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Estimating body mass from the astragalus in mammals

TAKEHISA TSUBAMOTO

Tsubamoto, T. 2014. Estimating body mass from the astragalus in mammals. Acta Palaeontologica Polonica 59 (2): 
259–265.

Astragalar fossils have been intensively studied as an indicator of the functional morphology and phylogenetic relation-
ships of mammals. However, relatively few studies have investigated the relationship between astragalar size and body 
mass, usually with a focus on a particular taxonomic group. Here, univariate and multiple regression models are used to 
analyze the relationship between astragalar size and body mass based on an extensive sample of extant land mammals 
(11 orders, 48 species, 80 individuals; body mass ranging from 18 g to 3.4 t). The analyses revealed the size of the tibial 
trochlea to be a better predictor of body mass than the total size of the astragalus. Based on these results, estimates of the 
body mass of several Paleogene land mammals were calculated and compared to those of previous studies. Thus, for ex-
ample, the body mass of “Baluchitherium”, the largest terrestrial mammal known to date, was estimated at about 10–15 t.
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Introduction
The astragalus (= talus, anklebone) is a moderately compact 
bone forming part of the mammalian skeleton (Gray 1858). 
Owing to their robust morphology, astragali are frequently 
preserved in the fossil record, and more often found undam-
aged than long bones, vertebrae, or fragile skulls. The mor-
phology of this element is highly diagnostic, easy to identify, 
and correlates  well with the behavior of the animal (e.g., 
DeGusta and Vrba 2003). As a result, astragalar fossils have 
been widely used as an indicator of mammalian functional 
morphology, phylogenetic relationships, and taxonomy (e.g., 
Martinez and Sudre 1995; Nakatsukasa et al. 1997; Gebo et 
al. 2000; Plummer et al. 2008; Polly 2008; Dagosto et al. 
2010; Parr et al. 2011).

In general, the body mass of an animal strongly correlates 
with its ecology, physiology, functional anatomy, diet, ener-
getics, and life history (Peters 1983; Calder 1984; Legendre 
1986, 1989; LaBarbera 1989; Damuth and MacFadden 1990; 
McNab 1990; Eisenberg 1990; Mendoza et al. 2004, 2005; 
Copes and Schwartz 2010), and estimates of the body mass of 
extinct species consequently form an important part of paleo-
ecological analyses (e.g., Legendre 1986, 1989; Morlo 1999; 
Burness et al. 2001; Egi 2001; Smith et al. 2010). Several 
methodologies estimating the body mass of fossil taxa have 

been suggested (Dagosto and Terranova 1992; Smith 2002; 
Mendoza et al. 2006), focusing mostly on either craniodental 
(Gingerich et al. 1982; Legendre 1986, 1989; Conroy 1987; 
Damuth 1990; Janis 1990; Van Valkenburgh 1990; Fortelius 
1990; Egi et al. 2002, 2004; Mendoza et al. 2006; Figuei-
rido et al. 2011) or long bone measurements (Alexander et 
al. 1979; Anyonge 1993; Ruff 1990; Scott 1990; Gingerich 
1990; Egi 2001; Andersson 2004; De Esteban-Triviqno et 
al. 2008; Figueirido et al. 2011). The cross-sectional diaph-
yseal and articular dimensions of long bones in particular 
seem to be good predictors of body mass for a variety of 
mammals (Gingerich 1990; Ruff 1990, 2003; Scott 1990; 
Anyonge 1993; Egi 2001; Andersson 2004), and are likely 
to perform better than either craniodental dimensions or long 
bone length measurements in the case of extinct mammals 
with no close phylogenetic links or phenetic similarity to any 
living species.

The astragalus has broad articular facets for both the tibia 
and fibula, and thus, like long bones, appears to be well cor-
related with body mass. However, only a few studies have 
investigated this relationship, usually with a focus on specif-
ic taxonomic groups, such as prosimian primates, artiodac-
tyls, catarrhine primates, pinnipeds, and hominoid primates 
(Dagosto and Terranova 1992; Martinez and Sudre 1995; 
Rafferty et al. 1995; Polly 2008; Parr et al. 2011). Because 
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of this taxonomic restriction, the results of these studies are 
difficult to apply to other mammalian groups.

This article examines the allometric relationship between 
body mass and astragalar size based on an extensive sample of 
extant terrestrial mammals, with the ultimate aim of providing 
formulae capable of estimating the body mass of a variety of 
extinct taxa. As an example, the present results are applied to 
four groups of Paleogene land mammals, and their body mass 
estimates compared with those of previous studies.

