudinal range

(,750 m) with a lower limit close to sea level. Therefore, in summer,

a rise in temperature at sea level results in a significant increase in

melting even at the summit of the ice caps, together with a considerable

reduction in the amount of precipitation falling as snow. The other

glaciers have a much greater altitudinal range (e.g., White Glacier:

200–1600 m a.s.l.; Hintereisferner: 2600–3600 m a.s.l.) and so changes

in temperature at lower elevations have a relatively small effect on

melting and the form of precipitation in the upper accumulation area.

Another possible factor explaining the relatively high values of CT,7

calculated for ice caps in Severnaya Zemlya is the treatment of albedo

in the model, which differs from the scheme used by Oerlemans and

Reichert (2000) where albedo is a function related to the distance from

the equilibrium line altitude. The treatment of albedo has a large effect

on the intensity of the albedo feedback, which is an important influence

on the modeled sensitivity of a glacier (Oerlemans, personal

communication).

To quantify the seasonality in the effect of temperature

perturbations on the annual mass balance, Oerlemans and Reichert

(2000) define a seasonality index SI:

SI ¼ CT;6 þ CT;7 þ CT;8P12

k¼1 CT;k

: ð8Þ

Values of the SI for the Vavilov, Academy of Sciences, and

Pioneer ice caps are 0.97, 0.97, and 0.98, respectively, and are plotted,

together with calculations conducted by Oerlemans and Reichert

(2000) for 14 other glaciers, against annual precipitation in Figure 6.

The results for ice caps in Severnaya Zemlya fit with the general

conclusion reached by Oerlemans and Reichert (2000) that the

sensitivity of a glacier or ice cap to changes in temperature is

TABLE 5

Static sensitivity to temperature and precipitation of the mean net
mass balance (ST and SP) and equilibrium line altitude (dELA/dT
and dELA/dP) of the Vavilov, Academy of Sciences, and Pioneer
ice caps. Given are the mean values calculated using results from

the positive and negative perturbation experiments (Table 4).

Vavilov

Academy of

Sciences Pioneer Mean

ST (cm w.e. a�1 8C�1) �34 �35 �40 �36

dELA/dT (m 8C�1) 175 240 241 219

SP (cm w.e. a�1 %�1) 1 1 1 1

dELA/dP (m %�1) �5 �6 �6 �6
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increasingly restricted to the summer months as the climatic setting

becomes progressively drier.

Dynamic Sensitivity of Ice Caps

Simulating the dynamic response of an ice cap to climate change

requires the use of a fully coupled mass balance and ice-flow model.

This ensures that the effects of changes in ice cap geometry on mass

balance are accounted for, unlike the fixed geometry approach used to

calculate the static sensitivity. However, dynamic models require input

data which are only available for a small number of ice caps and

glaciers, restricting the widespread application of such models.

Examining a range of individual glaciers and ice caps in different

climatic settings should improve our understanding of how to

generalize results to a broader scale. Oerlemans et al. (1998) define

the dynamic sensitivity to temperature of an ice mass DT by

DTðtÞ ¼
VðtÞ � Vðt0Þ

Aðt0Þðt � t0Þ�T9
; ð9Þ

where V and A are the volume and area of the ice mass, respectively. �T9

is the mean change in temperature over the time period (t � t0).

To investigate the variation in dynamic sensitivity of ice masses

in different climatic settings, Oerlemans et al. (1998) compared the

FIGURE 3. Modeled mass bal-
ance profiles of the Vavilov,
Academy of Sciences, and Pio-
neer ice caps for the reference
climate, and for changes in tem-
perature and precipitation of
618C and 6 10%, respectively.
Four profiles are shown for the
Vavilov Ice Cap because the
relation between simulated mass
balance and altitude varies over
the ice cap. The variation in
mass balance along these profiles
is not as smooth as for the other
ice caps because the model was
calibrated with field measure-
ments showing the same pattern
of variation. The profiles for the
Vavilov Ice Cap are located in
Figure 2b.
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response of 12 glaciers and small ice caps from across the globe to a set

of future climate change scenarios. Details of these ice masses are

given in Table 6. Six climate change scenarios were considered by

using constant warming rates of 0.01, 0.02, and 0.048C a�1 for the

period 1990–2100, repeated with an accompanying change in

precipitation of 10% per degree of warming. Initial conditions in each

simulation were taken as the mean climate over the reference period

1961–1990.

