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ABSTRACT—The teeth of two megatooth macro-predatory shark species (Carcharocles chubutensis and Carcharocles
megalodon; Otodontidae, Chondrichthyes) occur within the Miocene Chesapeake Group of Maryland, U.S.A. Definitive
separation between all the teeth of Carcharocles chubutensis and Carcharocles megalodon is impossible because a complex
mosaic evolutionary continuum characterizes this transformation, particularly in the loss of lateral cusplets. The cuspleted
and uncuspleted teeth of Carcharocles spp. are designated as chronomorphs because there is wide overlap between them
both morphologically and chronologically. In the lower Miocene Beds (Shattuck Zones) 2–9 of the Calvert Formation
(representing approximately 3.2 million years, 20.2–17 Ma, Burdigalian) both cuspleted and uncuspleted teeth are present,
but cuspleted teeth predominate, constituting approximately 87% of the Carcharocles spp. teeth represented in our sample.
However, in the middle Miocene Beds 10–16A of the Calvert Formation (representing approximately 2.4 million years,
16.4–14 Ma, Langhian), there is a steady increase in the proportion of uncuspleted Carcharocles teeth. In the upper
Miocene Beds 21–24 of the St. Marys Formation (representing approximately 2.8 million years, 10.4–7.6 Ma, Tortonian),
lateral cusplets are nearly absent in Carcharocles teeth from our study area, with only a single specimen bearing lateral
cusplets. The dental transition between Carcharocles chubutensis and Carcharocles megalodon occurs within the Miocene
Chesapeake Group. Although this study helps to elucidate the timing of lateral cusplet loss in Carcharocles locally, the
rationale for this prolonged evolutionary transition remains unclear.
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INTRODUCTION

The Neogene megatooth shark Carcharocles megalodon
(Agassiz, 1843) has received much attention from both the
media as well as amateur and professional paleontologists
(Jordan and Hannibal, 1923; Kent, 1994; Gottfried et al., 1996;
Renz, 2002; Yabe et al., 2004; Aguilera et al., 2008; Pimiento
et al., 2010; Diedrich, 2013; Pimiento and Clements, 2014;
Pimiento and Balk, 2015). The large, serrated teeth of this
species, some up to 184 mm (over 7 inches) in vertical height

(Renz, 2002), drive this ongoing fascination. Currently, there
are several competing models for the evolution and systematic
placement of the megatooth sharks within the order Lamniformes
(Jordan and Hannibal, 1923; Casier, 1960; Glickman, 1964; Kent,
1994; Applegate and Espinosa-Arrubarrena, 1996; Gottfried
et al., 1996; Purdy, 1996; Zhelezko and Kozlov, 1999; Gottfried
and Fordyce, 2001; Nyberg et al., 2006; Ehret et al., 2009;
Pimiento et al., 2010; Siversson et al., 2015; Shimada et al.,
2017; Kent, 2018). Here, we follow Kent (2018) in adopting the
‘Carcharocles model’ in which the megatooth sharks represent a
separate lineage (†Otodontidae) from that leading to the extant
Carcharodon carcharias (Lamnidae), thus necessitating their pla-
cement in a separate genus (i.e., Carcharocles). This model
depicts otodontids as a chronospecific lineage from the Paleocene
(Otodus obliquus) to the Mio-Pliocene (C. megalodon; Ehret,
2010; Pimiento and Clements, 2014; Pimiento and Balk, 2015).
However, it is worth noting that the otodontid lineage extends
into the Cretaceous, with Cretalamna as the immediate ancestor
ofOtodus (Siverson, 1992; Zhelezko and Kozlov, 1999; Zhelezko,
2000; Ehret and Ebersole, 2014; Siversson et al., 2015; Ebersole
and Ehret, 2018).
Cappetta (2012) argued that the presence of serrations is not a

sufficient character to warrant a separate generic assignment, in
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reference to the transition from Otodus obliquus to Carcharocles
auriculatus. Consequently, Cappetta (2012) proposed the use of
three subgenera within Otodus to define this lineage. The subge-
nera are Otodus (Otodus), Otodus (Carcharocles), and Otodus
(Megaselachus). The first subgenus comprises the non-serrated
morphology: Otodus (Otodus) obliquus Agassiz, 1838. The
second refers to irregularly serrated teeth with lateral cusplets:
Otodus (Carcharocles) auriculatus (Blainville, 1818) and Otodus
(Carcharocles) angustidens (Agassiz, 1835). The third refers to
regularly serrated teeth with lateral cusplets reduced or absent
and a basal root margin that is parallel to the crown-root
margin on the labial face: Otodus (Megaselachus) chubutensis
(Ameghino, 1901) and Otodus (Megaselachus) megalodon. This
scheme is in essence a compromise between Jordan and Hannibal
(1923) and Glickman (1964), who originally described the genera
Carcharocles and Megaselachus, respectively. Jordan and Hanni-
bal (1923) erected the genus Carcharocles with C. auriculatus as
the type species, whereas Glickman (1964) proposed that the
species chubutensis and megalodon be placed within the genus
Megaselachus. However, we do not feel that the transition from
angustidens to chubutensis is as marked as suggested by Cappetta
(2012), given that the lineage represents a chronospecies with
very gradual morphological change through time. As such, we
choose to maintain a single genus for all serrated forms, given
that they are easily distinguished from Otodus obliquus, and use
the genus Carcharocles for subsequent taxa (C. auriculatus
through C. megalodon) because the description of Carcharocles
by Jordan and Hannibal (1923) precedes that of Megaselachus
by Glickman (1964).

