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Morphological variability of the Paratethyan
Oligocene—Miocene small reticulofenestrid coccolites
and its paleoecological and paleogeographical implications

KATARINA HOLCOVA

The analysis of size changes (length of placoliths, their width, length of central opening and its width) in elliptical
reticulofenestrids from the NP25-NNS zonal interval of the Central Paratethys allowed to dicriminate two size catego-
ries of placoliths: (i) small Reticulofenestra minuta (< 3.5 pm); (ii) Reticulofenestra haqii-pseudoumbilicus group
(4-10.0 um). The latter group appeared for the first time (FO, first occurrence) in the upper Egerian (size 4-7 pm) with
the size of placoliths in this plexus increasing gradually. The FO of R. pseudoumbilicus > 8.0 um has been established
in the Zone NN2 while its FCO (first common occurrence) in the Zone NNS. This study shows that the FOs of size-
defined morphotypes of the R. hagii—pseudoumbilicus group differ in the Central Paratethys and oceanic realm.
Blooms of R. minuta at the Oligocene—Miocene boundary and in the Early Middle Miocene may be correlated with the
incoming of warm water into the higher latitude Central Paratethys basins during connection with the Mediterranean
Sea. Transgression favored the expansion of near-shore areas associated probably by some short-time oscillations of
salinity. The FO of R. hagii—pseudoumbilicus group and the FO of R. pseudoumbilicus > 8.0 pm can be correlated with
the opening of new pathways between the Mediterranean and the Central Paratethys. Gradual size changes in the
R. hagii—pseudoumbilicus group probably reflect climatic changes: the decrease of coccolith size in the late Egerian
may reflect cooling (Mil event) while the increase in coccolith size in the interval from the FO of Helicosphaera
ampliaperta to the FO of Sphenolithus heteromorphus occurred due to warming. Two size categories of placoliths in
the R. haqii— pseudoumbilicus group (3.5-6 um and 6-8 um) recorded in the interval from Zone NNI1 to the lower part
of the Zone NN2 may represent seasonal populations.
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Introduction

The collision of the African/Apulian/Arabian plates and Eur-
asian continent began during the Eocene, and resulted in the
uplift and emergence of the Alpine chains and the break-up of
the Tethyan Realm into the Mediterranean and Paratethyan
domains (Popov et al. 2004). This resulted in the differentia-
tion of the Paratethys as a biogeographic entity. The first
endemic Paratethyan assemblages of mollusks, calcareous
nannoplankton and foraminifera appeared in the Oligocene
(Baldi 1986). The subsequent history of the Paratethys in-
volved periods of isolation from the adjacent Mediterranean
Sea and Indian Ocean during which endemic biota evolved,
and periods of oceanic communication during exchanges oc-
curred with the faunas of the Mediterranean and the Indo-
Pacific provinces. Additionally episodical paleogeographic
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changes, global climatic variations, local oscillations of salin-
ity, oxygen content and globally and locally affected sea-level
changes also influenced the evolution of Paratethyan ecosys-
tems (Rogl 1998; Kovac 2000; Popov et al. 2004; Piller et al.
2007; etc.). Interactions of the local geodynamic and the
global climatic factors lead to major problems in their bio-
stratigraphical, paleoecological and paleogeographical inter-
pretation. As a consequence of periodical paleogeographic
changes affecting them, the morphological changes (size) of
Central Paratethys populations may be local, differing those
from contemporaneous oceanic populations.
Coccolithophorids were widespread autotrophs in marine
Paratethyan ecosystems and are of great biostratigraphical im-
portance. Besides Coccolithus pelagicus, reticulofenestrids
are the most common components of the assemblages and
their detailed study can provide important data for reconstruct-
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ing the factors that have induced morphologic changes in cal-
careous nannoplankton. Reticulofenestra bisecta, R. abisecta
and Cyclicargolithus floridanus are common in the late Oligo-
cene while in the lower and early Middle Miocene, reticulo-
fenestrids are represented by Reticulofenestr minuta, R. haqii,
and R. pseudoumbilicus together with endemic R. excavata
(Lehotayova 1975, 1984; Marunteanu 1992; Andreyeva-Gri-
gorovich et al. 1997; Holcovd 2005). The aim of this study is
to show the relationship between size changes in reticulo-
fenestrids and paleogeographic and paleoecologic evolution
in an intracontinental basin.

Abbreviations.—FCQO, first common occurrence; FO, first oc-
currence; LCO, last common occurrence; LO, last occurrence.

Geological setting

The area of the Central Paratethys studied here includes the
Pannonian Basin system and the Carpathian Foreland basins
(Senes 1961).

The majority of samples were taken from the South Slovak
Basin (Fig. 1). Sediments filling of this geomorphological unit
were deposited in the northern part of the Buda Basin during
the Late Oligocene (Kiscellian Stage) to the Chattian and
lower Aquitanian (Egerian Stage), in the Filakovo/Pétervasara
Basin during the upper Aquitanian and lower Burdigalian
(Eggenburgian Stage) and in the Novohrad/Négrad basin in
the upper Burdigalian and Langhian (Ottnangian, Karpatian,
and early Badenian; Vass 1996). These three basins form the
northern part of the Pannonian Basin system. Biostratigraphy,
lithostratigraphy and sedimentology of this areawere summa-
rized in Vass et al. (1979, 1989, 2007). Lithostratigraphic units
have been defined by Vass and Elecko (1982) and correlation
with standard nannoplankton zones (Martini 1971) has been
established by Lehotayovd (1982). The paleogeographical
maps for every Central Paratethys stage have been produced
by Vassetal. (1979, 1989, 2007). Vass et al. (1993), Mérton et
al. (1995), and Vass (1996) delineated the most important tec-
tonic events and local sea-level changes; the latter by have
been correlated with the global sea level curve of Haq et al.
(1988) by Vass (1995).