Institutional abbreviations.—AMNH and AM, American 
Museum of Natural History, New York, USA; FAM, Frick 
Collection, American Museum of Natural History, New 
York, USA; IVPP, Institute of Vertebrate Paleontology and 
Paleoanthropology, Beijing, China.

Other abbreviations.—Ar, areas; BM, body mass; CF, cor-
rection factor; d.f., degree of freedom; JMP, SAS Institute 

software; Li, linear measurements; MPE, mean percentage 
prediction error; n, sample size; P, probability; PE, predic-
tion error; PI, prediction interval; QMLE, quasi-maximum 
likelihood estimator; RE, ratio estimator; SE, the smearing 
estimate; SEE, standard error of estimate; R, correlation co-
efficient; Vo, volumes.

Material and methods
The core data of this study consist of the body mass (in g) 
and nine linear measurements (in mm) of the astragalus of 
80 adult individuals, representing 48 species belonging to 11 
orders of extant land mammals, and ranging from 18 g to 3.4 t 
(see SOM: Supplementary Online Material at http://app.pan.
pl/SOM/app59-Tsubamoto_SOM.pdf). Body masses repre-
sent the actual weight of each specimen, and were recorded 
either while the animals were still alive, or just after their 
death. Owing to the limited availability of specimens for 
which such data could be obtained, the dataset is somewhat 
biased towards primates and carnivores (SOM). Nine linear 
measurements of the astragalus (Li1–9; Fig. 1) were taken 
to the nearest 0.01 mm using digital calipers. In addition, 
four areal (mm2) and three volumetric (mm3) variables were 
calculated based on these measurements (Fig. 1). For the Pa-
leogene taxa, data were derived from tables and direct mea-
surements of figures in the literature (Osborn 1923; Granger 
and Gregory 1936; Mellett 1977; Martinez and Sudre 1995; 
Gebo et al. 2000), on the assumption that the fossil astragali 
used represented adult individuals. Prior to analysis, all data 
were transformed to a natural logarithm. Analyses were car-
ried out using Excel (Microsoft), JMP (SAS Institute), and 
KaleidaGraph (Synergy Software).

To estimate body mass (BM), least squares regression was 
used instead of major axis or reduced major axis regression, 
as it can provide prediction intervals for each value (Sokal 
and Rohlf 1995; Simpson et al. 2003; Zar 2010). However, 
major axis and reduced major axis regression helped to deter-
mine the slope (Gingerich et al. 1982; Natori 2002; Warton et 
al. 2006). Linear measurements (Li1–9), areas (Ar1–4), and 
volumes (Vo1–3) were analyzed both together and separately 
using stepwise multiple regression analyses (Mendoza et al. 
2006), with the P values to enter and leave set to 5% in JMP. 
Accurate 95 % prediction intervals (PIs) for each body mass 
estimate can be calculated following the formula of Simpson 
et al. (2003: 238). However, in the case of large sample sizes, 
approximate PIs can be calculated more easily as ± SEE x 
t(0.05)(2), d.f., where SEE is the standard error of estimate and the 
degrees of freedom (d.f.) = sample size (n) – 2 (Ruff 2003). In 
the case of the present analysis, the 95 % PI for 80 specimens 
(d.f. = 78) was thus calculated as ± 1.991  SEE.

When regression is performed using log-transformed 
data, a systematic detransformation bias is introduced (Smith 
1993a, b). To correct for this bias, I calculated three correc-
tion factors (CFs): the quasi-maximum likelihood estimator 
(QMLE), the smearing estimate (SE), and the ratio estimator 
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Fig. 1. Linear measurement positions on the astragalus (Li1–9) and their 
products (area, Ar1–4; volume, Vo1–3). The illustrations are based on a left 
astragalus of Macaca fuscata (Blyth, 1875) (Primates; Cercopithecidae). 
Dorsal (= anterior) (A, B), proximal (C), lateral (D), and medial (E) views. 
Abbreviations: Ar1–3, cross-sectional areas of the tibial trochlea; Ar4, 
cross- sectional area of the astragalus; Li1, transverse width of the tibial tro-
chlea; Li2, proximodistal length of the lateral trochlear ridge of the tibial 
tro chlea; Li3, proximodistal length of the medial trochlear ridge of the tibial 
trochlea; Li4, transverse width of the astragalus; Li5, proximodistal length 
of the astragalus; Li6, proximodistal length of the central part of the tibi-
al trochlea; Li7, transverse width between the medial and lateral trochlear 
ridges of the tibial trochlea; Li8, dorsoventral thickness of the lateral part of 
the astragalus; Li9, dorsoventral thickness of the medial part of the astrag-
alus; Vo1–2, volume of the tibial trochlea; Vo3, volume of the astragalus.
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(RE). The QMLE was calculated following Sprugel (1983), 
the SE following Duan (1983) and Smith (1993a, b), and the 
RE following Snowdon (1991) and Smith (1993a, b). The 
SE value is often similar to the QMLE value, while the RE 
is an unrelated measure (Smith 1993a). For the purpose of 
this analysis, I calculated an adjusted CF, consisting of the 
arithmetic mean of the minimum and maximum values from 
among the former three CFs. When estimating body mass, 
the log value determined by the regression analysis was first 
de-transformed to the actual value (in g), and then multiplied 
by this adjusted CF.