The continually eroding sea cliffs along the western shore of
Chesapeake Bay (Calvert Cliffs, Maryland, U.S.A.), and also
the intermittent bluffs along some of its tributaries, provide the
best exposures of Miocene marine siliciclastic sediments in the
Atlantic Coastal Plain of eastern North America (Kidwell,
1984, 1989, 1997; Ward, 1992; Ward and Andrews, 2008; Visaggi
and Godfrey, 2010). These sediments of the Chesapeake Group
preserve (except for a few hiatal intervals; Fig. 1) a nearly com-
plete record of paleoenvironmental conditions and many of the
biotic constituents that inhabited the Salisbury Embayment
during parts of the Miocene epoch (approximately 20–8 Ma).
The teeth of two otodontid species, Carcharocles chubutensis
and Carcharocles megalodon, are found within the Miocene Che-
sapeake Group of Maryland, U.S.A. We agree with Kent (2018)
that C. chubutensis, derived from C. angustidens, is the immediate
ancestor of C. megalodon. Adult C. chubutensis teeth retain
lateral cusplets (also referred to as lateral denticles or secondary
cusps), whereas those of C. megalodon do not (Kent, 1994).
However, this transition is confounded by the morphological vari-
ation associated with the ontogeny of C. megalodon, in which
juveniles may or may not retain lateral cusplets (Applegate and
Espinosa-Arrubarrena, 1996; Pimiento et al., 2010). Further,
adult C. megalodon may retain lateral cusplets as a vestigial char-
acter (Perez et al., 2017). Thus, although the presence of lateral
cusplets is regarded as a definitive character for C. chubutensis,
this trait alone is not sufficient for distinguishing C. chubutensis
from C. megalodon (Kent, 1994).

Experienced collectors know (and a cursory examination of
museum collections substantiate the observation) that the cus-
pleted teeth of C. chubutensis become less common as one
ascends stratigraphically through these deposits, ultimately
becoming replaced by the uncuspleted teeth of C. megalodon.
However, definitive separation between the teeth of
C. chubutensis and C. megalodon is impossible because a
complex mosaic evolutionary continuum appears to characterize
the transformation from cuspleted to uncuspleted teeth. Conse-
quently, the cuspleted and uncuspleted teeth of these Carcharo-
cles spp. are designated as chronomorphs because they show
wide overlap both morphologically and chronologically within

the Chesapeake Group in Maryland. These Miocene sediments
appear to capture the time interval during which uncuspleted
chronomorph C. megalodon teeth replaced the cuspleted teeth
of C. chubutensis.

Hitherto, no attempt has been made to describe in any quanti-
tative way this morphological/evolutionary transformation by
providing a census of teeth found in the Chesapeake Group
(Kent, 2018). In spite of variations in abundance and distribution
(e.g., in situ Carcharocles teeth are not known from the Eastover
Formation in the collections of either the Calvert Marine
Museum or the United States National Museum of Natural
History, the Smithsonian Institution), this study seeks to docu-
ment the transition from a C. chubutensis chronomorph-domi-
nated population to one dominated by C. megalodon. The
analysis is somewhat complicated by the fact that lateral cusps
do not occur as an all-or-none character state. Rather, cusplets
are variable in their morphology, and truly vestigial cusplets are
common (Kimmel and Purdy, 1984; Kent, 1994). Thus, it seems
impossible to draw a sharp line between C. chubutensis and
C. megalodon. For this reason, the focus of this study is not on
attempting to create a consistent definitional differentiation
between these two species, but rather on documenting the
changes in the presence or absence of lateral cusplets on Carch-
arocles spp. teeth within the Calvert, Choptank, and St. Marys for-
mations and the duration of this transformation.

GEOLOGICAL SETTING

The Miocene stratigraphy of Calvert Cliffs and southern Mary-
land has been described in detail by Harris (1893), Shattuck
(1904), Gernant (1971), Gibson (1983), Kidwell (1984), Ward
and Andrews (2008), Kidwell et al. (2015), Powars et al. (2015),
and Vogt et al. (2018) (Fig. 1). The Miocene exposures within
our study area (Fig. 2) comprise three formations, in ascending
order: the Calvert, Choptank, and St. Marys (Fig. 1). There is con-
sensus that these siliciclastic sediments record an overall shallow-
ing pattern that occurred within the Salisbury Embayment during
the Miocene (Gernant et al., 1971; Blackwelder and Ward, 1976;
Kidwell, 1984, 1989, 1997;Ward and Strickland, 1985;Ward, 1992;
Ward and Andrews, 2008; Visaggi and Godfrey, 2010). Multiple
small-scale transgressive-regressive cycles occurred within the
aforementioned overall shallowing. Paleoenvironmental com-
plexity, as well as erosional and hiatal surfaces, has been utilized
to establish intraformational units. Shattuck (1904) termed these
intraformational units ‘zones,’ which Ward and Andrews (2008)
revised and formalized as ‘beds.’ The Calvert Formation is com-
posed of the Fairhaven Member (which includes Beds 1, 2–3A,
Popes Creek Sand, and 3B) and the Plum Point Member (Beds
4–9, 10–11, 12–13, and 14–16A). The Choptank Formation consists
of the Drumcliff Member (Beds 16B and 17), the St. Leonard
Member (Bed 18), and the Boston Cliffs Member (Bed 19).
According to Ward and Andrews (2008), the St. Marys Formation
is composed of the Conoy Member (Bed 20), the Little Cove Point
Member (Beds 21, 22, and 23), and the Windmill Point Member
(Bed 24). Weems advocates keeping the Conoy Member (Bed
20) in the Choptank Formation as originally proposed and
defined by Shattuck (1904). Either way, the choice of stratigraphic
hierarchy does not affect the results of this study. The inferred ages
for each of these beds can be seen in Table 1. The age of Bed 1
remains poorly constrained within the early Miocene, but no
teeth of Carcharocles have been found there, so the precise age
of this bed is not relevant to this study.