In order to examine the dynamic sensitivity of ice caps in

Severnaya Zemlya, the same series of experiments was performed on

the Vavilov and Pioneer ice caps using the coupled mass balance and

ice-flow model described in Bassford et al. (2006a, 2006b) and applied

to the Vavilov Ice Cap in Bassford et al. (2006b). This is particularly

worthwhile because, as Oerlemans et al. (1998) acknowledge, the

sample of glaciers used in their study does not represent the dry

subpolar glaciers. An attempt was not made to simulate the dynamic

sensitivity of the Academy of Sciences Ice Cap, because this ice cap

has a relatively complicated flow structure, including fast-flowing ice

streams (see Dowdeswell et al., 2002), which is beyond the capability

of the ice-flow model. The initial conditions in the six climate change

experiments were set to the reference states. An additional simulation

was performed in which conditions remained the same as in the

reference climate, i.e., no climate warming.

THE 1990–2100 SIMULATIONS

Figure 7 shows changes in the ELA, area, and volume of the

Vavilov and Pioneer ice caps in response to the six climate change

scenarios, together with results for the simulation in which conditions

were unchanged from the reference climate. The range of different

responses is large for both ice caps, reflecting their sensitivity to

climate change. By the year 2100, the model predicts that the Vavilov

Ice Cap would lose 9%, 18%, and 33% of its volume in response to the

0.01, 0.02, and 0.048C a�1 warming scenarios, with a corresponding

reduction in area of 2%, 5%, and 11%. In the case of no climate

change, the geometry of Vavilov Ice Cap hardly changes, with a slight

decrease in volume and area of ,1%. For Pioneer Ice Cap, the changes

in normalized volume are considerably larger. In fact, the ice cap loses

37%, 50%, and 71% of its volume by 2100 for the 0.01, 0.02 and

0.048C a�1 warming rates. Even if the conditions remain the same as

the reference climate, the model still calculates a 22% reduction in

ice cap volume over the 110 year period. An interesting difference

between the dynamic response of the two ice caps is the way in which

their area changes over time (Fig. 7). The rate of the decrease in area of

Vavilov Ice Cap gradually increases as temperature continues to rise,

while the margins of Pioneer Ice Cap retreat rapidly before its area

continues to decrease at a more gradual rate. The latter results from

a rapid melting of thin and stagnant ice, particularly in the area close to

the northern and eastern margins, followed by a slower retreat of

dynamically active margins.

The effect of an increase in precipitation is to effectively reduce

the loss of ice volume, but the change in precipitation of 10% 8C�1 is

not nearly enough to compensate for the increase in surface melting

due to a rise in temperature (Fig. 7). Much larger increases in

precipitation would be required to maintain mass balance in a warmer

climate. A significant result of these experiments is that the ELA

exceeds the summit of Pioneer Ice Cap by 2100 in all of the climate

change scenarios, which would lead to the complete wastage of the ice

cap. This is also the case in the 0.02 and 0.048C a�1 warming scenarios

for Vavilov Ice Cap, although the rate of its wastage would be much

lower than for Pioneer Ice Cap.

COMPARISON OF STATIC AND DYNAMIC SENSITIVITIES

FOR A SELECTION OF ICE MASSES

Equation 9 was used to calculate the dynamic sensitivity of the

Vavilov and Pioneer ice caps for the 0.028C a�1 scenario using two

time periods, 1990–2050 and 1990–2100. The results are shown in

Figure 8, together with the static sensitivities calculated by Bassford

et al. (2006b) and the results presented by Oerlemans et al. (1998) for

the sample of ice masses listed in Table 6. While the static sensitivities

of the Vavilov and Pioneer ice caps are relatively low on a global scale,

their dynamic sensitivities are comparable with Alpine and Scandina-

vian glaciers. The key factor responsible for this is the faster response

times of temperate glaciers, which adjust their geometry more quickly

to climate change. It is noteworthy that the dynamic sensitivity of the

Vavilov and Pioneer ice caps is slightly higher than the static

sensitivity. This is explained by the altitude–mass balance feedback

whereby increased melting leads to a lowering in ice surface elevation

which in turn results in a more negative mass balance. The feedback is

particularly strong for the Vavilov and Pioneer ice caps because they

have long response times to climate change, resulting in a high rate of

surface lowering relative to the reduction in area of the ablation zone

resulting from retreat of the ice cap margins.

