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PREDICTING SPECIES’ GEOGRAPHIC DISTRIBUTIONS BASED
ON ECOLOGICAL NICHE MODELING

A. TOWNSEND PETERSON1

Natural History Museum, The University of Kansas, Lawrence, Kansas 66045

Abstract. Recent developments in geographic information systems and their application
to conservation biology open doors to exciting new synthetic analyses. Exploration of these
possibilities, however, is limited by the quality of information available: most biodiversity
data are incomplete and characterized by biased sampling. Inferential procedures that pro-
vide robust and reliable predictions of species’ geographic distributions thus become critical
to biodiversity analyses. In this contribution, models of species’ ecological niches are de-
veloped using an artificial-intelligence algorithm, and projected onto geography to predict
species’ distributions. To test the validity of this approach, I used North American Breeding
Bird Survey data, with large sample sizes for many species. I omitted randomly selected
states from model building, and tested models using the omitted states. For the 34 species
tested, all predictions were highly statistically significant (all P , 0.001), indicating excellent
predictive ability. This inferential capacity opens doors to many synthetic analyses based
on primary point occurrence data.
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Predicción de Áreas de Distribución de Especies con Pase en Modelaje de Nichos Ecológicos

Resumen. Avances recientes en los sistemas de información geográfica y su aplicación
en la biologı́a de conservación presentan la posibilidad de analisis nuevos y sintéticos. La
exploración de estas posibilidades, de todas formas, se limita por la calidad de información
disponible: la gran mayoria de datos respecto a la diversidad biológica son incompletos y
sesgados. Por eso, procedimientos de inferencia que proveen predicciones robustas y con-
fiables de distribuciones de especies se hacen importantes para los análisis de la biodiver-
sidad. En esta contribución, se desarrollan modelos de los nichos ecológicos por medio de
un algoritmo de inteligencia artificial, y los proyeccionamos en la geografı́a para predecir
las distribuciones geográficas de especies. Para probar el método, se usan los datos del
North American Breeding Bird Survey, con tamaños de muestra grande. Se construyeron
modelos con base en 30 estados unidenses seleccionados al azar, y se probaron los modelos
con base en los 20 estados restantes. De las 34 especies que se analizaron, todos mostraron
un alto grado de significanza estadı́stica (todos P , 0.001), lo cual indica un alto grado de
predictividad. Esta capacidad de inferencia abre la puerta a varios analisis sintéticos con
base en puntos conocidos de ocurrencia de especies.

INTRODUCTION

Many geographic applications have been devel-
oped in recent years that offer exciting new pos-
sibilities for understanding biological diversity
(e.g., Scott et al. 1996). Geographic information
systems (GIS) make it possible to build maps of
species richness and endemism, to prioritize ar-
eas for conservation based on principles such as
complementarity, and to assess the completeness
of existing protected areas networks (e.g., Peter-
son et al. 2000). One of the most notable ex-
amples of these possibilities is that of Gap Anal-
ysis, an integrative program that links distribu-
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tional information with information on land use
and protection to identify priorities for conser-
vation action (Scott et al. 1996). The success of
such programs and approaches, however, de-
pends critically on the quality of distributional
information available, which has proven to be a
weak link in the process (Krohn 1996).

Biodiversity information nevertheless exists
in a difficult, fragmented system: sampling doc-
uments presence but rarely absence; sampling is
rarely systematically planned so as to permit de-
tailed statistical analysis; and institutional hold-
ings separate specimens in different countries
and regions (Peterson et al. 1998). Although oc-
currence data are now beginning to become
much more available thanks to innovative, In-
ternet-based technological developments (e.g.,

Downloaded From: https://bioone.org/journals/The-Condor on 01 May 2024
Terms of Use: https://bioone.org/terms-of-use



600 A. TOWNSEND PETERSON

Vieglais 1999), the need for development of in-
ferential approaches to interpreting biodiversity
information is clear (Soberón 1999). Hence, in
this contribution, I develop detailed statistical
tests of an artificial-intelligence-based approach
designed to predict species’ geographic distri-
butions.