MATERIALS AND METHODS

The study area in southern Maryland encompasses an area of
approximately 4,000 km2 (Fig. 2). The fossil shark teeth used in
this study were found along Calvert Cliffs (Chesapeake Bay,
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Maryland), as well as along bluffs near Popes Creek (Potomac
River, Maryland), Langley Bluff (Chesapeake Bay, Maryland),
and Chancellors Point (St. Mary’s River, Maryland; Fig. 2). Includ-
ing the Popes Creek, Langley Bluff, and Chancellors Point
localities extends the spatial range of our sample, but more impor-
tantly it extends the temporal range of this study. The age of each
bed was inferred from Figure 1 and is approximate given the uncer-
tainties that still accompany these stratigraphic subdivisions.
The oldest Maryland Miocene sediments crop out along Lyons

Creek and nearby portions of the Patuxent River (Zones 1, 2, and
3A of Shattuck, 1904). The Eocene Nanjemoy Formation
underlies the Miocene Calvert Formation at both Lyons Creek
and Popes Creek and provides a lower boundary and convenient

starting point for the morphological differences documented
here. There is both a depositional and a major temporal hiatus
between the Eocene Nanjemoy Formation and the Miocene
Calvert Formation at both localities. A decline in eustatic sea
level during the Oligocene accounts for the absence of sediments
from that time (Edwards and Powars, 2003; Browning et al., 2009;
Edwards et al., 2009).Carcharocles chubutensis andC. megalodon
teeth are not found in the Nanjemoy Formation. However, teeth
from the otodontid species Carcharocles auriculatus (Fig. 3A), a
predecessor in theC. chubutensis andC. megalodon lineage (Cap-
petta, 1987; Kent, 1994), are present and provide an outgroup to
anchor the polarity of the morphological change seen during the
Miocene.

FIGURE 1. Stratigraphic column of the Calvert Cliffs. Age estimates established on the basis of various biostratigraphic indices and the likelihood that
the ∼405 ka orbital eccentricity cycle controlled depositional cyclicity.
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All the teeth used in this study were found either in situ or on
beaches with inferable stratigraphic context. In other words, the
teeth were sourced directly from the cliffs, in fallen blocks from
the cliffs for which bed origins were unequivocal, or as beach
float from localities that have limited exposures of only specific
beds. Beaches that have inferable stratigraphic context include
Popes Creek (Woodstock Member of the Nanjemoy Formation
and Popes Creek Sand plus Bed 3B of the Calvert Formation),
Fairhaven (Bed 3B, Calvert Formation), Driftwood Beach
(Beds 21–23, St. Marys Formation), and Chancellors Point (Bed
24, St. Marys Formation). The limited stratigraphic exposures at
these sites reasonably constrain the source of the teeth found

therein. Time bins for cusplet presence versus absence (P/A)
over time were established based on these specimens, which
have unequivocal or reasonably inferable Miocene origins in
specific intraformational units (beds) as established by Shattuck
(1904) and updated by Ward and Andrews (2008).

The teeth used in this study are reposited physically at the
Calvert Marine Museum (CMM) and the National Museum of
Natural History of the Smithsonian Institution (USNM), or digi-
tally through the myFOSSIL online database (www.myfossil.org)
(list of specimens used in this study is provided in Table S1). The
data set was limited to well-preserved teeth for which strati-
graphic context is known. In order to assess cusplet P/A and

FIGURE 2. Map of the northern Chesapeake Bay region of Maryland and Virginia showing the localities incorporated in this study: Calvert Cliffs,
Popes Creek, Langley Bluff, and Chancellors Point. Modified from Visaggi and Godfrey (2010).
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size, the junction between the enameloid serrated cutting edge
and the tooth root had to be intact, at least on one side. Within
the study area, C. chubutensis and C. megalodon cusplet P/A
forms a morphological continuum. Consequently, determining
cusplet P/Awas somewhat subjective when it came to transitional
teeth that may not have been truly cuspleted, because these teeth
still vestigially retain this character (Fig. 3). In an attempt to
approach objectivity, the mathematical definition of a cusp was
used (i.e., a point where two curves intersect). Thus, if there
was no pronounced ‘point’ at the cutting edge/root junction,
then the tooth was deemed to be uncuspleted. Also, if the
‘cusplet’ was reduced to a few pronounced serrations, then the
tooth was recorded as uncuspleted, reflecting the vestigial
nature of that character. In spite of our efforts to objectively
assess cusplet P/A, scoring teeth thus posed a challenge because
of the gradational expression of this feature.
All teeth that met the requirements are recorded in Table 1.