The Middle Miocene samples have been collected from
sections in the Carpathian Foredeep. These sections are de-
scribed in detail by Zagorsek et al. (2008, 2009) and Zagorsek
and Holcova (2009; Fig. 1).

The study interval from the Oligocene/Miocene boundary
interval to the lower Middle Miocene (zones NP25-NN5) cor-
responds to the Egerian, Eggenburgian, Ottnangian, Karpa-
tian, and Lower Badenian stages of the Central Paratethys
(Popov et al. 2004; Harzhauser and Piller 2007; Hohenegger et
al. 2009).

Fig. 1. A. Sketch of the main Middle European geological units (after Kovac¢ 2000). B. Moravian part of the Carpathian Foredeep with location of borehole
PY-1 near village Pfemyslovice; and section Kralice (KRA), geological situation according Chlupac et al. (2002). C. Eastern part of the South Slovak Basin
with location of boreholes LKS-1, BE-2, FV-1, EH-1, and EH-2 drilled by State Geological Institute of Dionyz Stir; boreholes LR-9 and LR-10 drilled by
“Geologicky prieskum n.p.” regional centrum Roznava and section Lipovany (LIP). Geological situation after Haldsova et al. (1996).
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Fig. 2. Lithology, stratigraphical ranges, and sampled interval of studied sections. Location of boreholes LR-10, LR-9, LR-2, C-2, FV-1, EH-1, EH-2, D-19,
LKS-1, BE-2,PY-1, and sections Lipovany and Kralice II is illustrated on Fig. 1.
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Material and methods

A total of 49 samples taken from 13 sections have been studied.
The set of samples were chosen from about 500 of samples
analysed in the study area in previous years (e.g., Holcova
2001, 2005). Nannofossils in selected samples were common
to abundant (10-30 specimens in visual field of microscope)
and well preserved without apparent diagenetic changes (dis-
solution, recrystallization). Relative abundances of reticulo-
fenestrids in studied samples varied from 10 to 30% with ex-
ception of samples from the zones NN1 and NN5 with more
than 50% of reticulofenestrids. Besides Langhian samples
(Zone NNS) were dominated by Coccolithus pelagicus in the
studied assemblages. The location of the sections, their lithol-
ogy and stratigraphical ranges are summarized in Figs. 1 and 2.

Calcareous nannofossils were examined and photographed
using a light microscope and 1000x magnification with both
bright field and crossed polarized light. Smear slides were pre-
pared from about 1 cc of rock sample (claystone, siltstone, and
fine sandstone) using the method of Svabenické (2002). The
first 50 specimens of reticulofenestrids were measured in ev-
ery sample. Placoliths of Reticulofenestra spp. were measured
from the digital microphotographs. In total, 2447 specimens
were analyzed. The following characters were measured for
each placolith: length (the largest diameter of placoliths),
width (diameter of placolith perpendicular to the length of the
placolith), length of central opening (along the length of the
placolith) and its width (across the width of the placolith)
(Fig. 3).

The measurements were analyzed by simple statistical
methods using STATISTICA software. Frequency histo-
grams were used for the first graphical evaluation of the dis-
tribution type of a simple biometric parameter. XY -plots
and the Pearson correlation coefficient were used for evalu-
ation of correlations between two parameters.

The size-dependent classification of Reticulofenestra
minuta—haqii-pseudoumbilicus group (Young 1999) has been
used as an initial taxonomic concept (Reticulofenestra minuta:
< 3 um, R. hagii: 3-5 pm, and R. pseudoumbilicus > 5 pym).
This classification is broadly accepted also in the Central Para-

Fig. 3. Dimensions measured in placoliths. Abbreviations: lo, length of cen-
tral opening; Ip, length of placoliths; wo, width of central opening; wp,
width of placoliths.

ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

tethys (Cori¢ and Svédbenickd 2004; Tomanova Petrové and
Sviabenickd 2007; Cori¢ and Hohenegger 2008). However, the
small-sized placoliths identified like Reticulofenestra minuta
may represent two or more species which cannot be distin-
guished under the light microscope (Haq 1980).

To analyze size changes in reticulofenestrids over time, the
studied interval was divided into seven intervals on the basis
of six calcareous nannoplankton events. The age of these
bioevents in the Central Paratethys may differ from their age
in the world ocean (Berggren et al. 1995; Lourens et al. 2004)
because new taxa were only able to migrate into the Central
Paratethys when communication existed between them.

(i) The FO of Helicospheara carteri was recorded within
Zone NP 25 in the study area (Holcova 2005).

(i1) The LCO of Reticulofenestra bisecta. The extinction of
this species is often used to approximate the Oligocene/Mio-
cene boundary (Berggren et al. 1995; Young 1999). However,
in the Buda Basin, rare specimens of R. bisecta occur in zones
NN1 and NN2 (Holcova 2005). These are probably reworked
specimens and therefore only the LCO of R. bisecta was used
to characterize the NP25/NN1 zonal boundary.

(iii) The FO of Helicosphaera scissura and the FO of
Discoaster druggii are isochronous events in the Central Para-
tethys (Holcova 2005). Helicosphaera scissura is, however,
more abundant and its FO is more easily determined.

(iv) The FO of H. ampliaperta was recorded in Zone NN2
in the Central Paratethys (Marunteanu 1992; Holcova 2002,
2005).

(v) The FO of S. belemnos was established to lie at the
NN2/NN3 boundary in the Central Paratethys (Marunteanu
1992, Andreyeva-Grigorovich et al. 1997).

(vi) The FO of S. heteromorphus/LO of S. belemnos: In
the Central Paratethys both species briefly co-occur.