FIGURE 4. Change in modeled
mean net mass balance in re-
sponse to a 18C climate warming
plotted against mean annual pre-
cipitation for a selection of gla-
ciers in various climatic regimes.
The three ice caps on Severnaya
Zemlya (SZ) are compared to
glaciers in the western and drier
parts of southern Norway (WN
and SN), the Alps (A), northwest
Spitsbergen (NWS), central Asia
(CA), and the Canadian Arctic
(CHA). Data are from Oerle-
mans and Fortuin (1992) and
Fleming et al. (1997). The line is
a logarithmic fit used by Oerle-
mans and Fortuin (1992) to
estimate the sensitivity of glacier
mass balance to a 18C climate
warming as a function of the
mean annual precipitation.
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A noticeable result is that the dynamic sensitivity of Pioneer Ice

Cap is particularly high for the period 1990–2050, DT¼85 cm w.e. a�1

8C�1, but falls to a moderate value of DT¼ 51 cm w.e. a�1 8C�1 for the

period 1990–2100. This reflects the fact that the Pioneer Ice Cap is

much larger than the equilibrium size for the initial climatic conditions.

The rapid retreat of the ice cap between the years 2030 and 2050 has

the effect of reducing the size of the ablation area, which decreases the

rate of mass loss resulting in a lower dynamic sensitivity for the period

1990–2100. The simulated retreat of the Pioneer Ice Cap is consistent

with a measured reduction in area of ;20%, based on the difference

between Russian inventory data, probably representing the state of the

ice cap in the 1950s, with the area derived from a Landsat image

acquired in 1988 (M. Williams, personal communication). In addition,

comparison of aerial photographs and maps indicate that the area of the

ice cap decreased by 27.3 km2, or about 14% of the current area, in the

period 1931–1953 (Kislov and Koryakin, 1986). Therefore, observa-

tions show that the Pioneer Ice Cap has been retreating for at least 70

years and model results predict that the ice cap will continue to

decrease in size throughout the 21st century, unless future climatic

conditions become cooler or considerably wetter.

Figure 9 shows the change in volume of the Vavilov and Pioneer

ice caps over the period 1990–2100 for the 0.028C a�1 warming

scenario, alongside results presented by Oerlemans et al. (1998) for the

sample of 12 ice masses. Despite its relatively small fractional loss in

volume (Fig. 7), the Vavilov Ice Cap dominates the total volume of ice

wastage from the sample of ice masses, reflecting the much greater size

of this ice cap (Table 6). Although the absolute loss in the volume of

the Pioneer Ice Cap is only about 10% of that for the Vavilov Ice Cap,

FIGURE 5. Seasonal sensitivity
characteristic for Vavilov, Acad-
emy of Sciences, and Pioneer ice
caps calculated with the mass
balance model, shown together
with results from Oerlemans and
Reichert (2000) for a selection of
glaciers in various climatic re-
gimes. Note that the calendar for
Franz Josef Glacier, which is
located in the southern hemi-
sphere, has been shifted by 6
months to make it comparable
with the other glaciers.
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it still exceeds the total ice wastage from all of the glaciers in the

sample, excluding Blondujökull, the KGI Ice Cap, and Illvidrajökull.

SIMULATION WITH A REGIONAL AND SEASONAL

CLIMATE CHANGE SCENARIO

A model simulation was performed using a future climate change

scenario specific to Severnaya Zemlya. The objective of this simulation

was to determine the most realistic assessment of the response of the

Vavilov and Pioneer ice caps to future climate change. The simulation

used a climate change scenario determined by the HadCM3 coupled

atmospheric-ocean general circulation model (AOGCM), developed by

the Hadley Centre (Pope et al., 2000). The climate projection follows

the IS92a ‘‘business as usual’’ scenario, in which the atmospheric

concentration of carbon dioxide more than doubles over the course of

the 21st Century. Table 7 lists the seasonal changes in temperature and

precipitation specified in this scenario. The scenario was imposed on

the reference climate assuming a linear change in temperature and

precipitation over the period 1990–2100, after which the climate was

held constant. The coupled mass balance and ice-flow model was run

forward in time for 2000 years, or until the ice cap had wasted

away completely.

The response of the Vavilov and Pioneer ice caps to the IS92a

‘‘business as usual’’ scenario is dramatic (Fig. 10). By 2013, the ELA

exceeds the summit of Pioneer Ice Cap, at which point the ablation

zone covers the entire ice cap, leading to a rapid loss of ice and the

complete wastage of the ice cap by 2370 (i.e., in about 370 years).