Among the 359 teeth with sufficient stratigraphic information,
only 271 (75%) are preserved well enough to determine cusplet
P/A. The percentage of cuspleted versus uncuspleted teeth
through time is shown in Figure 4.
In addition to cusplet P/A, whether a tooth would be suitable

for a two-dimensional (2D) landmark analysis in the future was
also recorded. Of the 359 teeth initially recorded, only 179
(50%) are preserved well enough to reliably place landmarks
(Table 1).
A traditional morphometric approach was used to assess

whether or not the P/A of cusplets is related to crown height
(CH) or the crown height to crown width ratio (CH:CW).
Measurements of every tooth that could be assessed on the
basis of cusplet P/A were taken (Table S1). However, if the
crown was broken in a way that would require inferring the CH
or CW, then the tooth was not included for this portion of the
study. These stipulations further limited the data set available
for this portion to 165 teeth for CH alone and 156 teeth for
both CH and CW. Because there is currently no standard (or
metric) for determining tooth position (which would be necessary
to identify position in the jaw or estimate the age of the shark),
this analysis only sought to find a relationship between cusplet
P/A and CH as well as cusplet P/A and CH:CW, rather than a
relationship between cusplet P/A and ontogenetic development
(age) or cusplet P/A and tooth position within the jaw.

Abbreviations

Institutional Abbreviations—CMM, Calvert Marine Museum,
Solomons, Maryland, U.S.A.; USNM, National Museum of
Natural History of the Smithsonian Institution, Washington,
D.C., U.S.A.

Anatomical Abbreviations—CH, crown height; CW, crown
width; CH:CW, crown height to crown width ratio; P/A, presence
versus absence; SHH, sonic hedgehog pathway; TL, total body
length.

RESULTS

Figure 4 shows the results of the cusplet P/A analysis. The
highly variable numbers of teeth from the various bed bins is
attributed to varying paleoenvironments and preservational
and/or collecting bias (Visaggi and Godfrey, 2010).
All C. auriculatus teeth from the lower Eocene Woodstock

Member of the Nanjemoy Formation are cuspleted (Fig. 4, left-
most column). In the lower Miocene Beds 2–9 of the Calvert For-
mation (Shattuck Zones 2–9, an interval of approximately 3.2
million years, 20.2–17Ma, Aquitanian and Burdigalian), both cus-
pleted and uncuspleted teeth are present but cuspleted teeth pre-
dominate, constituting approximately 86% of the Carcharocles
spp. teeth represented in our sample. However, in the middle
Miocene Beds 10–16A (Shattuck Zones 10–16, an interval of
approximately 2.4 million years, 16.4–14 Ma, Langhian), there
was a steady increase in the proportion of uncuspleted
C. megalodon teeth (Fig. 4). If the tooth sample accurately reflects
the time of morphological transition, then most of the change
from a cuspleted C. chubutensis chronomorph population to an
uncuspleted-dominated C. megalodon chronomorph population
took place over a period of about 2.4 million years (from approxi-
mately 16.4–14 Ma; Fig. 4). Carcharocles megalodon teeth lacking
cusplets are known from the lowermost beds of the Calvert For-
mation, whereas only a single tooth with cusplets was known in
our sample from the St. Marys Formation (Fig. 4, right-most
columns). The paucity of Carcharocles spp. teeth among our
samples from the Choptank Formation precludes assessing
cusplet P/A in this formation, given that only two teeth have
been recovered. Beginning at approximately 10.4 Ma, lateral cus-
plets are nearly absent in C. megalodon teeth from the Tortonian
St. Marys Formation in our study area. It is worth noting that the
only tooth bearing a lateral cusplet from the St. Marys Formation
is a posterior tooth (CMM-V-6007).

DISCUSSION

From a macroevolutionary perspective, the gradual pro-
gression in tooth morphology from the Paleocene Otodus obli-
quus to the Mio-Pliocene Carcharocles megalodon could be
linked to a shift in diet and feeding style. Over this roughly 50-
million-year interval, teeth of this lineage shift from, arguably, a
tearing-grasping type to a cutting-dominant dentition. Teeth of
Otodus obliquus have a complete cutting edge lacking serrations,

TABLE 1. The beds as they were grouped for this study, with the inferred time duration for each.