The degree of correlation (accuracy) between body mass 
and astragalar size was evaluated using the coefficient of 
determination adjusted for the number of variables (adjusted 
R2), the percent standard error of estimate (%SEE), and the 
mean percentage prediction error (%MPE). %SEE for natu-
ral log-transformed data was calculated as %SEE = (eSEE – 1) 
 100 (Smith 1984a; Egi et al. 2002; Ruff 2003), while the 
percentage of prediction error of the de-transformed value 
(%PE) was calculated as %PE = (original value – estimat-
ed value) / estimated value  100 (Smith 1981, 1984a, b). 
%MPE is the arithmetic mean of the absolute values of %PE 
for each variable calculated for each individual (Smith 1981, 
1984a, b; Dagosto and Terranova 1992). Finally, %MPE for 
the values corrected using the adjusted CF was also calculat-
ed (%MPEad-CF).

Results and discussion
The three stepwise multiple regression analyses retained 
only a single predictor per analysis: loge(Li1) for the linear, 
loge(Ar3) for the areal, and loge(Vo1) for the volumetric 

measurements, with Li1 and Ar3 being more accurate than 
Vo1 (Table 1; Fig. 2).When all predictors were included in 
a single multiple regression analysis, only loge(Li1) was 
retained in the final model. These results were corroborated 
by individual bivariate regressions carried out for all 16 
variables, which showed Li1, Ar3, and Vo1 to be the best 
predictors, respectively (Table 1; Figs. 2, 3). Additionally, 
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Table 1. Results of the bivariate regression analyses of the linear, areal, and volumetric measurements. Abbreviations: N, sample size; SEE, stan-
dard error of estimate; adjusted R2, coefficient of determination adjusted by the number of variables; adjusted CF, adjusted correction factor (see 
text for details); %SEE, percent standard error of estimate; %MPE, mean percentage prediction error; %MPEad-CF , %MPE for the values corrected 
using the adjusted CF.

loge
measurement N slope intercept SEE adjusted 

R2
adjusted 

CF %SEE %MPE %MPEad-CF

loge Li1 80 2.789 2.078 0.3505 0.9846 1.030 41.98 28.83 28.00
loge Li2 80 2.838 1.639 0.4560 0.9739 1.256 57.77 39.55 35.37
loge Li3 80 2.782 1.924 0.5151 0.9667 1.249 67.39 44.35 39.24
loge Li4 80 2.722 1.670 0.4417 0.9756 1.194 55.53 37.17 32.66
loge Li5 80 3.125 -0.463 0.5180 0.9664 1.345 67.86 47.48 43.49
loge Li6 80 2.868 2.333 0.8180 0.9161 1.506 126.60 93.86 71.31
loge Li7 80 2.715 3.132 0.4033 0.9796 1.045 49.68 34.01 32.57
loge Li8 80 2.802 2.562 0.5713 0.9591 1.354 77.06 52.38 48.96
loge Li9 80 2.789 2.209 0.4469 0.9750 1.207 56.35 36.49 34.59
loge Ar1 80 1.411 1.837 0.3716 0.9827 1.128 45.00 30.01 27.52
loge Ar2 80 1.399 1.968 0.3949 0.9805 1.128 48.42 32.50 30.46
loge Ar3 80 1.400 2.116 0.3580 0.9839 1.110 43.05 28.05 26.34
loge Ar4 80 1.463 0.633 0.4318 0.9766 1.250 54.00 37.57 33.36
loge Vo1 80 0.939 1.949 0.3793 0.9820 1.153 46.13 30.78 28.52
loge Vo2 80 0.934 2.032 0.3880 0.9811 1.148 47.41 31.37 29.29
loge Vo3 80 0.962 1.156 0.4142 0.9785 1.230 51.32 35.16 31.92

Fig. 2. Comparison of %SEE, %MPE, and %MPEad-CF arising from the 
bivariate regression analyses of the 16 astragalar measurements (Li1–9, 
Ar1–4, and Vo1–3). Abbreviations: ad-CF, adjusted correction factor; 
MPE, mean percentage prediction error; SEE, standard error of estimate.
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Ar1 was also found to be a powerful predictor, as its adjusted 
R2, %SEE, and %MPEs were better than those of Vo1 (Table 
1; Figs. 2, 3). 