MODELING ECOLOGICAL NICHES AND
PREDICTING GEOGRAPHIC
DISTRIBUTIONS

The fundamental ecological niche of a species
is a critical determinant of its distribution; as
such, it is defined in multidimensional ecological
space (MacArthur 1972). Several distinct inter-
pretations of ecological niches exist: most rele-
vant to the present contribution is that of Grin-
nell (1917), who focused on the conjunction of
ecological conditions within which a species is
able to maintain populations without immigra-
tion. Hutchinson (1959) provided the valuable
distinction between the fundamental niche,
which is the range of theoretical possibilities,
and the realized niche (that part which is actu-
ally occupied, given interactions with other spe-
cies such as competition). Although it can be
argued that only the realized niche is observable
in nature, by examining species across their en-
tire geographic distributions, species’ distribu-
tional possibilities can be observed against var-
ied community backgrounds, and thus a view of
the fundamental ecological niche can be assem-
bled (Peterson et al. 1999).

Several approaches have been used to model
species’ fundamental ecological niches. The
very simplest is BIOCLIM (Nix 1986), which
involves tallying species’ occurrences in cate-
gories for each environmental dimension, trim-
ming the extreme 5% of the distribution along
each ecological dimension, and taking the niche
as the conjunction of the trimmed ranges to pro-
duce a decision rule. BIOCLIM suffers generally
from high rates of commission error, or overpre-
diction (Stockwell and Peterson, unpubl.). Other
investigators have applied logistic regression to
the challenge of combining environmental vari-
ables into predictions of presence and absence
(e.g., Austin et al. 1990).

The Genetic Algorithm for Rule-set Prediction
(GARP) includes several distinct algorithms in
an iterative, artificial-intelligence-based ap-
proach (Stockwell and Noble 1992, Stockwell
and Peters 1999). Here, individual algorithms

(e.g., BIOCLIM, logistic regression) are used to
produce component ‘‘rules’’ in a broader rule-
set, and hence portions of the species’ distribu-
tion may be determined as within or without its
niche, based on different rules from several al-
gorithms. As such, GARP is a superset of other
approaches, and should always have greater pre-
dictive ability than any one of them. Initial test-
ing of GARP has indicated excellent predictive
ability and insensitivity to BIOCLIM’s problems
with dimensionality of environmental data (Pe-
terson and Cohoon 1999, Peterson et al., in press
a, b; Stockwell and Peterson, in press).

Two general types of error enter into such
niche modeling and geographic prediction ef-
forts (Fielding and Bell 1997). First, omission of
areas actually inhabited represents a failure of
the modeling effort to extend to all ecological
conditions under which the species is able to
maintain populations. Second, commission error
is that of including areas actually uninhabited;
this error includes two components: real com-
mission error, in which combinations of ecolog-
ical conditions not actually within the species’
niche are included, and apparent commission er-
ror, which results from species’ absences owing
to interspecific interactions (the difference be-
tween realized and fundamental niches, Mac-
Arthur 1972), as well as to historical factors,
such as limited colonization ability, speciation
patterns, and local extinction (Peterson et al.
1999). In this sense, apparent commission error
represents a real feature of species’ distribution-
al ecology: not all habitable areas are inhabited
(Peterson et al. 1999). The purpose of the pre-
sent contribution is to put the GARP algorithm
to a rigorous test with North American birds.

METHODS

Distributional data for four genera of passerine
birds (Catharus, Dendroica, Toxostoma, and
Vireo) were selected for analysis based on their
high species richness, distribution in regions
well covered by the North American Breeding
Bird Survey (http://www.mbr-pwrc.usgs.gov/
bbs/bbs.html), and ease of detection in visual/
auditory surveys. The Breeding Bird Survey
data offer relatively uniform coverage of the
continent, avoiding some of the challenges pre-
sented by museum specimen data in terms of
uneven sampling (Peterson et al. 1998). Data
points were extracted as presences (in any year)
or absences (in all years) at the level of routes,
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FIGURE 1. Map showing 20 states (in black) chosen randomly for testing distributional models.

and reduced to unique latitude-longitude com-
binations for each species. Thirty U.S. states
were chosen at random for model development
(‘‘training data,’’ regardless of whether the spe-
cies had been recorded from the state); data from
the remaining 20 states were set aside for statis-
tical testing of models (‘‘test data,’’ Fig. 1); this
ratio of training and test sample sizes was cho-
sen so that in general more than 10 and 30 oc-
currence points would be available for testing
and training models, respectively. This scheme
is reasonable, given that the probability of de-
tection of a particular species in one state in no
way affects the probability of its detection in
another state.