Under a fixed reference climate, the reduction in volume is more

gradual, but the ice cap still disappears eventually in 3367, i.e., 1377

years after the start of the simulation in 1990. In the case of the Vavilov

Ice Cap, the ELA ascends from 498 m a.s.l. to 627 m a.s.l. by the time

climate stabilizes in year 2100, leaving a small accumulation zone at

the summit of the ice cap. However, a lowering of the ice surface in the

accumulation zone due to the flux of ice into the ablation zone causes

the ELA to rise above the summit of the ice cap by the year 2160.

Subsequent melting, intensified by the altitude-mass balance feedback,

causes the Vavilov Ice Cap to disappear entirely by the year 3073, i.e.,

1083 years after the start of the simulation.

A key factor in the predicted wastage of the Vavilov and Pioneer

ice caps is their hypsometry, which is characterized by a small alti-

tudinal range close to sea level, with the majority of the accumulation

zone lying ,200 m above the ELA. Consequently, a relatively small

rise in summer temperature shifts a large part of the accumulation zone

into the ablation zone. Since both these ice caps rest on relatively flat

beds close to sea level, they cannot retreat to higher ground, which

would support glaciation in a warmer climate. This is also true for most

of the other ice caps in Severnaya Zemlya (Dowdeswell et al., in press),

which can be expected to respond in a similar way to the Vavilov and

Pioneer ice caps. Therefore, despite having a relatively low static

sensitivity, the Vavilov and Pioneer ice caps are highly susceptible to

long term climate change due to their regional topographic setting.

If the ice caps on Severnaya respond to future climate in the way

predicted by the model, global sea level will rise as a consequence

by a few centimeters.

GLOBAL CHANGES IN ICE VOLUME

Oerlemans et al. (1998) combined the response of 12 ice masses

to a 0.028C a�1 warming scenario in order to calculate the overall

change in normalized ice volume of a sample of glaciers and ice caps

(Table 6). The rationale behind this was to develop a simplified scheme

which represents the global response of ice masses to climate change.

Two methods were used, based on (1) the mean of the normalized

change in volume of the individual ice masses, so that each glacier and

ice cap has an equal weighting, and (2) the total change in volume of

the 12 ice masses used scaled with the total volume in 1990. The latter

is dominated by changes in the large ice masses, such as King George

Island Ice Cap, Illvidrajökull, and Blondujökull (Table 6). Oerlemans

et al. (1998) refer to the quantities calculated using the first and second

methods as hVsci and hVisc, respectively.

FIGURE 6. The seasonality in-
dex plotted against mean annual
precipitation for Vavilov, Acade-
my of Sciences, and Pioneer ice
caps (filled circles) together with
data from Oerlemans and Reich-
ert (2000) for a sample of 14
glaciers in various climatic re-
gimes (crosses). The line is a log-
arithmic fit to the results of
Oerlemans and Reichert (2000).

TABLE 6

Glaciers and ice caps studied by Oerlemans et al. (1998). KGI
Ice Cap is King George Island Ice Cap located off the Antarctic
Peninsula. Details for the Vavilov and Pioneer ice caps are shown

for comparison.

Glacier/ice cap Location

Area

(km2)

Volume

(km3)

ELA

(m a.s.l.)

Franz Josef Glacier New Zealand 34 4.89 1650

Glacier d’Argentière France 15.6 1.91 2900

Haut Glacier d’Arolla Switzerland 6.3 0.33 3200

Hintereisferner Austria 7.4 0.44 2950

Nigardsbreen Norway 48 3.80 1550

Pasterze Austria 19.8 2.62 2880

Rhonegletscher Switzerland 17.7 2.58 2930

Storglaciären Sweden 3.1 0.30 1460

Unt. Grindelwaldgletscher Switzerland 21.7 1.83 2770

Blondujökull Iceland 226 46.9 1300

Illvidrajökull Iceland 116 25.8 1250

KGI Ice Cap Antarctica 1402 155 100

Vavilov Ice Cap Severnaya Zemlya 1772 567 498

Pioneer Ice Cap Severnaya Zemlya 200 25 350
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Figure 11 shows hVsci and hVisc for the period 1990–2100,

together with the normalized change in volume of the Vavilov and

Pioneer ice caps. Also shown are results produced by the fixed

geometry approach (FG), including changes in the volume of the

Academy of Sciences Ice Cap. The errors involved in using the fixed

geometry approach for the Vavilov and Pioneer ice caps are relatively

small compared with those in the calculation of hVsci and hVisc. In

fact, for the Vavilov Ice Cap, the difference between the fixed

geometry and dynamic calculations is ,2%, implying that geometric

effects on the mass balance of this ice cap are relatively minor over the

time period considered. This reflects the much longer response time of

the large subpolar ice caps compared with temperate glaciers. On the

basis of the insignificant errors in the fixed geometry results for the

Vavilov Ice Cap, greater confidence can be attributed to the calculation

for Academy of Sciences Ice Cap. However, this assumption is not

valid over longer time periods as geometric effects on mass balance

become increasingly important. On a shorter time scale of ,100 years,

geometric effects become important for smaller ice caps which are

currently in a state of relatively rapid retreat, as is the case for the

Pioneer Ice Cap (Fig. 11).

