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ABSTRACT 
 
Lee, H.S., 2018. Improvement of decomposing results of empirical mode decomposition and its variations for sea-
level records analysis. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal 
Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 526–530. 
Coconut Creek (Florida), ISSN 0749-0208. 

The performance of empirical mode decomposition (EMD) and its variations such as ensemble EMD (EEMD), 
complete EEMD with adaptive noise (CEEMDAN) and improved CEEMDAN (impCEEMDAN) are tested 
using artificial signal tests. In the artificial signal test, intrinsic mode functions (IMFs) are obtained using EMD, 
EEMD, CEEMDAN, and impCEEMDAN and then compared to prescribed oscillations in an artificial a priori 
known signal. In all cases, extra and redundant modes are found due to residual noises. Furthermore, the low 
frequency modes are generally distorted. To overcome this problem a novel approach for reconstructing IMFs 
is proposed, where low-energy redundant modes are merged to one common signal based on statistical 
significance tests by comparing the energy-density of IMFs with energy-density spread function of white noise 
with similar scale. Artificial signal tests illustrate that the mode reconstruction method works well in 
approximating the prescribed true modes. Overall, the impCEEMDAN performs best with a reasonable fit to the 
original components and statistically significant low-frequency modes. The mode reconstruction method can 
improve the decomposing and filtering capacity of EMD and its variations. 
 
ADDITIONAL INDEX WORDS: emporical mode decomposition, mode reconstruction, trend, detrending, sea-level 
 

 
INTRODUCTION 

For coastal engineering and management purposes sea-level 
rise is the key factor to be considered because of its large impacts 
in a changing climate. Therefore, the estimation of long-term 
trends and changing rates of sea-level records is of eminent 
importance. Visser et al. (2015) pointed that misunderstanding 
and controversies on acceleration or deceleration of sea-level 
records are due to mathematical or statistical characteristics of the 
models in use. The authors reviewed 30 methods applied to sea-
level records and made recommendations for good modelling 
practices. However, while more and more in use to analyze sea-
level records (Breaker and Ruzmaikin, 2011; Ezer et al., 2013; 
Ezer and Corlett, 2012; Lee, 2013; Lee and Kaneko, 2015), 
empirical mode decomposition (EMD) is not directly assessed in 
their model evaluation (Visser et al., 2015). In the meantime, 
Chambers (2015) investigated and mentioned that since the EMD 
is a purely mathematical deconstruction of data with no regard to 
the intrinsic covariance of signals or physics behind and a zero 
mean assumption nearby peaks, it is unlikely that a single intrinsic 
mode function (IMF) from the EMD analysis can represent a real 
physical climate variation. Therefore, it is more likely that 
multiple modes are required to quantify real signals. However, in 

case of needing more than one IMF to describe a real physical 
signal, the question naturally arises, which IMFs should be 
combined without any a priori knowledge of the real signal. 

Here to address this important question, EMD and recent 
advancements in EMD variations, such as ensemble EMD 
(EEMD), complete EEMD with adaptive noise (CEEMDAN) and 
improved CEEMDAN (impCEEMDAN), are applied to a 
randomly simulated artificial data set where the signal is a priori 
known. Moreover, we introduce a novel approach for 
reconstructing multiple IMFs into one combined signal based on 
statistical Monte-Carlo simulations for energy density levels of 
decomposed IMFs.  

 
METHODS 

Empirical mode decomposition (EMD) 
The EMD is an adaptive method to decompose a signal x(t) into 

a number of IMFs, which become the basis representing the signal. 
The algorithm can be described as follows (Colominas et al., 2014; 
Huang et al., 1998): 

Step 1. Set the IMF index k = 0 and find all extrema of the 0th 
residue r0 = x.  

Step 2. Interpolate between minima (maxima) of rk to obtain 
the lower (upper) envelope emin (emax). 