Formation Bed(s) Estimated age (Ma) Total TUC Cusplet P/A TCH TLM

Nanjemoy (upper Woodstock Member) 50.5–48 9 8 8 (100%) 6 3
Calvert 2–3B 20.2–19.1 18.4–17.6 48 38 33 (86.8%) 17 22
Calvert 4–9 17.5–17 7 5 4 (80%) 2 4
Calvert 10–11 16.4–15.6 43 35 18 (51.4%) 22 21
Calvert 12–13 15.5–14.6 178 130 48 (36.9%) 81 95
Calvert 14–16A 14.5–14 34 24 8 (33.3%) 11 10
Choptank 19 12.6–12.2 2 2 0 (0%) 1 1
St. Marys 21–23 10.4–9 36 28 1 (3.6%) 24 25
St. Marys 24 8.5–7.6 2 1 0 (0%) 1 1
Total 359 271 (75%) 120 (44%) 165 (61%) 179 (50%)

Total refers to the total number of in situ teeth available. TUC refers to the total number of teeth that can be assessed on the basis of lateral cusplet
presence versus absence. TCH refers to the total number of teeth that are well enough preserved to measure crown height (only teeth that could be
assessed for cusplet presence versus absence were included in TCH). Cusplet P/A refers to the total number of teeth with lateral cusplets. TLM refers to
the number of in situ teeth that potentially could be used in a landmarks study. Detailed specimen data is available in Table S1.
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FIGURE 3. Carcharocles spp. teeth, all in labial view. A, CMM-V-4933, C. auriculatus, Eocene, Nanjemoy Formation, Popes Creek, Charles County,
Maryland, U.S.A. Collected byW. Counterman.B, CMM-V-5233,C. chubutensis, Miocene, Calvert Formation, Popes Creek, Charles County, Maryland,
U.S.A. Collected by J. Osborne.C, CMM-V-818,C. chubutensis, Miocene, Calvert Formation, Popes Creek, Charles County, Maryland, U.S.A. Collected
by S. Bentley. D, CMM-V-86, C. chubutensis, Miocene, Calvert Formation, Popes Creek, Charles County, Maryland, U.S.A. Collected by D. Bohaska
and N. Riker. E, CMM-V-386, Carcharocles sp., distal lateral cusplet present, mesial one not. Miocene, Calvert Formation, Bed 12, Calvert County,
Maryland, U.S.A. Collected by W. Ashby. F, CMM-V-1475, Carcharocles sp., distal lateral cusplet present, mesial one reduced. Miocene, Calvert
Cliffs, Calvert County, Maryland, U.S.A. Collected by W. Holliman. G, CMM-V-1469, Carcharocles sp., lateral cusplet presence uncertain. Miocene,
Scientists Cliffs, Calvert County, Maryland, U.S.A. Collected by W. Holliman. H, CMM-V-399, C. megalodon, Miocene, Calvert Formation, Bed 12,
South of Parkers Creek, Calvert County, Maryland, U.S.A. Collected by W. Ashby. I, CMM-V-4945, C. megalodon, Miocene, Calvert Formation,
North of Parkers Creek, Calvert County, Maryland, U.S.A. Collected by J. Nance. J, CMM-V-1304, C. chubutensis, Miocene, Calvert Formation,
Popes Creek, Charles County, Maryland, U.S.A. Collected by D. Bohaska. K, CMM-V-92, C. megalodon, Miocene, Calvert Formation, Bed 12,
South of Parkers Creek, Calvert County, Maryland, U.S.A. Collected by W. Ashby. L, CMM-V-943, C. megalodon, Miocene, Calvert Formation,
Bed 14, Governor Run, Calvert County, Maryland, U.S.A. Collected by M. Gottfried. Scale bar equals 2 cm.
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a robust root and crown, and broad, triangular lateral cusplets. In
stark contrast, teeth of Carcharocles megalodon have fully ser-
rated cutting edges, a less robust root, and lack lateral cusplets.
The Eocene species, Carcharocles auriculatus, represents the

first of this lineage to have a fully serrated cutting edge
(Fig. 3A), which is coincident with the origin of cetaceans in the
early Eocene (Uhen, 2010). Although, locally, serrated
C. auriculatus teeth precede the appearance of cetaceans, given
that archaeocetes first occur in the Chesapeake Bay region in
the middle Eocene Piney Point Formation (Weems et al., 2011;
Godfrey et al., 2013). Thus, at this early evolutionary stage, it
seems more plausible that C. auriculatus was feeding primarily
on large teleosts and/or other chondrichthyans. No specimens
of Carcharocles angustidens are included in this study, but it is
worth noting that in this Oligocene species, serrations become
more uniform and the root begins to flatten (Kent, 1994, 2018);
this is coincident with the origin of mysticetes in the early Oligo-
cene (Fordyce, 1980; Uhen, 2010). Further, over the course of this
evolutionary progression from O. obliquus to C. megalodon,
there is an apparent increase in maximum overall tooth size,
although no formal study has been conducted to document this.
Cetaceans also exhibit an increase in body size beginning in the
Oligocene (Pyenson and Sponberg, 2011; Slater et al., 2011),
coincident with the apparent increase in Carcharocles tooth
size. A number of studies have documented evidence of predation
on cetaceans by Carcharocles megalodon (Deméré and Cerutti,
1982; Purdy et al., 2001; Renz, 2002; Godfrey and Altman,
2005; Aguilera et al., 2008; Kallal et al., 2010; Collareta et al.,
2017; Godfrey et al., 2018; Kent, 2018), which leaves little
doubt that the development of tooth morphology in the Carch-
arocles lineage is closely tied to the evolution of cetaceans, but
this does not fully explain the role of lateral cusplets.