(vii) For comparison reticulofenestrids from Zone NN5
were studied. This zone is characterized by the absence of
H. ampliaperta and the presence of S. heteromorphus (Mar-
tini 1971).

Seven samples were intended to analyze from every inter-
val. However, from the LO of Helicosphaera ampliaperta to
the FO of Sphenolithus heteromorhus (upper part of the Zone
NN2 and Zone NN3), terrigenous sedimentation dominated
in the study area. Therefore only limited number of samples
with well preserved and abundant nannofossils was found in
this interval. On the other hand, longer intervals with varie-
gated marine facies (zones NP25 and NN4) were sampled to
more detail.

Results

Morphologic variability of placoliths

Size and length/width-ratio of placoliths and size of central
opening.—The length of the placoliths varies from 1.6 to
10 um, their width from 1 to 9 pm. The length-width scatter
plot and the correlation coefficient (0.95) between the length
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and width of the placoliths indicate a very high correlation be-
tween these two parameters (Fig. 4A). The distribution of
these characters is polymodal and shows three groups that are
also distinct on the width-length plot (Fig. 4A): (i) small
placoliths (1.6-3 pum); (ii) medium-size placoliths (3.5-8 um),
and (iii) large placoliths (8—10 um). The small placoliths con-
stitute a distinct size group, but transitional size categories oc-
cur between the medium-size and large placoliths.

Relative size and length/width-ratio of central opening.—
The size of the central opening varied from 0.35 to 3.5 um.
The correlation between the length and width of the central
opening is high (0.83) with two groups in which the length
are (1) 0.35—-1 um and (ii) 1-3.5 pm (Fig. 4B).

The relative size of the central opening was expressed as a
ratio between the size of the placolith and the size of the cen-
tral opening (Fig. 4C). The ratio varies from 0.15 to 0.48, and
shows a polymodal distribution with three groups: (i) placo-
liths with narrow central opening (size of placolith/size of
central opening varies from 0.15 to 0.24), the placoliths with
narrow central opening are small and reach maximum diam-
eter 7.5 um; (ii) placoliths with medium central opening (size
of placolith/size of central opening from 0.25 to 0.40) were
recorded in all size categories of placoliths; (iii) placoliths
with wide central opening (size of placolith/size of central
opening from 0.40 to 0.48) were not recorded among the
smallest placoliths (1.6—3 pm).

Size changes over time

Correlations between the parameters analyzed here for placo-
liths and the age of samples were investigated on the basis of
correlation coefficient. A negative correlation was recorded
between the length of the placoliths (p = 0.01) and their age.
The shift in the total size of placoliths and that of their central
opening over time is illustrated in Figs. 5-8 for individual
samples. A summary of the data is showed in Fig. 9. From
these data we may conclude the following:

(i) Small placoliths (1.6-3 um) constitute a well separated
group in all assemblages, independent of age. However, they
are abundant in two intervals: (1) in the lowest Miocene
(Zone NN1 and lower part of Zone NN2 below the FO of H.
ampliaperta), in these intervals they account for 30-70% of
the nannoplankton assemblages; (2) in the lower Middle
Miocene (Zone NN5), where they account for 50-95% of the
assemblages.

(i1) The size of the oldest placoliths in the R. hagii-pseudo-
umbilicus group (upper Zone NP25) varies from 4.0-7.0 pm.
Than the size of placoliths in the group slightly increased
though this trend may differ in some individual samples (Figs.
5, 6). In the Zone NN3, the size varies from 4.0-8.0 pm.

(ii1) Bimodal size distribution was recorded firstly during
Zone NN1; it dominates in the lower part of the NN2 Zone
(Figs. 9, 10).

(iv) Wide variations in the relative size of the central
opening characterize interval from zones NP25 to lower
part of NN2; generally, the relative size of the central open-

ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

ing increases (Fig. 9). At the level of the FO of H. ampli-
aperta, larger R. hagii (6—7 um) with small central opening
(1.7-2.0 um) appeared, and relative size of central opening
at this level decreased (Fig. 9).

(v) Broad variability of size of placolith as well as of the
central opening characterizes the assemblages in Zone NN4
(Fig. 9).

(vi) Large placoliths (> 8 um) occur first at the Zone NN5
(Fig. 9).

Discussion

Taxonomic implications

The size of placoliths is commonly used for classification of
Reticulofenestra species. Using principal component analysis,
Backman (1980) showed that the majority of morphological
variation in Reticulofenestra can be explained by variation in
the size of placoliths. However, the degree of closure of the
central area can also be used for classification of Reticulo-
fenestra (Backman 1978, 1980; Pujos 1985). Young (1990)
suggested that this latter character is an unstable ecopheno-
typic character, and based his classification of the Late Mio-
cene—Pliocene Reticulofenestra mainly on the length of the
placoliths.

Young (1999) also differentiated the Early Miocene R.
minuta—haqii—pseudoumbilicus group on the basis of overall
size of the placoliths. The taxonomic difference between R.
minuta and R. haqii was based on a superior limit size of
3 um for the former. This criterion is well applicable to the
reticulofenestrids of the Central Paratethys among which 3.1
to 3.7 um long placoliths have not been observed (Fig. 4A).

Two different size limits have been used to separate
R. hagqii from R. pseudoumbilicus: Backman (1980) pro-
posed an upper size limit of 5 um for R. hagii, whereas Rio
et al. (1990) and Raffi et al. (1995) proposed 7 um. In any
case, R. hagii and R. pseudoumbilicus represent a continuous
plexus in world ocean and therefore Young (1990) classified
them as one species, R. pseudoumbilicus, with two varieties:
R. p. pseudoumbilicus and R. p. hagii. Nevertheless, separa-
tion of two species at 5 um has prevailed.