Four species of Catharus, 18 of Dendroica, 7
of Toxostoma, and 12 of Vireo were available in
the data set, although 7 species had to be omitted
because they did not occur in both training and
test data sets (Catharus minimus, Dendroica
chrysoparia, Toxostoma longirostre, T. redivi-
vum, Vireo altiloquus, V. atricapillus, and V. fla-
voviridis). Training data were analyzed for North
America with a 50 3 50 km pixel resolution
using the web-based GARP facility (http://
biodi.sdsc.edu/), including coverages of (1–4)
mean and standard deviation of annual mean
precipitation and annual mean temperature, (5)
life zones, (6) wetlands, (7) vegetation types,
and (8) soil types. Variable combinations pre-
dicted present by the GARP rules were identified
in the test states and used to predict species’

occurrences in those states. Resulting geograph-
ic predictions were exported as ASCII raster grid
files for use in ArcView (version 3.1).

In ArcView, the test occurrence data were
overlain on the predictions for the 20 test states.
Numbers of points correctly and incorrectly pre-
dicted by GARP were used as observed values.
Expected numbers were taken as the test sample
size multiplied by the proportional area predict-
ed present in test states. A chi-square analysis
for each species was used to assess model sig-
nificance. To permit visualization of the ecolog-
ical niche model, I crossed the eight ecological
coverages (Combine option in ArcView) with
the distributional prediction to produce a table
of predicted presences and absences across en-
vironmental combinations.

RESULTS

Ecological niche models for each species
showed restriction relative to the universe of
ecological combinations available across North
America. For example, the Brown Thrasher (To-
xostoma rufum) was modeled to focus its distri-
bution in relatively warm, yet relatively dry por-
tions of the continent (Fig. 2). Similar visuali-
zations of ecological distributions were devel-
oped for other ecological dimensions, and for
each species.

Geographic distributions for all 34 species in
the analysis were highly significantly predicted
in the test states. For example, of 741 test points
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FIGURE 2. Two-dimensional visualization of the
ecological niche of the Brown Thrasher (Toxostoma
rufum), in which the availability of combinations of
annual mean temperature and annual precipitation
(both rescaled between 0 and 254) across North Amer-
ica is shown with the black outline, and the combi-
nations predicted habitable for the species are shown
as black squares.

FIGURE 3. Example map of geographic predictions for Brown Thrasher (Toxostoma rufum). Black areas
represent areas of predicted presence; open circles represent training points used to develop the model; and
dotted circles represent test points used to test model accuracy.

for Brown Thrashers, 715 were correctly pre-
dicted, even though only 39% of the 20-state test
area was predicted present (Fig. 3), and so only
290 points would have been correctly predicted
by a random model. Although most range limits
are accurately delimited in the distributional pre-
diction, an area of overprediction runs from the
southwestern extreme of the species’ distribu-
tion south into northern Mexico; here, other To-
xostoma species are present, and this is therefore
another example of stability of ecological niches
on evolutionary time scales (Peterson et al.
1999). This model was statistically significant at
P , 102222, and hence it is highly likely that the
model is accurately evaluating dimensions of the
species’ ecological requirements. Significance
levels for all species ranged between 102245 and
1023 (Table 1).

Relationships between model quality and
sample size (Fig. 4) were strong (simple linear
regression, P , 0.05). Small chi-square values
were associated with small sample sizes in both
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TABLE 1. Summary of distributional predictions and significance tests for 34 species in the genera Catharus,
Dendroica, Toxostoma, and Vireo. ntrain 5 training sample size, ntest 5 test sample size, % correct 5 percentage
of test points correctly predicted, Apresent 5 area predicted present (in 50 3 50 km pixel units), and Aabsent 5 area
predicted absent (in pixel units).

Species ntrain ntest % correct Apresent Aabsent x2 P

Catharus fuscescens
Catharus guttatus
Catharus ustulatus
Dendroica caerulescens
Dendrica castanea

526
599
394
486
266

277
302
246
97
14

93
75
68
62
95

281
183
173
201
164

285
383
393
364
402

210
250
162
176

34

2.4 3 10246

6.3 3 10255

7.9 3 10236

7.5 3 10239

3.6 3 1028

Dendroica cerulea
Dendroica discolor
Dendroica dominica
Dendroica fusca
Dendroica graciae