The fundamental paper on shark tooth biomechanics by Fraz-
zetta (1988) outlined two functions for lateral cusplets. One func-
tion would be enhancing grasping ability, which Frazzetta (1988)
noted is more typical of slender, lingually recurved cusplets (e.g.,
Odontaspis). The other possible function is to fill the tooth gap
between the widely spaced teeth, a character observed in many
lamniform sharks, which is more typical of a broad, triangular
morphology (e.g., O. obliquus and C. auriculatus). The tooth
gap in chondrichthyan dentitions occurs as a result of the tooth
formation process in lamniform sharks known as single file
addition (Smith et al., 2012). Filling this tooth gap would
prevent small food items from getting trapped between the
teeth, which could help to retain food and potentially reduce
the likelihood of gum or tooth pathology. If this were indeed
the function, the loss of lateral cusplets could actually be
viewed as being counterproductive.
Given that lateral cusplets are characteristically reduced and

rounded in C. chubutensis (Fig. 3), it could be argued that
lateral cusplets had already been rendered non-functional by
the early Miocene. If this is the case, it is difficult to rationalize
a selective pressure that would have driven this final stage in
the morphological development of the Carcharocles megalodon
dentition. However, it would help to explain why this transition
from cuspleted to uncuspleted teeth was drawn out over
roughly 12.6 million years (20.2–7.6 Ma). A similar trend was
observed in the transition from Cretoxyrhina vraconensis (Zhe-
lezko, 2000) to Cretoxyrhina mantelli (Agassiz, 1843), in which
anterior teeth devoid of cusplets appear at the Albian–Cenoma-
nian boundary, yet teeth bearing cusplets can still be observed
into the beginning of the Coniacian (Siverson et al., 2013).
However, no explanation has been suggested as to what drove
the loss of lateral cusplets.

FIGURE 4. Histogram depicting the percentage of cuspleted Carcharocles spp. teeth through time. The width of each bar reflects the time elapsed. The
light gray represents percent uncuspleted, and the dark gray represents percent cuspleted. The percent number above each bar (time bin) is the per-
centage of cuspleted teeth in that sample. The larger number above the percent number is the total tooth sample size available that could be assessed in
terms of cusplet presence versus absence (TUC) for each particular group of beds (time bins).
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The greatest rate of change in terms of lateral cusplet P/A was
in Shattuck Zones 10–16, an interval of approximately 2.4 million
years, 16.4–14 Ma. This interval of time is coincident with the
Middle Miocene Climatic Optimum (MMCO; Zachos et al.,
2001, 2008; Vogt and Parrish, 2012), and a peak not only in
C. megalodon abundance (Fig. 4) but in chondrichthyan taxa in
general (Visaggi and Godfrey, 2010), as well as in cetaceans
(Uhen and Pyenson, 2007; Uhen, 2010). This increase in
Carcharocles tooth abundance may imply an increase in the
local population of C. megalodon, which would have required
increased rates of reproduction and, subsequently, increased
genetic diversity. Although this peak in abundance is coeval
with the MMCO, the variations in abundance could be attributed
to a sampling bias, given that there has been greater collecting
effort in localities that expose Shattuck Zones 10–16.

Yet another consideration for the loss of lateral cusplets is the
gene expression involved in odontogenesis. There is significant
research indicating that tooth development in all vertebrates
over the past 450 million years is linked to the sonic hedgehog
(SHH) pathway (Smith et al., 2009; Maisey et al., 2013; Rasch
et al., 2016). During the embryonic development of the catshark
(Scyliorhinus), a superficial layer of epithelial cells makes up an
odontogenic band from which teeth form (Smith et al., 2009;
Rasch et al., 2016; Seppala et al., 2017). The SHH pathway and
enamel knot dictate the position and shape of a tooth within
this odontogenic band. Rasch et al. (2016) found that teeth in Scy-
liorhinus are simple in shape and progressively become more
complex as the individual approaches adulthood. Further, tooth
formation is initiated in the anterior of the jaw and progresses
posterolaterally, with greater complexity (i.e., more lateral cus-
plets) in lateral positions. Perhaps the gradual loss of lateral cus-
plets in Carcharocles documented herein is not related to
function, but rather due to this feature being lost earlier during
ontogeny as a result of changes in the SHH pathway. The pres-
ence of both tooth morphologies within an individual can be
seen in Figure 5, which supports the hypothesis that lateral
cusplet presence is linked to ontogeny.

In Carcharodon carcharias, lateral cusplets first develop on the
distal edge of the principal cusp in the mid-term embryo and then
on both sides of the principal cusp in the full-term embryo
(Tomita et al., 2017). Lateral cusplets are retained after birth,
but eventually lost during ontogeny (Hubbell, 1996). Bemis
et al. (2015) have argued that lateral cusplets in C. carcharias
should be termed ‘serrational cusplets’ because they form as
part of a series of serrations associated with the principal cusp.
However, in other lamniforms, lateral cusplets form independent
of the principal cusp. Thus, the loss of lateral cusplets/serrational
cusplets in C. carcharias may not be analogous to that of Carch-
arocles megalodon; however, in both instances, there is a clear
link to ontogeny.