All of the slopes of the major axis and reduced major 
axis analyses were identical to or slightly lower than the val-
ues inferred from the isometric hypothesis (Table 1; SOM). 
The adjusted R2, %SEE, and %MPE of the regressions for 
Li1, Ar1 and Ar3 (Table 1; Fig. 2) were comparable to those 
of previous studies focusing on craniodental or limb bone 
measurements (Damuth 1990; Janis 1990; Scott 1990; Van 
Valkenburgh 1990; Dagosto and Terranova 1992; Egi et al. 
2002; Figueirido et al. 2011). Some of the measurements 
illustrated in Fig. 1 were difficult to define for some taxa, 
owing to a high degree of morphological variation. However, 
Li1, Li2, and Li9 were more easily determined and more 
stable than other measurements, thus making them and their 
products (Ar1, Ar3, and Vo1) most suitable for this study in 
terms of practical measurement procedures.

In conclusion, the width (Li1) and cross-sectional areas 
of the tibial trochlea (Ar1 and Ar3) are better predictors of 
body mass than indicators of the overall size of the astragalus 
(Li4, Li5, Ar4, and Vo3) (Table 1; Fig. 2). Judging from the 
adjusted R2, %SEE, %MPE, and %MPEad-CF, Li1 is as pow-
erful a predictor as Ar1 and Ar3 (Table 1; Fig. 2), suggesting 
that the width of the tibial trochlea in terrestrial mammals is 
well constrained by body mass.

Application to Paleogene 
mammals
The body mass of four groups of Paleogene land mammals 
with no close extant relatives were estimated using Li1 and 
Ar1 with adjusted CFs (Table 2; Fig. 4). The preferred areal 
measure, Ar3 (=Li1  Li9), was not used here, as Li9 is often 
difficult to obtain from the literature. However, among the in-
dividual bivariate regression analyses, Ar1 performed almost 
as well as Ar3 (Table 1; Fig. 2). 

Largest terrestrial mammal.—Several previous studies 
have provided estimates for the body mass of the largest 
terrestrial mammal known to date, the rhinocerotoid peris-
sodactyl “Baluchitherium” (= Paraceratherium or “Indri-
cotherium”). The present study slightly overestimates the 
body mass of rhinoceroses using Li1 and slightly underes-
timates them using Ar1 (Fig. 3, SOM). Therefore, the mean 
of these two estimates likely provides a better prediction for 
rhinocerotoids. In the case of “Baluchitherium”, this (geo-
metric) mean was 12.7 t, with the 95% prediction interval 
ranging from 10.9–13.7 t (Table 2). It should be noted that, 
owing to its large size, the body mass of “Baluchitherium” 
could only be estimated by extrapolation, which may be 
subject to large errors (Draper and Smith 1998; Reynolds 
2002; Zar 2010). Nevertheless, the estimate of the present 
study is consistent with those of Fortelius and Kappelman 
(1993) (11 t) and Gingerich (1990) (9–15 t), who used 
several measurements of body length, as well as limb bone 
diameters and lengths. 
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Although the present estimate for “Baluchitherium” was 
lower than that of Economos (1981) (<20 t, based on “grav-
itational tolerance”), the latter still lies within its maximum 
upper prediction limits (Li1: 44.2 t; Ar1: 23.7 t; Table 2). By 
contrast, the estimate of Alexander (1989) (34 t), which was 
based on the head-body length as measured from the resto-
ration drawings of “Baluchitherium” by Granger and Gregory 
(1935: figs. 1, 2), lies well beyond the maximum upper pre-
diction limit of Ar1, and hence might be considered unlikely.

Hyaenodontids.—Hyaenodontids are archaic carnivorous 
mammals with a unique molar morphology. Here, the body 
mass of Hyaenodon crucians and Hyaenodon horridus was 
estimated at 11 kg and 26–29 kg, respectively (Table 2). These 
values are similar to previous estimates based on head-body 
length (9 kg and 32 kg, respectively; Van Valkenburgh 1987) 
and limb bone dimensions (10–25 kg and 25–60 kg; Egi 2001), 
but much lower than reconstructions based on the length of 
the skull (23 kg and 150 kg; Van Valkenburgh 1987). Because 
head-body length is considered to be a reliable predictor of 
body mass (Creighton 1980; Damuth 1990; Van Valkenburgh 
1990), these comparisons may indicate that the astragalus per-
forms well in estimating the body mass of hyaenodontids.