As in the oceanic realm, the length of the placoliths in the
R. hagii-pseudoumbilicus group changes continuously in the
Central Paratethys. Limit of 5 um has also been used for sep-
aration of R. pseudoumbilicus and R. hagii (Cori¢ and Svédbe-
nickd 2004; Tomanova Petrova and Svébenickd 2007; Corié
and Hohenegger 2008). In addition, Cori¢ and Hohenegger
(2008) have distinguished two size groups among R. pseudo-
umbilicus, one between 5—7 um, the other > 7 um. In studied
material, boundary 8 um seems to be pronounced. It appears
that separation of group > 8 pm is specific only for studied set
of samples because qualitative examination of placoliths
from the other Central Paratethys sections of Zone NN5 and
NNG6 showed gradual changes in size of R. pseudoumbilicus
from 5 to 10 um (Jamrich and Haldsova 2010).
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Fig. 5. Variability of the placolith size for the individual assemblages, Egerian to Eggenburgian. Vertical axis, number of specimens; horizontal axis,
placolith size (in um). Location of the boreholes LR10, LR9, LR2, C2, FV1, EH1, EH2, and section Lipovany (LIP) is illustrated on Fig. 1, their lithology
and sampled intervals on Fig. 2. Abbreviation: LO, last occurrence.
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Fig. 7. Variability of the central opening size for the individual assemblages, Egerian to Eggenburgian. Vertical axis, number of specimens; horizontal axis,
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thology and sampled intervals on Fig. 2. Abbreviation: LO, last occurrence.

http://dx.doi.org/10.4202/app.2009.0006

Downloaded From: https://bioone.org/journals/Acta-Palaeontologica-Polonica on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



660 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

c c
[e] [e]
X < Variability of length of central opening (um)
— 2 | 2§ 235
(© Ny ol £ =5
2l5|e|B80o %8- @Eg%&
2| 8|o|E- 0| SEQ|ETSES
ol |8 08| TCG | OT®E® >
<|W|m | Oa v | OZ2ZN [OaoZzw
G I KRAS10
= » 20n
© S
® 23S 10
5 £5
& | IS OﬂmAﬂ-I-L
S5 40 10 20 3.0
S8 |a] PY104 KRAS9
14 n< 20
20 0
10
N IR L.l
10720 30 10 20 30
NN5 405 PY11.5 | KRAS?
30 20
wow
0l 5| O-L nd1h
c 10 20 30 10 20 3.0
s| 2 PY1/2.2 400  KRAS4
= [} 201] 30
2 B 20
© oM 10
~ 10
0 iy ul 1
v 10 20 30 1020 30
15] o gLKS1/2§
()
o2 4
F 2 H
83 ol lln
Se T10 20 3.0
s 8 LKS1/105
4 H
O'H'\ LI -|I'\ n
1.0 2.0 3.0
16, Lk$1/181p 4, BE2/114
12
8 | 8 ’}m’
4 H 4 th
6] 2 040 20 30 3.0
8 12l LKS 1/22412 E2/262
= 8 d'h 8
NN4 4
5 0 W 3.0 20" 30
&l ® D19/426 12, ¢ 19 18,23,
S| £ 8
g X . 8
5 4 4
m ]_|_| unnl nn
010 20 30710 20 30 10 20 30
12 LIP11 20 D19/665 12 LKS1/340
8 . 12 8
17| 4 FH 4 4
0 | hnn 00
10 20 3.0 10 20 30 10 20 3.0
12 LIP7
8 L
c s |4, JHl,
23S 1l
S 28 | 070 2030
g 58 LIP5
£ c3 12
5 23 8
ae 4
A Lo L
10 20 30

Fig. 8. Variability of the central opening size for the individual assemblages, Ottnangian to Early Badenian. Vertical axis, number of specimens; horizontal
axis, central opening size (in um). Location of the boreholes D19, LKS1, BE2, PY1, and sections Lipovany (LIP) and Kralice (KRAS) is illustrated on
Fig. 1, their lithology and sampled intervals on Fig. 2.

Downloaded From: https://bioone.org/journals/Acta-Palaeontologica-Polonica on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



HOLCOVA—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 661

2 £
% c 5 @ 5 Size variability of Reticulofenestra minuta and
© £ < O Reticulofenestra haqii-pseudoumbilicus group
5 |oc ac TS
e} - 283
é = mﬁmgo 58*9 gﬁ@%
ol 8 o ‘g’ 2 (_g%“:’ (_‘; < & g% 5S¢ Lenght of nannolith Lenght of central opening  Lenght of central opening/
I &lalEalo2R]  S2am OOZIl (um) (um) lenght of nannolith
13 < \R. minuta \ R. hagii-pseudoumbilicus group \
— = MMCO 250
S NN6 460 0] n=350 n=350 n=350
© / 200 60
b 120
% v —v 150 40
- c Sphenolithus | Sphenolithus 80 100
14 2 heteromorphus|heteromorphus 40 20
] 50
S |NNS 0 BT <1 B | O, CO .
. ® 2345678910 0510 1520 2530 ° 020 030 040
®© fransgression
15| | & —80) Wiib event (16.1Ma)
= 60
—

o Helicpsphavera Helicpspvhaera 60 M n=500 i n=500 &0 n=500
ampliaperta ampliaperta 40 i 40 60
40
= P .r{ " %Wﬁ

NN4 2345678910 0510 1520 2530 020 030 040

C
8 Aransgressio
© 40 [
g _ ] n=200 ,, qn  n=200 80 n=200
17 0 X B 60
9] ) 20 0
8 Sphenolithus  |Sphenolithus I 20 40
s heteromorphus |belemnos
4 —l‘u—m i
Sphenolithus s ! ik

Ottnangian
(=)