Taking into account the overall shift in tooth morphology from
O. obliquus to C. megalodon, it is apparent that there is a long-
term transition in tooth functional morphology. Evidence of pre-
dation on cetaceans by Carcharocles spp. (Purdy et al., 2001;
Aguilera et al., 2008; Collareta et al., 2017; Godfrey et al., 2018;
Kent, 2018) and the conspicuous increase of body size in ceta-
ceans since the Oligocene (Pyenson and Sponberg, 2011; Slater
et al., 2011, 2017) supports the idea of an evolutionary driver
for the overall shift in tooth functional morphology from
Otodus obliquus to Carcharocles megalodon. However, the
reduced and rounded lateral cusplets of C. chubutensis would
likely not have functioned for either grasping or filling of a
tooth gap, which makes it difficult to evoke an evolutionary
driver for the loss of lateral cusplets from C. chubutensis to
C. megalodon. Rather, the gradual loss of lateral cusplets may
be more closely tied to changes in the SHH pathway, resulting
in the more derived morphology lacking lateral cusplets occurring
earlier during ontogeny. Regardless, the explanations for why

lateral cusplets were gradually reduced, and eventually lost
entirely, remain speculative.

Is the Observed Trend Real?

There are three possible explanations for why the results
(Fig. 4) indicate that there is a gradual loss of lateral cusplets in
this lineage. The first would be that our sampling has captured
the actual rate of this morphological transition in the Carcharo-
cles lineage. The other two explanations would be results of
sampling bias: the first of which would be an uneven sampling
of teeth by age of individual sharks and the second would be an
uneven sampling of teeth by position in the jaw. Applegate and
Espinosa-Arrubarrena (1996) and Pimiento et al. (2010) have
proposed that juvenile C. megalodon retained lateral cusplets
but then lost them during ontogenetic development. It is also
possible that Carcharocles spp. lost lateral cusplets at different
rates in different parts of its dental sequence (Figs. 3 and 5). If
the various beds have a predominance of either juveniles versus
adults or anterior versus posterior teeth, then the results could
potentially not reflect the evolutionary transition that is herein
proposed.

The reflection of phylogeny in the ontogeny of an organism is
the basis of evolutionary developmental biology (Hall, 2012).
Thus, the loss of lateral cusplets during individual development
(i.e., ontogeny) may reflect the evolutionary history (i.e., phylo-
geny) of a species. During the development of modern mysticetes,
fetal whales develop tooth buds in utero, then transition to teeth
and baleen, and finally only baleen, all before birth (Ishikawa and
Amasaki, 1995; Ishikawa et al., 1999; Deméré et al., 2008). This
developmental progression is thought to reflect the evolutionary
transformation that occurred in the mysticete whale lineage
(Deméré et al., 2008). Similarly, the loss of lateral cusplets
throughout the ontogeny of C. megalodon may also be an atavis-
tic character that illustrates the evolutionary progression within
the Carcharocles lineage.

Alternatively, a tooth position bias could have obscured our
data set, given that the P/A of lateral cusplets is more complicated
in posterior positions. In posterolateral tooth positions, as teeth
become increasingly more asymmetric, lateral cusplets on the
mesial and distal edges become disproportionate. Specifically,
the cusplet on the distal edge becomes more pronounced than
that of the mesial edge (Fig. 3E, F). This could be attributed to
a number of things: tooth size, tooth shape, or replacement rate.
Personal observations of modern dentitions of Carcharodon
carcharias in the private collection of Gordon Hubbell revealed
that posterior tooth positions are more crowded and retain juven-
ile characteristics longer relative to anterior teeth. This may
explain why the posterior tooth found in the upper Miocene
St. Marys Formation still retained a lateral cusplet.

Purdy et al. (2001) also noted the disproportionate presence of
lateral cusplets in an associated dentition of Carcharocles chubut-
ensis (USNM 411881, referred to as Carcharodon subauriculatus
by Purdy et al., 2001). This specimen lacks lateral cusplets in
anterior tooth positions but retains well-developed cusplets in
posterolateral tooth positions. Purdy et al. (2001:figs. 35, 36) pro-
vided a partial reconstruction of this dentition, but it is unclear
why they chose to omit the majority of the dentition. Further,
the reconstruction is made under the assumption that this denti-
tion belonged to an ancestral species of the living great white;
however, many researchers now consider Carcharocles and
Carcharodon to belong to separate families: Otodontidae and
Lamnidae, respectively. As such, a novel reconstruction of the
first tooth rows is provided in Figure 5 to better illustrate the vari-
ation in lateral cusplet presence relative to tooth position.

The difficulty in determining if a bias related to either ontogeny
or tooth position exists can be attributed to the necessity of iden-
tifying isolated teeth to their original tooth position. Based on the

Perez et al.—Carcharocles evolution (e1546732-8)

Downloaded From: https://bioone.org/journals/Journal-of-Vertebrate-Paleontology on 18 May 2024
Terms of Use: https://bioone.org/terms-of-use



FIGURE 5. Carcharocles chubutensis, USNM
411881, dentition in lingual view from the
Pungo River Formation of the Lee Creek
Mine in Aurora, North Carolina. Outlines are
used to denote missing or broken teeth. Scale
bar equals 5 cm.
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few known partially associated C. megalodon dentitions and the
use of the C. carcharias dentition as a rough analogue, it is poss-
ible to estimate the relative tooth position within a dentition
(Gottfried et al., 1996; Shimada, 2003; Pimiento et al., 2010).
Shimada (2003) developed a series of linear equations for every
tooth position that relate crown height (CH) to total body
length (TL) based on measurements of modern dentitions of
C. carcharias. Gottfried et al. (1996) proposed that life stages of
C. megalodon would correspond to specific body length ranges:
neonates (<4 m TL), juveniles (4–10.5 m TL), and adults
(>10.5 m TL). However, without an established metric for deter-
mining tooth position of isolated teeth, any effort to determine

body length or life stage will be highly subjective and likely
result in varying interpretations between researchers. Thus,
rather than attempt to determine tooth position or life stages,
we first treat CH as a proxy for both (Fig. 6A).