Asian Eocene primate.—The body mass of fossil primates 
has been used extensively in their identification, taxonomy, 
phylogeny, and functional morphology (e.g., Gingerich et al. 
1982; Dagosto and Terranova 1992; Fleagle 1998; Gebo et 
al. 2000). Gebo et al. (2000) described an astragalus (IVPP 
V11846) of the anthropoid primate Eosimias sp. from the 
Middle Eocene of Central China, and estimated the body 
mass of the animal to be 90–147 g based on the equations 
of Dagosto and Terranova (1992). However, the latter were 
exclusively derived from data on prosimian, rather than an-
thropoid, primates. Using the present equations, I estimate 
the body mass of IVPP V11846 to be 147–177 g, with a 95% 
PI of 84–295 g (Table 2). This estimate is slightly higher, but 
overall consistent, with than that of Gebo et al. (2000).

European Paleogene artiodactyls.—Martinez and Sudre 
(1995) estimated the body mass of several European Paleo-
gene artiodactyls based on the astragalus and m1, with their 
astragalar estimate consisting of the product of the tibial 

trochlear width (~ Li1) and the astragalar length (~Li5). A 
recalculation of the body mass of these artiodactyls using 
Li1 (~“l” in Martinez and Sudre 1995: fig. 2) resulted in 
somewhat lower estimates, with the exception of Diplobune 
minor, which has a proximodistally much shorter propor-
tion of the astragalus than other artiodactyls (Martinez and 
Sudre 1995) (Fig. 4). However, the prediction intervals of the 
present analysis included the estimates of the earlier study, 
except for Doliochoerus quercyi from Pech Desse (Fig. 4), 

Table 2. Body mass predictions for several Paleogene mammals based on Li1 and Ar1 (= Li1  Li2), corrected using the adjusted CF (Fig. 1; Table 
1). Abbreviations: BM, body mass; LPL and UPL, lower and upper 95% prediction limits.

Species Li1 
(mm)

Li2 
(mm)

predicted 
BM 

using Li1

LPL
using 
Li1

UPL 
using 
Li1

predicted 
BM

using Ar1

LPL 
using 
Ar1

UPL 
using 
Ar1

 Specimen and reference

“Baluchitherium grangeri” 177.50 95.00 15.4 t 7.7 t 31.0 t 6.5 t 3.1 t 13.7 t AMNH 26387 (Granger and Gregory 1936)
“Baluchitherium grangeri” 201.50 123.50 22.0 t 10.9 t 44.2 t 11.3 t 5.4 t 23.7 t AMNH 26973 (Granger and Gregory 1936)
“Baluchitherium grangeri” 190.00 99.00 18.7 t 9.3 t 37.5 t 7.6 t 3.6 t 15.9 t AMNH 5209 (Granger and Gregory 1936)
“Baluchitherium osborni” 185.00 132.00 17.3 t 8.6 t 34.8 t 11.0 t 5.2 t 23 t Osborn (1923: fig. 8-B1)
Hyaenodon crucians 13.04 14.02 10.6 kg 5.3 kg 21.3 kg 11.0 kg 5.3 kg 23.1 kg FAM 75565 (Mellett 1977)
Hyaenodon horridus 17.93 20.33 25.8 kg 12.8 kg 51.8 kg 29.2 kg 13.9 kg 61.1 kg AM 9809 (Mellett 1977)
Eosimias sp. 2.81 3.48 147 g 73 g 295 g 177 g 84 g 370 g IVPP V11846 (Gebo et al. 2000)
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with 95% prediction limits

Fig. 4. Comparison of body mass estimates for European Paleogene artio-
dactyls based on Li1 (this study) with those of Martinez and Sudre (1995). 
Where shown, mean estimates refer to the results of the latter study. 
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which has a proximodistally long and mediolaterally narrow 
astragalus (Martinez and Sudre 1995).

Concluding remarks
Tibial trochlear size is the best astragalar predictor of body 
mass, based on data from a wide variety of extant mammals, 
and yields estimates comparable in their accuracy to those 
based on long bone data. When applied to a range of Paleo-
gene mammals, the equations derived here yield estimates 
similar to those of previous studies, thus further supporting 
the use of tibial trochlear size as a reliable indicator of body 
mass. The present results thus have the potential to contrib-
ute significantly to quantitative taxonomic, ecological, and 
physiological studies of fossil land mammals, particularly 
those with no close phylogenetic links and/or similar mor-
phological proportions to any extant species.
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