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The first evidence of predatory or parasitic drilling in stylophoran

echinoderms

BRADLEY DELINE

Drillholes are common in many different echinoderm classes,

but have yet to be reported in homalozoans. A borehole in the

Late Ordovician echinoderm Enoploura is the first evidence of

drilling in Stylophora. The level of preservation and environ−

mental setting suggest this drilling occurred while the organ−

ism was alive, thus supporting a predatory or parasitic inter−

pretation.

Introduction

Boreholes, of either predatory or parasitic origin, have been de−

scribed in several different groups of echinoderms, including cri−

noids (Moodie 1918; Branson 1964; Brett 1978; Baumiller 1990;

Baumiller and Gahn 2002), blastoids (Baumiller and Macurda

1995; Baumiller 1996), rhombiferan cystoids (Kluessendorf 1983),

and echinoids (Nebelsick and Kowalewski 1999; Neumann and

Wisshak 2006). Many of these drillholes, which fall into the

ichnogenus Oichnus, are circular in plan view with either a cylin−

drical or beveled shape and penetrate no deeper than the plate

thickness. These types of boreholes have been attributed to drill−

ing by gastropods, octopods, and worms in modern settings

(Bromley 1981). These traces, if determined to been drilled in a

live organism, are one of the few pieces of direct evidence of biotic

interactions in the fossil record and can give insights into the be−

havior and ecology of fossil organisms.

One group of echinoderms in which drilling predation has not

been reported are the stylophorans. Mitrate stylophorans are un−

usual within the echinoderms in that they are non−pentaradiate and

often show no symmetry. Stylophorans are composed of a three−

part, flexible appendage (aulacophore) and a highly flattened

theca (Lefebvre 2003). Almost all reconstructions interpret stylo−

phorans as unattached, benthic organisms, but the living orienta−

tion as well as the function of the aulacophore has been highly de−

bated (Jefferies 1967; Parsley 1988; Kolata et al. 1991). This paper

reports the first known example of drilling in stylophora.

Institutional abbreviation.—CMC, Cincinnati Museum Center,

Cincinnati, USA.

Geologic setting

A slab containing two specimens of Enoploura popei was col−

lected from a roadcut along US 62/68 (formerly State Rte. 3071)

between KY 9/AA Highway and KY 8 near Maysville, Mason

County, Kentucky, USA, located on the eastern limb of the

Cincinnati Arch. The slab was part of a geographically exten−

sive hardground horizon described by Sumrall et al. (1999) near

the base of the Bellevue Member of the Grant Lake Formation

(middle Maysvillian Stage, Cincinnatian Series, ~445 Ma). This

layer occurs at the top of a set of packstones and grainstone beds

that range between 10 and 25 cm in thickness. The upper surface

of the hardground is irregular and has abundant encrusting bryo−

zoans, brachiopods, and edrioasteroids.

Description

The specimen discussed herein is a single borehole present on the

larger of two mitrate stylophoran specimens preserved on a 30 cm

by 17 cm plate (Fig. 1). The slab also contains abundant brachio−

pods (Hebertella occidentalis and Platystrophia ponderosa) and

thick ramose trepostome bryozoans. The slab contains eight ob−

long borings, which are on average 1.58 mm (SD 1.2 mm) wide,

12.03 mm long (SD 10.6 mm), and 0.83 mm deep (SD 0.65 mm),

may overlap, and occur in brachiopods, bryozoans and the hard−

ground itself (Fig. 2). These borings are most likely excavations of

domiciles which are common in Cincinnatian hardgrounds. How−

ever, no other perpendicular boreholes were observed in brachio−

pods, bryozoans or the hardground surface.

The theca of the smaller of the two stylophoran specimens is

6 mm wide and is preserved with the flat side of the theca down

with the anterior end elevated at a 45� angle. The theca of the

larger individual with the borehole is 13.5 mm wide and 23 mm

long and is preserved prone, also with the flat surface down.

Both individuals are preserved in a thin mud drape overlying the

irregular hardground. The circular borehole is 0.88 mm in diam−

eter and is located approximately in the center of the b supra−

central plate on the curved surface of the theca, overlying the

central body cavity. The borehole is shallow (<0.2 mm, mea−

sured by placing a pin into the borehole) and penetrates only the

thickness of the plate. The borehole has a slightly irregular

shape which may be due to taphonomic alteration. The mitrate is

relatively complete with the aulacophore preserved to the sty−

loid plate. The aulacophore is parallel to the theca with a thin

gap between it and the hardground surface indicating preserva−

tion above the hardground as opposed to becoming incorporated

into the surface as is the case with many brachiopods (Wilson

and Palmer 2001).
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Fig. 1. A. A slab from Maysville, KY (CMC IP50706) with a drilled specimen of the stylophoran mitrate Enoploura popei Caster, 1952. The hole indicated

by an arrow. B. Close up of the drilled specimen. C. Detail of the borehole.
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Parsley (1991) described two species of Enoploura from the

type Cincinnatian. The two species differ in the shape of the

styloid flanges (Enoploura popei has large rounded flanges,

while the less common E. balanoides has plowshare shaped

styloid flanges) and the presence of subtle ornamentation on E.

balanoides (Parsley 1991). Since these two species co−occur

throughout the Maysvillian and the aulacophore, and surface or−

namentation are often not well preserved, species differentiation

is difficult. The specimen in this study appears to lack ornamen−

tation and the partially preserved styloid plate appears to be

rounded placing it within E. popei. Enoploura is interpreted as

living with flat side of the theca oriented downwards with the

mouth located on the distal end of the proximal aulacophore and

the anal opening occurring on the distal aperture of the theca

(Parsley 1991). The aulocophore is interpreted as both a feeding

and locomotor appendage, while the distal spines and styloid

plates acting to stabilize the animal during feeding (Parsley

1991). Alternatively, Enoploura has been considered to belong

to a subphylum of chordates and interpreted to live inverted

compared with the echinoderm orientation with the mouth on

the opposite end of the theca and the aulocophore used only in

locomotion (Jefferies 1967).