9 10 0.5 1.0 15 20 25 3.0 0.20 0.30  0.40

~

v
NN3 |Sphenolithus heteromorphus 602 ’

belemnos 60

78
1 n=250 _ n=250 gq n=250
Sphenolithus 1
bglemnos 40 40 60
19 A
201 20 40
—’Tﬂ 20
0 oLl el 0 =
0 20 25 3.0

I
Burdigalian

20 s 23n5678910 051015 020 030 040
8 .
] S Helicosphaera |Helicosphaera /@4@‘
Q ampliaperta  |ampliaperta 607 [Mi1a event n=350 g n=350 n=350
g A A 80
i N2 40 40 60
21 40
—] 20 | 20
el
c 0,4 ’_l' UL o L Aallllll] ! [o R N T T
.g 234567891 05 1.0 15 20 25 3.0 0.20 0.30 0.40
© Mi1 t 60
22 | ORREaEn n=350 n=350 80 — n=350
g Discoaster
< drulggi/ 40 40 N 60
Discoaster glg s{ggﬁghaera 40
druggi A A 20 20 w
23 20
] NN 0 Ml 0 M ]
M ! ~ 2345678910 0.5 1.0 1.5 20 25 3.0 0 020 0.30 0.40
Dictylcoccites |LCO - o ' ' ’ ' ' ’ ’
.<§ bise}c/:tus bD,ictyI;:occites 1\00@@% n=350 120 _ n=450 80 n=450
o) o) isectus i _
24 5| 5| & 80 100 60 n
|8|E " o 40
516 NP25 40 40
. 20 20 20
Herl{cqsphaera 0 In OHIT -
25 cartert 234567897 2051015202530 ° 020 030 040

Fig. 9. Morphometric changes of placoliths of Reticulofenestra minuta and Reticulofenestra hagii—pseudoumbilicus group from the Egerian to the Early
Badenian (Burdigalian—Langhian) in the Central Paratethys. Cooling Mi events according Zachos et al. 2001. MMCO = the Middle Miocene Climatic Opti-
mum (Zachos et al. 2001). Abbreviation: LO, last occurrence.
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In conclusion, a satisfactory size has not been found upon
which to distinguish species in the R. hagii—pseudoumbilicus
group and its taxonomy is simply a matter of convention.

Size changes in the Late Oligocene—Early
Miocene Reticulofenestra and paleoecologic and
paleogeographic events in the Central Paratethys

Blooms of Reticulofenestra minuta.—Two blooms of the
small R. minuta were observed in the studied material (Figs. 9,
11): (i) the oldest one in the earliest Miocene (Biochron NN1
and early part of Biochron NN2), is described for the first time.
It is probably a local event in the northern part of the Panno-
nian Basin; (ii) the early Middle Miocene (NN5) event was al-
ready documented; it occurred throughout the Central Para-
tethys (Cori¢ and Svabenicka 2004; Cori¢ and Hohenegger
2008, Spezzaferi et al. 2009). In addition to these two wide-
spread blooms, sporadical blooms of R. minuta have also been
described in the Central Paratethys, having occurred during
the Eggenburgian (Holcovd 2002, 2005) and the Karpatian
(Spezzaferi and Cori¢ 2001; Svébenickd et al. 2003).

Besides the Central Paratethys, blooms of R. minuta have
been described from several stratigraphical levels in the Mio-
cene from the middle to high latitudes (e.g., Cita et al. 1978;
Backman 1980). These blooms are heterochronous with the
Central Paratethys ones and reflect local paleoenvironmental
events (e.g., Messinian salinity crisis; Cita et al. 1978; Wade
and Bown 20006).

Interpretation of the causes of the blooms is ambiguous
due to inconsistent data about the ecological requirements of
small Reticulofenestra. Generally, the species is opportunis-
tic and characterizes assemblages from near-shore environ-
ment (Haq 1980). Their blooms are connected with environ-
mental stress characterized by rapid environmental changes
(Wade and Bown 2006).

Gartner et al. (1983) suggested that variations in the relative
abundance of R. minuta correlate with changes in nutrient dy-
namics. Wells and Okada (1997), Flores et al. (1997), Boll-
mann et al. (1998) and Kameo (2002) regard small Reticulo-
fenestra spp. as eutrophic species while Hallock (1987), Beau-
fort and Aubry (1992), Cori¢ and Rogl (2004) suggested that
blooms of small Reticulofenestra indicate oligotrophic warm
water. Wade and Bown (2006) showed that R. minuta may
have tolerated the brackish to hypersaline, high productivity
environments, which prevailed immediately before and after
the evaporite deposition during the Messinian salinity crisis.

The two conspicuous blooms of small R. minuta in the
Central Paratethys occurred during transgression events when
the Slovenian corridor permitted incursions of warm water
into the Paratethys (Rogl 1998, 1999; Popov et al. 2004).
These events are marked by horizons with larger Foramin-
ifera—Miogypsina and Lepidocyclina in the lowermost Mio-
cene (Vanova 1975), Amphistegina and Planostegina in the
Lower Badenian—and replacement of small Globigerina
fauna by diversified assemblages with large-sized warm-
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Fig. 10. Two morphotypes of Reticulofenestra haqii—pseudoumbilicus group
in the lower part of the Zone NN2. Interval FO Helicosphaera scissural
FO Discoaster druggii-FO Helicosphaera ampliaperta lower Zone NN2
(22.8-20.0 Ma); n = 243 (samples LR2/28, C2/10, FV1/240, FV1/40, EH2/
155, EH1/85, EH1/105).