In contrast to hVsci and hVisc, the fixed geometry approach

underestimates the reduction in volume of the Vavilov Ice Cap because

of the dominance of the altitude–mass balance feedback over the effect

of retreating margins on the size of the ablation area. This questions

the assumption made by Oerlemans et al. (1998) and Gregory and

Oerlemans (1998) that the fixed geometry approach represents an

upper limit for the change in volume of ice masses over the next

100 years.

The reduction in normalized volume of each of the ice caps in

Severnaya Zemlya is smaller than the average of the 12 ice masses

used in Oerlemans et al. (1998), particularly in the case of the Vavilov

and Academy of Sciences ice caps, which are calculated to lose less

than 20% of their volume by 2100 for the 0.028C a�1 warming scenario

(Fig. 11). Oerlemans et al. (1998) are careful to emphasize that the

sample of glaciers and ice caps used in the calculation of hVsci and

hVisc is not representative of all ice masses around the world, in

particular the dry subpolar ice caps. Under a warmer climate, some of

the small subpolar ice caps and glaciers, such as Pioneer Ice Cap, are

likely to lose a large proportion of their volume over the next 100

years. However, changes in the total volume of subpolar ice masses

FIGURE 7. Changes in the
mean equilibrium line altitude
(ELA), area, and volume of the
Vavilov and Pioneer ice caps
in response to climate warming
scenarios of 0.01, 0.02, and
0.048C a�1. Simulations including
a 10% increase in precipitation
per degree of warming are also
shown, referred to asþppt in the
key, along with a simulation in
which conditions remained the
same as the reference climate.
Ice cap volume is normalized
relative to the 1990 volume.
Changes in the ELA are shown
until the ELA exceeds the tran-
sient maximum elevation of the
ice cap. It appears that the area
of the ice caps remains constant
for about 30 years before de-
creasing. This is an artifact of
the relatively large grid cell size
used in the model. Cells at the ice
cap margins have an initial ice
thickness of ;50 m which takes
time to melt away completely,
resulting in an area change.
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will be dominated by the response of larger ice caps which have a low

sensitivity and long response time to climate change, for example, the

Vavilov and Academy of Sciences ice caps. Excluding the Greenland

and Antarctic ice sheets, High Arctic ice masses such as these represent

about 200,000 km2 or approximately 37% of the Earth’s total ice cover

(Meier, 1984; Warrick and Oerlemans, 1990), and very likely an even

greater proportion of the total ice volume. Therefore, as Oerlemans

et al. (1998) suggest, including the response of the large subpolar ice

caps in a calculation of hVisc would significantly reduce the fractional

loss of ice compared to the calculation based on the sample of ice

masses biased towards temperate glaciers.

Summary and Conclusions

A series of model experiments was performed to test the static

mass balance sensitivity of the Vavilov, Academy of Sciences, and

Pioneer ice caps to climate change. Mean results for the three ice caps

indicate a change in net mass balance of �36 cm w.e. a�1 8C�1 and

1 cm w.e. a�1 %�1 for perturbations in temperature and precipitation,

with accompanying changes of 219 m 8C�1 and �6 m %�1 in the

equilibrium line altitude. On a global scale, the static sensitivity of

the Vavilov, Academy of Sciences, and Pioneer ice caps is quite low,

supporting the notion that ice masses located in a dry climate are less

sensitive to climate change. The seasonal sensitivity characteristic,

calculated for each of the three ice caps, indicates that the sensitivity of

mass balance to small perturbations in temperature (618C) is

determined almost entirely by the summer months (June, July, and

August), while changes during the rest of the year have a negligible

effect because temperatures remain well below the melting point.