Figure 6A shows the CH distribution observed in teeth bearing
and lacking lateral cusplets, respectively, from each of our strati-
graphic bins. At first glance, it appears that the maximum crown
height is larger for teeth lacking lateral cusplets. However, it
should be noted that there are two teeth, one tooth from Bed
12 (CMM-V-92; Fig. 3K) and one from Bed 14 (USNM 392158;
Fig. 3L), that would have a CH exceeding 90 mm. Both have
lateral cusplets but are not included in Figure 6 due to their

FIGURE 6. A, crown height (CH) in mm plotted against stratigraphic origin. B, crown height to crown width ratio (CH:CW) plotted against strati-
graphic origin. Black circles (left) mark teeth that have lateral cusplets, and open squares (right) indicate teeth without lateral cusplets.
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partially broken crown and slightly pathological cutting edge. As
such, the overlapping CH ranges for teeth with and without
lateral cusplets suggests that sampling bias by individual age or
tooth position is unlikely.
Given that CH is strongly linked to ontogeny and tooth pos-

ition, to remove, or at least reduce, the influence of ontogeny
we use the ratio of CH to CW as a more direct proxy for tooth
position (Fig. 6B), although it should be noted that CH:CW
may also vary during ontogeny. Pimiento et al. (2010) reported
measurements for two associated dentitions of C. megalodon, a
juvenile from the Bone Valley region in Florida and an adult
from the Lee Creek Mine in Aurora, North Carolina. The pre-
sumed status as a juvenile and adult, respectively, are based
upon the life stages proposed by Gottfried et al. (1996). Both
specimens are from the private collection of Dr. Gordon
Hubbell in Gainesville, Florida. The adult from Aurora has
since been donated to the Florida Museum of Natural History
(UF 311000), and 3D scans are freely available on morphosour-
ce.org. The juvenile from Bone Valley is technically still in the
possession of Dr. Hubbell; however, the specimen is available
for study by researchers and reproductions of this dentition can
be purchased from Bone Clones, Inc. (CH-31-46P). Measure-
ments from these two dentitions, as well as USNM 411881
shown in Figure 5, were used to determine CH:CW ranges from
anterior, lateral, and posterior tooth positions (Table 2). The
overlapping ranges between anterior and lateral positions and
lateral and posterior positions indicate that CH:CW does not
directly correspond to tooth position but can serve as an
approximation.
Figure 6B shows the distribution of CH:CW observed in teeth

bearing and lacking lateral cusplets, respectively, from each of
our stratigraphic bins. One hypothesis for the loss of lateral cus-
plets in Carcharocles is that they were first lost in the anterior
tooth positions, which is supported by the associated dentition
in Figure 5. Therefore, a sampling bias related to tooth position
could obscure our results in Figure 4. However, the range and dis-
tribution of CH:CW in cuspleted and uncuspleted teeth are nearly
identical (Figs. 6B and S1), which indicates that our sample is not
biased by tooth position.
Finally, the observed trend of a gradual loss of lateral cusplets

in Carcharocles from 20.2 to 7.6 Ma represents a local phenom-
enon and cannot be considered representative of global rates of
change. Carcharocles megalodon teeth bearing lateral cusplets
and/or vestigial characters possibly have been observed in
localities exposing younger strata outside the study area
addressed herein, if the ages given for these localities are accu-
rate. Pimiento et al. (2010, 2013) noted lateral cusplets in
C. megalodon teeth from the middle to upper Miocene Gatun
Formation of Panama and used this character as supporting
evidence for the claim that the site represents a nursery habitat
for C. megalodon. Perez et al. (2017) reported a single

C. megalodon tooth from the upper Miocene Chucunaque For-
mation (∼10–9.5 Ma) of Panama that exhibited a vestigial
cusplet. These observations of lateral cusplets in younger deposits
makes it imperative that we consider the results of this study in a
local context.

CONCLUSION

The primary goal of this study is to document an evolutionary
transition over geological time by determining the timing and rate
at which lateral cusplets were lost in theCarcharocles chubutensis/
megalodon chronospecies complex. Lateral cusplets appear to
have been lost during deposition of the Burdigalian–Langhian
portion of the Calvert Formation, although this transition may
have continued somewhat longer into the Serravallian Choptank
Formation and/or Tortonian St. Marys Formation. This shift in
tooth morphology appears to represent the culmination of a
long-term evolutionary trend that resulted in an uncuspleted,
broad-bladed, serrated tooth ideal for preying upon marine
mammals. It is important to keep in mind that the timing of this
transition should be considered in a regional context. A larger
local sample size and studying the same phenomenon elsewhere
in the world would likely shed additional light on this remarkable
lineage of macro-predatory sharks. Further, more intensive
exploration of the modern ecological analogue, Carcharodon
carcharias, will be necessary in order to procure a more detailed
narrative of Carcharocles’s bionomics.
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