water species—Globigerinoides in the Lower Miocene and
Globigerinoides, Praeorbulina, and Orbulina in the Middle
Miocene). At the beginning of the blooms, R. minuta replaces
Coccolithus pelagicus, which is an indicator of cold and nutri-
ent-rich waters (McIntyre and Be 1967; Rahman and Roth
1990). Among the benthic foraminifera, the abundance of ag-
glutinated foraminifera decreases (Vass et al. 1983; Holcova
2001; Spezzaferi et al. 2009). The paleoenvironmental turn-
over correlatable with the Middle Miocene bloom of R. minuta
has been well explained: Upwelling regime with cooler sur-
face waters and partly dysoxic bottom conditions of the latest
Early Miocene were gradually changed to the warm-water
condition in the early Middle Miocene and antiestuarine circu-
lation with evaporation prevailing over fresh-water input
(Brzobohaty 1987; Cori¢ and Régl 2004; Baldi 2006; Spezza-
ferri et al. 2009). Comparable circulation turnover due to mix-
ing of in situ cold and incoming warm water masses and
paleogeographical changes may be expected also in the earli-
est Miocene in the South Slovak Basin (Halasova et al. 1996).
Although the incoming of warm-water elements in the ma-
rine realm is specific of the two transgressive events, the Early
and Middle Miocene conditions in the Central Paratethys sub-
stantially differed from the global paleoclimatic situation. The
Early Miocene event was marked with the appeareance of
arctotertiary elements among palynomorphs (Vass et al. 1988;
Planderova 1990) indicative of a global cooling correlated
with the Mil and Mila events. In contrast, the Middle Mio-
cene event can be correlated with the Middle Miocene Clima-
tic Optimum (Gonera et al. 2000; Bicchi et al. 2003; Bohme
2003). Short-term oscillations in the abundance of R. minuta
during the two blooms were observed (Cori¢ and Hohenegger
2008; own unpublished data). These may indicate unstable

Downloaded From: https://bioone.org/journals/Acta-Palaeontologica-Polonica on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



HOLCOVA—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 663
> ol § i)
gl | 8|E 3 8%
= I © 5 —~
o w2 | O 39 35
= 212 | % = 0 @ 2T oo 22 ]S
o £ | e g 8 TS c SO0FOR = $ N
= °|® c .2 E0 eSO o® O® <
oy w1 c ® S < ? > T a2 3= ol
Sl |5|g | £ gE 8 2 5 5w 2% §%%
s |£]3 | & 285 $8¢ o @S5S 33 53¢
S| o|E|Ra| € £8Ee 382 ESC >0 28 255
ol=|8a| 2 DR EET e £828 5 a% 2P
8) 8 GC) K_Ug 2 3%%82 ®Ooc GC)E:O%E o® ES 0o
<|®h|Oo|OR| £ 5828530 Xss o3kaid oL oxe
M R | 1 Ser 1
minutal|[EcO of er
c NN5 bloom||R”pseudoumbilicus MMCO
15/ 81 14.9‘ LO . am, l/a erta \\\\\\ >8.0 um
15| AN ‘
cl g non-studied ) .
|z interval Slovenian corridor
16 p \\\\\\\ A
2l F15.97+FO of P. circularis A Bur 5/Lan1
oE ; Mi2
1 . Slosenan
= ocE
a N @5
17 g =
q4 X 285
o8- :
g CO of =02 Bur 4
2 -17.7—FO of S. heteromorphus -|R. pseudoumbilicus>7 um ‘ Isolatlo
18| | & 1 !
S S 2 Bur 3 Mi1b
g NN3 D
19 ° £
]
7 19.14-FO of S. bel — <
O of S. belemnos £ succesivelC Bur 2
c c thopentltr:g of]
S 4 “s [l @ e pathwa
= FO of = via the Alping
20 5 R. pseudoumbilicus ¢; | |'g © Foredeep
b 2 6-7 pm with small | || S &
[} —20.5FO of H. ampliaperta —|central opening 5 | iee < transgressmn
> £||=5 Aq 3/Bur 1
L | NN2 —||og
c|l|c0
21 2 ES= Slovenian
— °l2a corridor _
© = E Mi1a
g 3 Se g5 Aq 2
s | £6 02
& g0 NT
22| = o) DG L 1 caesing of
3 @ —— the marine
2— %2 pathway
oc¢c via the Alpine
£s Foredeep and
2084 FO of D. druggii/ =0 the Rhine Graben
23| NN1| 97 | FO H. scissura .
s 23.1+LCO of R. bisecta . Ch4/Aq 1 Mi
@ broad
2 connection
c via the Rhine
24| ® Graben,
S NP25/ 1 the Alpine
< Foredeep
(@] and to the
Venetian
Basin, Ch3
25 -~ 25-+FO of H. carteri FO of R. haqii w’s_gm

Fig. 11. Correlations between reticulofenestrid biometric events, local and global sea-level changes and paleogeographical events in the Egerian—Early Badenian
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conditions with short-term oscillations of paleoenvironmental
parameters mainly salinity and nutrients. These oscillations

have been interpreted in the Biochron NN5 by Hohenegger et

al. (2008): warm intervals characterized by high terrigenous
input and higher seasonality were alternated with cold periods
with lower terrigenous input and lower seasonality. Reticule-
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fonestram minuta strongly dominated in the near-shore facies
during warm intervals (more than 80%) where high terri-
genous input during wet seasons may cause seasonal oscilla-
tions of salinity in the upper layer of water column (own un-
published data).