The dynamic responses of the Vavilov and Pioneer ice caps to

a range of future climate warming scenarios were simulated using

a coupled mass balance and ice-flow model. Modeling predicts that the

Vavilov Ice Cap would lose 9%, 18%, and 33% of its 1990 volume by

the year 2100 in response to climate warming of 0.01, 0.02, and 0.048C

a�1, with a corresponding reduction in area of 2%, 5%, and 11%. For

the Pioneer Ice Cap the changes in normalized volume are considerably

greater because this ice cap is already in a state of strong negative mass

balance under the reference climate. In fact, this ice cap is predicted to

lose 37%, 50%, and 71% of its volume by 2100 for the 0.01, 0.02, and

0.048C a�1 warming rates. The effect of an increase in precipitation is

to reduce the loss of ice volume, but a change in precipitation of 10%

per degree of warming is not nearly enough to compensate for the

increase in surface melting due to a rise in temperature. Under a future

climate change scenario specific to Severnaya Zemlya, the model

predicts that the Vavilov Ice Cap will completely waste away by the

year 3073, i.e., 1083 years after the start of the simulation in 1990,

while the Pioneer Ice Cap will disappear by 2160. Despite having a low

static sensitivity, these ice caps are highly susceptible to long term

climate change because of their hypsometry and the fact that they rest

on relatively flat beds close to sea level. Although it is difficult to say

with certainty the exact rate of decay, given the volumes of ice

FIGURE 8. Static and dynamic
sensitivity of the Vavilov and
Pioneer ice caps to temperature
change, together with results
from Oerlemans et al. (1998)
for 12 other glaciers. The static
sensitivity is defined for the 1990
glacier geometries. The dynamic
sensitivity was calculated for the
0.028C a�1 scenario for years
2050 and 2100.

FIGURE 9. Absolute change in the volume of Vavilov and
Pioneer ice caps in response to a climate warming of 0.028C a�1,
shown together with results from Oerlemans et al. (1998) for 12
other glaciers (see Table 6 for details). Data is the difference
between the 1990 and 2100 volumes.

TABLE 7

Seasonal changes in temperature and precipitation determined by
the HadCM3 AOGCM for the IS92a ‘‘business as usual’’ scenario
(Pope et al., 2000). Changes are shown both for the annual average
and for each of the four seasons, December–February (DJF),
March–May (MAM), June–August (JJA), and September–
November (SON). The changes in precipitation are equivalent to
an increase of 73 mm in the annual total, or an increase of 17%

compared to the reference climate.

Climate variable DJF MAM JJA SON Mean

Temperature (8C) 12.4 4.8 1.2 5.5 6.0

Precipitation (mm day�1) 0.31 0.12 0.17 0.21 0.20
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determined by Dowdeswell et al. (2002) for Severnaya Zemlya, it is

likely that ice loss from these islands will contribute, over a period of

a few hundred years, a rise in sea level of the order of a few

centimeters.

Changes in the normalized volume of the Vavilov Ice Cap

between 1990 and 2100 calculated using the fixed geometry approach

were found to be within 2% of the results obtained using the dynamic

model. This suggests that for large ice caps geometric effects on the

mass balance are relatively minor over a time period of 100 years or so.

However, this assumption is not valid for smaller ice caps, such as the

Pioneer Ice Cap, and glaciers which have a much faster response time

to climate change. The reduction in normalized volume calculated for

the ice caps in Severnaya Zemlya is smaller than the average for

a sample of 12 ice masses examined by Oerlemans et al. (1998),

especially in the case of the Vavilov and Academy of Sciences ice

caps. Large ice caps such as these, which have a low sensitivity and

FIGURE 10. Projected change
in area and volume of the Vavilov
and Pioneer ice caps in response
to a regional and seasonal climate
change scenario for Severnaya
Zemlya, together with results
for a constant reference climate.
Vav and Pion refer to the Vavilov
and Pioneer ice caps, while gcm
and ref denote results for the
climate change scenario and the
reference climate, respectively.
Changes in actual and normal-
ized area and volume are shown.

FIGURE 11. Change in nor-
malized volume of the Vavilov,
Academy of Sciences, and Pio-
neer ice caps in response to
climate warming of 0.028C a�1,
calculated using the dynamic
and fixed geometry (FG) ap-
proaches, shown with results
from Oerlemans et al. (1998) of
the scaled response of a sample
of 12 glaciers and ice caps. See
text for explanations of hVisc and
hVsci. The dynamic response of
the Academy of Sciences Ice Cap
was not calculated.
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a long response time to climate change, will dominate changes in the

total volume of High Arctic ice masses and should, therefore, be

represented in any generalized scheme designed to predict changes in

global ice volume.
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