267
576
410
532
24

127
353
251
111

20

89
95
88
83

100

155
185
114
225

83

411
381
451
340
482

281
691
886
144

40

1.2 3 10261

8.0 3 102151

5.3 3 102193

6.9 3 10232

1.8 3 1029

Dendroica magnolia
Dendroica nigrescens
Dendroica occidentalis
Dendroica palmarum
Dendroica pensylvanica
Dendroica pinus

610
237
108
141
769
699

102
72
15

7
220
347

85
88

100
100

94
98

240
118
165
218
341
251

326
447
400
348
224
314

121
185

30
11

110
365

6.5 3 10227

6.5 3 10241

3.4 3 1027

3.8 3 1023

1.1 3 10224

5.6 3 10280

Dendroica striata
Dendroica tigrina
Dendroica townsendi
Dendroica virens
Toxostoma bendirei

239
300
174
697
33

75
22

107
150
28

96
96
65
96
86

144
78

127
371

82

422
488
439
195
484

10
123
152

76
127

6.5 3 1023

1.6 3 10227

1.2 3 10233

3.3 3 10217

2.3 3 10228

Toxostoma crissale
Toxostoma curvirostre
Toxostoma locontei
Toxostoma rufum
Vireo bellii

33
147
39

1611
242

32
46
14

741
145

93
100

95
95
95

90
79

115
221
116

476
487
451
345
450

170
148

55
1026

154

1.1 3 10237

8.5 3 10233

1.2 3 10212

1.7 3 102222

4.5 3 10234

Vireo flavifrons
Vireo gilvus
Vireo griseus
Vireo huttoni

944
1680
825
147

535
627
385
33

72
99
41
89

220
257
131

88

346
308
435
478

705
468
113
131

7.3 3 102154

2.3 3 102102

2.7 3 102245

3.0 3 10229

Vireo olivaceus
Vireo philadelphicus
Vireo solitarius
Vireo vicinior

1884
266

1135
37

743
12

284
17

100
76

100
96

222
128
200

91

343
438
366
475

581
41

310
66

5.9 3 102127

1.2 3 1029

4.6 3 10268

5.3 3 10215

training and test data sets. In this sense, although
all models were highly statistically significant,
building truly predictive models may often re-
quire 100 or more occurrence points in this par-
ticular geographic scenario and with these par-
ticular ecological coverages.

DISCUSSION

GARP modeling approaches were able to predict
species’ occurrences at high levels of statistical
significance in every species tested. This result
parallels those obtained for 25 species of tropi-
cal birds in Mexico (Peterson et al., in press a),
and suggests the generality of this tool. Com-
parisons with other algorithms are under devel-
opment, but GARP appears to outperform each
quite consistently (Stockwell and Peterson, un-

publ.). For example, a BIOCLIM model of To-
xostoma rufum distribution omitted more than
twice as many of the test points as the GARP
model discussed above, and overpredicted se-
verely in the northwestern portion of the spe-
cies’ distribution (Peterson, unpubl.), making for
a model that is clearly less predictive.

Development of robust algorithms for pre-
dicting species’ geographic distributions based
on point occurrence data opens doors to many
exciting approaches and analyses. Although the
present paper focuses on the well-known bird
fauna of North America, applications are feasi-
ble for any taxon in any region on Earth. On the
most basic level, then, given certain require-
ments as to sample size (Peterson et al. 1998),
locality information from the approximately 3 3
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FIGURE 4. Graph of chi-square values used to eval-
uate statistical significance of predicted geographic
distributions versus sample sizes used to (top) train (r2

5 0.38, n 5 34) and (bottom) test (r2 5 0.78, n 5 34)
the predictive models.

109 specimens in the world’s natural history mu-
seums can be put to use in developing distribu-
tional hypotheses for many tens of thousands of
species, providing a first view of species’ distri-
butions worldwide. Diverse tests have confirmed
that GARP is able to build highly predictive
models even given the spatial biases inherent in
specimen data (Peterson et al. 1999, Peterson et
al., in press a, b; Stockwell and Peterson, in
press).

Such an understanding has much to offer to
workers in organismal biology and species con-
servation. Species’ distributions can be modeled
to produce first-pass hypotheses that may be the
only usable information for many rare and poor-
ly known taxa. Intensively managed species’ po-
tential distributions can identify sites at which
reintroduction programs could be focused. Over-
laying many species’ predicted distributions al-
lows prediction of community composition for
any site in the region analyzed, and such cross-
species predictions allow identification of con-
servation priorities (Peterson et al. 2000) or as-
sessment of environmental impacts.
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