The expansion of near-shore facies as a result of transgres-
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1:19)

Fig. 12. Elliptical reticulofenestrids from the Central Paratethys Oligocene and Early Miocene. A-K. Reticulofenestra minuta Roth, 1970, < 3.5 um, zones NN1
and NN2. A. Borehole LR-10/12 m, Zone NN2. B-D. Borehole LR-2/48 m, Zone NN1. E, F. Borehole LR-2/28 m, Zone NN2. G. Borehole FV-1/440 m, Zone
NNI1. H. Borehole EH-1/155 m, Zone NN2. I, J. Borehole EH-1/85 m, Zone NN2. K. Borehole EH-2/155 m, Zone NN2. L-W. Reticulofenestra minuta Roth,
1970, < 3.5 um, Zone NNS5. L-N. Section Kralice, sample 4. O, P Section Kralice, sample 7. Q, R. Section Kralice, sample 10. S-U. Borehole PY-1/2.2 m.
V, W. Borehole PY-1/1.5 m. X-AY. Reticulofenestra haqii—pseudoumbilicus group (4-5 pm), zones NP25-NN4. X, Y. Borehole LR-10/350 m, Zone NP25. -
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sion, the changes in water circulation due to the mixing of in-
coming warmer and in situ colder water masses and, probably,
unstable conditions as a result of short term (?seasonal) oscil-
lations of ecological parameters (such as salinity in the upper
layers of water column) may have produced conditions fa-
vourable to the blooms of small-sized Reticulofenestra.

Size changes of the Reficulofenestra haqii-pseudoumbi-
licus group.— Discrepancies between the FOs of individual
size categories in the R. hagii—pseudoumbilicus group (see
chapter: Size changes over time) in the Central Paratethys
and in the oceanic realm is notable for interpretation of local
vs. global character of size changes in the group. The follow-
ing discrepancies have been recorded:

(i) The FO of R. hagii (> 4 um) was observed in the stud-
ied area in Zone NP25 (Holcova 2005) whereas in the world
ocean it lies at the NN1/NN2 boundary (Young 1999).

(i) The FO of R. pseudoumbilicus (> 5 pm) is given in Zone
NN4 in the world ocean (Young 1999). In the Central Para-
tethys, Marunteanu (1999) and Chira (2004) reported this spe-
cies from near the NN1/NN2 boundary, Andreyeva-Grigo-
rovich et al. (2008) from Zone NN2 and Molc¢ikova and Stra-
nik (1987) from Zone NN1. Holcova (2005, this paper) de-
scribe the FO of specimens > 5 um together with FO of R. hagii
>4 um in the uppermost part of the NP25 Zone (Figs. 5, 6, 9).

(iii) The FO of R. pseudoumbilicus > 7 um is given most
often being a Middle Miocene event. In the Mediterranean, the
FO has been described from Zone NN6 (Fornaciari and Rio
1996), and the FCO of R. pseudoumbilicus > 7.0 pm to define
the z ones MNN6a and MNNG6b (Fornaciari et al. 1996); in the
Eastern equatorial Pacific the event was recorded near the
NNS/NNG6 boundary (Raffi and Flores 1995). However, Howe
and Sblendorio-Levy (1998) described the FO of R. pseudo-
umbilicus > 7 um from the upper part of Zone NN 2 in the At-
lantic Ocean near Madeira. This correlates with its FO in the
Central Paratethys in Zone NN2 (Molcikova and Stranik
1987, this paper). The FCO of R. pseudoumbilicus > 7 ym in
the Central Paratethys has been recorded from the NN4 Zone.
(Molcikova 1983; Svabenickd et al. 2003; Eva Haldsova, per-
sonal communication 2009; this paper).

The Central Paratehys FOs of all three size categories in R.
hagii—pseudoumbilicus group occurred earlier in the global
ocean (including the Mediterranean realm) and cannot be used
for interregional biostratigraphic correlations.

The evolution of size in the R. hagii-pseudoumbilicus
group in the Central Paratethys would suggest an earlier ap-

pearance of larger specimens owing to specific conditions in
an intracontinental basin. However, the most important mor-
phological changes in the R hagii—pseudoumbilicus group can
be correlated with the opening of new pathways between the
Central Paratethys and the Mediterranean and the immigration
of incoming species in the Central Paratethys (Fig. 11). First,
the FO of R. hagii is associated with the reopening of sea-ways
after the Kiscellian anoxia, which is marked by the immigra-
tion of foraminifera (Holcova 2008). Second at the upper part
of Zone NN2 marked by the FO of H. ampliaperta, larger
specimens of R. hagii (6—7 pm) with small central opening
(1.5-1.7 um) were recorded. The FO of H. ampliaperta can be
correlated with transgression from the Mediterranean via the
Pre-Alpine passage (Rogl 1998; Popov et al. 2004). The trans-
gression is characterized by substantial faunal turnover
marked by numerous first occurrences of species of western
Mediterranean origin (Kroh and Harzhauser 1999; Vdvra
1979; Mandic and Steininger 2003; Piller et al. 2007). Third,
the FCO of R. pseudoumbilicus > 7 pm at the base of Zone
NN4 correlates with the transgression and paleogeographic re-
organization and the establishment of a new broad connection
via the “Trans-Tethyan trench corridor”. The connection en-
abled faunal exchange between the Mediterranean and Para-
tethys (Rogl 1998; Rogl et al. 2003; Popov et al. 2004).
Fourth, the FO of R. pseudoumbilicus > 8 pum is associated
with the reopening of the Mediterranean—Indo-Pacific sea-
way (Rogl and Steininger 1983; Rogl 1998, 1999; Popov et al.
2004). This large transgression caused rapid immigration of
the marine fauna (e.g., Harzhauser and Piller 2007; Holcova
2008) termed the EBBE, or Early Badenian-Build-up-Event
(Harzhauser and Piller 2007).

Slight gradual size changes in the R. hagii—pseudoumbi-
licus group were recorded during periods without paleogeo-
graphical changes (Fig. 11). The decrease in the placoliths size
in the late Egerian (upper NP25 to NN1 zonal interval) may
correspond with cooling interpreted from occurrence of arcto-
tertiary elements among palynomorphs (Planderova 1990).
Also Kiirschner et al. (2008) hypothesized a cooling during
this interval correlatable with the Mil/la event.