Discussion

Boreholes from the type Cincinnatian have been previously re−

ported in brachiopods (Kaplan and Baumiller 2000) and bryo−

zoans (Erickson and Bouchard 2003). The interpretations of these

boreholes have been varied (Fenton and Fenton 1931; Carriker

and Yochelson 1968; Kaplan and Baumiller 2000; Wilson and

Palmer 2001), but it has been assumed that they are biotic in ori−

gin. These borings, which fall under the ichnogenera Trypanites,

Sanctum, Oichnus, and the embedment pit Tremichnus, have been

interpreted as domichnial traces, most likely formed by amphi−

pod−like crustaceans (Erickson and Bouchard 2003) or ‘worms’

(Palmer and Wilson 1988; Brett 1985; Wyse Jackson 2005), or as

Praedichnia (Ekdale 1985) traces formed by boring gastropods

(Kaplan and Baumiller 2000).

A predatory or parasitic interpretation of the Enoploura bor−

ing is supported by several lines of evidence. Homalozoans are

weakly articulated and it has been hypothesized that they would

only stay articulated from a few hours to a day after death (Brett

et al. 1997), an inference supported by experiments with modern

weakly sutured echinoderms (Meyer and Meyer 1986). Given

the preservation of both the theca and the aulacophore, this indi−

vidual was not only buried soon after death, but the borehole

was likely drilled while the animal was alive. This interpretation

is also supported by preservation on a hardground, which is a

setting characterized by minimal sedimentation prior to final

burial (Brett et al. 1997).

Secondly, the borehole presented in this study meets some of

the criteria used to distinguish predation such as circular shape,

orientation perpendicular to the theca, smooth sides, full pene−

tration of the plate, and only one borehole on the theca (Carriker

and Yochelson 1968; Ebbestad and Tapanila 2005). Other crite−

ria such as prey and site selectivity (Ebbestad and Tapanila

2005) require large sample sizes and cannot be applied to a sin−

gle borehole. However, the rarity of Enoploura should be noted,

such that even with a high boring percentage, more than one

bored individual from this occurrence is very unlikely.

Thirdly, the borehole in the Enoploura differs significantly

from those in the associated hardground in several aspects. The

borings into the hardground are wider, deeper, and over a centi−

meter longer on average, indicating a different driller than the

producer of the borehole in the Enoploura.

The identity of the borer cannot always be determined; how−

ever, the relationship between crinoids and gastropods may give

some insight into the potential borer. Although there is no con−
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Fig. 2. Horizontal boring on the slab from Maysville, KY (CMC IP50706). A. Overlapping burrows in the shell of the brachiopod Rafinesquina. B. Burrows

in a bryozoan. Scale bars 10 mm.
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clusive evidence of gastropod boring in the type Cincinnatian,

the likelihood of gastropods having the ability to bore is sup−

ported by the observation of the gastropods Cyclonema and

Naticonema either attached to the tegmen or associated with the

arms of the crinoid Glyptocrinus (Morris and Felton 1993).

Even though no boreholes have been reported in Glyptocrinus,

the repeated instances of prolonged attachment of the gastro−

pods to the tegmen of Glyptocrinus indicates that these gastro−

pods share a coprophagous ecologic niche with those that have

been shown to drill into crinoids (Baumiller 1990; Baumiller

and Gahn 2002). This association has been observed a few me−

ters below the extensive hardground and Cyclonema is known

to occur throughout the Bellevue Member of the Grant Lake

Formation (Thompson 1970).

The rarity of borings in Enoploura compared with the re−

peated association of Cyclonema with Glyptocrinus may be due

to the general rarity of stylophorans or the viability of Eno−

ploura as prey/host organisms. Enoploura would be accessible

to attack living on the seafloor, however, crinoids with large

dense filtration fans and gluttonous feeding behavior (Holland

et al. 1991) would likely provide a much more ample source of

food for a parasite or predator.

If drilling is more likely to occur on the exposed surface of the

prey organism, stereotypy in the site of the borehole in Enoploura

could indicate life position. Though stylophorans are rare in this

instance, Enoploura (McLaughlin et al. in press) and other stylo−

phorans (Kolata and Jollie 1982) are locally abundant. Therefore,

further instances of boring in stylophorans should be sought as an

indicator of life position, which is a point of contention in the de−

bate over the phylogenetic affinities of this group.

This borehole is amongst the oldest examples of predatory/

parasitic boring in the phanerozoic (Brett and Walker 2002) and

fits in with other examples of low frequency boring during the

early Paleozoic (Kowalewski et al. 1998). Most early Paleozoic

boreholes occur in brachiopods (Brett and Walker 2002). How−

ever, this example shows that other organisms could be drilled

as well.

Conclusions

The presence of a borehole in an articulated specimen of the

mitrate Enoploura popei represents the first evidence of drilling

within the homalozoans. The lack of previous reports of bore−

holes may be due to the general rarity of these echinoderms as

well as a low frequency of drilling. Alternatively, they may not

be a preferred prey item for boring predators. Given that the

borehole was most likely drilled while the mitrate was still alive

based on the preservation, this borehole is more consistent with

predation or parasitism than with the creation of a domicile.

Given a sufficient sample, the location of boreholes in stylo−

phorans could be an important line of evidence in the determina−

tion of living position of these organisms.
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