The size of placoliths slightly increased in the Eggen-
burgian, although this increase is not general (Figs. 5, 6, 9).
This size increase can be correlated with warming (Kiirschner
et al. 2008).

Bimodal size distribution in the R. hagii—pseudoumbi-
licus group was recorded firstly during the Zone NN1 and in
the lower part of the Zone NN2 (Fig. 9, 10). The smaller

Z, AA. Borehole LR-9/350 m, Zone NP25. AB. Borehole LR-2/98 m, Zone NP25. AC-AE. Borehole C-2/500 m, Zone NP25. AF, AG. Borehole EH2/160 m,
Zone NN1. AH, Al Borehole EH-1/105 m, Zone NN2. AJ, AK. Borehole EH-1/85 m, Zone NN2. AL. Borehole EH-2/75 m, Zone NN2. AM, AN. Borehole
LKS-1/340 m, Zone NN3. AO-Q. Borehole LKS-1/181 m, Zone NN4. AR, AS. Borehole LKS-1/105 m, Zone NN4. AT-BE Reticulofenestra haqii—
pseudoumbilicus group (5-7 pm), zones NP25-NN4. AT, AU. Borehole LR-10/350 m, Zone NP25. AV. Borehole LR-9/350 m, Zone NP25. AW, AX. Bore-
hole C-2/500 m, Zone NP25. AY. Borehole EH2/160 m, Zone NN1. AZ, BA. Borehole EH-1/105 m, Zone NN2. BB, BC. Borehole EH-1/85 m, Zone NN2.
BD, BE. Borehole EH-2/155 m, Zone NN2. BF-BK. Reticulofenestra haqii—pseudoumbilicus group (6—7 m) narrow central opening, Zone NN2. BF, BG.
Borehole EH-1/155 m, Zone NN2. BH, BI. Borehole EH-1/105 m, Zone NN2. BJ, BK. Borehole EH-2/85m, Zone NN2. BL-BQ. Refticulofenestra
hagii—pseudoumbilicus group (6—8 um), Zone NN4. BL, BM. Borehole LKS-1/105 m, Zone NN4. BN, BO. Borehole LKS-1/26 m, Zone NN4. BP, BQ Bore-
hole BE-2/114 m, Zone NN4. BR, BU. Reticulofenestra hagii—pseudoumbilicus group (> 8 um), Zone NN5. BR. Borehole PY-1/2.2 m. BS. Borehole

PY-1/1.5 m. BT, BU. Section Kralice, sample 4.
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morphotype (< 6 pum) is characterized by a small central
opening 0.5-1.5 pm. Larger morphotype (> 6 um) have
larger central openings (Fig. 10).

Backman (1980) and Beaufort and Aubry (1992) de-
scribed a dependence of the morphometric variability of R.
pseudoumbilicus on seasonal or latitudinal temperature dif-
ferences during the Miocene and Pliocene. According to
Backman (1980) low latitude individuals are characterized
by a larger central opening and can be slightly larger. High
latitude individuals are distinguished by a smaller central
opening. Beaufort and Aubry (1992) have proposed alterna-
tions of winter and summer morphotypes in the Lower Mio-
cene of high-latitude populations. The occurrence of two size
categories (3.5-6 um and 6-8 um) in the late Egerian—early
Eggenburgian of analysed samples may also represent sea-
sonal morphotypes: the smaller morphotype could represent
the winter morphotype while the larger morphotype with a
larger central opening could represent the summer morpho-
type (Fig. 10) This assumed seasonality has been corrobo-
rated by palaeoclimate estimates based on plant macrofossils
preserved in the BfeStany Clay from the Most Basin (Teo-
doridis and Kvacek 2006; Kvacek and Teodoridis 2007).
These studies have shown a significant difference between a
Coldest Month Mean Temperature (CMMT) and Warmest
Month Mean Temperature (WMMT), which is 15-20°C
(Teodoridis 2007; Teodoridis et al. 2011).

Conclusions

Based on biometric analysis, two size groups of elliptical
reticulofenestrids from the NP25-NNS5 zonal interval were
distinguished. One group corresponds to the small R. minuta
(< 3 pum); the other is the R. hagiii—-pseudoumbilicus group
(3.5-10 um). A clear criterion upon which to define species in
this group has not been found, and species taxonomy (R. hagii
vs. R. pseudoumbilicus) can only be conventional (Fig. 12).

Two blooms of small R minuta were observed. The earliest
Miocene bloom (NN1 and lower part of Zone NN2) is proba-
bly a local event for the northern part of the Pannonian Basin.
The early Middle Miocene bloom (Zone NN5) was already
known and has a global occurrence in the Central Paratethys
basins. These blooms can be correlated with the expansion of
near-shore facies associated with transgression, the incursions
of warm water into the Paratethys, which may cause changes
in water circulation due to the mixing of warmer and colder
water masses. Unstable conditions with short-term oscillations
of ecological parameters (probable salinity in the upper layers
of water column) can be also expected.

The FOs of all three size categories in R. hagii—pseudo-
umbilicus group (3-5 pm, 5—7 um, > 7 um) occurred earlier
in the Central Paratehys than in the global ocean and the
Mediterranean region. They cannot be used for interregional
biostratigraphical correlations.

The slight gradual changes in size in the R. haqii—pseudo-
umbilicus group can be correlated with paleoclimatic trends.

ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

The decrease in size of the placoliths in the late Egerian (up-
per Zone NP25 and Zone NN1) may result from cooling dur-
ing the Mil/la event.

The size of placoliths slightly increased from the Eggen-
burgian to the Badenian; the interval can be generally charac-
terized by warming.

The two morphotypes occurring in the late Egerian—
Early Eggenburgian may represent seasonal morphotypes.
The smaller morphotype could represent the winter morpho-
type while the larger morphotype with a slightly larger cen-
tral opening could represent the summer morphotype.
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