Step 3. Compute the mean envelope m = (emin + emax)/2. 
Step 4. Compute the IMF candidate dk+1 = rk – m. 
Step 5. Is dk+1 an IMF? 
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Yes. Save dk+1, compute the residue  𝑟𝑟𝑘𝑘+1  =  𝑥𝑥 − ∑ 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖=1 , do 

k = k + 1, and treat rk as input data in step 2. 
No. Treat dk+1 as input data in step 2. 
Step 6. Continue until the final residue rk satisfies some 

predefined stopping criterion. 
The refinement process (steps 2 to 5) is needed to extract every 

mode by a certain number of iterations and is named as sifting 
process. EMD is ideally suited for analysing data from non-
stationary and non-linear processes. However, EMD still cannot 
resolve the most complicated cases, when the processes are non-
linear and the noises also have the same time-scale as the signal; 
their separation becomes impossible (mode mixing). 

 
Ensemble empirical mode decomposition (EEMD) 

The EEMD defines the “true” modes (here noted as 𝐼𝐼𝐼𝐼𝐼𝐼̅̅ ̅̅ ̅̅ = �̅�𝑑 
in what follows) as the average of the corresponding IMFs 
obtained from an ensemble of the original signal, x, plus different 
realizations of finite variance white noise. The EEMD algorithm 
can be described as follows (Colominas et al., 2012; Wu and 
Huang, 2009): 

Step 1. Generate x(i) = x + 𝛽𝛽w(i), where w(i) (i=1,…,I) are 
different realization of  zero mean unit variance white noise, I is 
the number of realization in the ensemble and the magnitude of 
added noise 𝛽𝛽 > 0. 

Step 2. Decompose completely each x(i) (i=1,…,I) by EMD, 
obtaining the modes 𝑑𝑑𝑘𝑘

(𝑖𝑖), where k = 1, …, K indicates the mode. 
Step 3. Assign �̅�𝑑𝑘𝑘 as the kth mode of x, obtained by averaging 

the corresponding modes: �̅�𝑑𝑘𝑘 = 1
𝐼𝐼
∑ 𝑑𝑑𝑘𝑘

(𝑖𝑖)𝐼𝐼
𝑖𝑖=1 . 

The extraction of every 𝑑𝑑𝑘𝑘
(𝑖𝑖)  requires a different number of 

sifting iterations. It can be noticed that in EEMD, every x(i) is 
decomposed independently from the other realizations and for 
every one of them a residue 𝑟𝑟𝑘𝑘

(𝑖𝑖) = 𝑟𝑟𝑘𝑘−1
(𝑖𝑖) − 𝑑𝑑𝑘𝑘

(𝑖𝑖) is obtained at each 
stage, with no connection between the different realizations. This 
situation is the cause of some EEMD disadvantages: (i) the 
decomposition is not complete and (ii) different realizations of 
signal plus noise might produce different number of modes 
particularly in low frequency. 

 
Complete EEMD with adaptive noise (CEEMDAN) 

To improve these drawbacks, a new ensemble method called 
CEEMDAN was proposed (Colominas et al., 2012; Torres et al., 
2011). The general idea is the following: x(i) are generated from x 
and the first mode �̃�𝑑1 = �̅�𝑑1  is computed exactly as in EEMD. 
Then, a unique first residue is obtained, independently from the 
noise realization: 
𝑟𝑟1 = 𝑥𝑥 − �̃�𝑑1                                                                        (1) 
After that, the first EMD mode is computed from an ensemble 

of r1 plus different realizations of a particular noise. The second 
mode �̃�𝑑2  is defined as the average of these modes. The next 
residue is: 𝑟𝑟2 = 𝑟𝑟1 − �̃�𝑑2 . This procedure continues until a 
stopping criterion is reached.  

The next algorithm details the CEEMDAN method. Let Ek(‧) 
be the operator which produces the kth mode obtained by EMD 
and let w(i) be a realization of zero mean unit variance white noise. 
Then: 

Step 1. For every i=1, …, I decompose each 𝑥𝑥(𝑖𝑖) = 𝑥𝑥 + 𝛽𝛽0𝑤𝑤(𝑖𝑖) 
by EMD, until its first mode and compute 

�̃�𝑑1 = 1
𝐼𝐼
∑ 𝑑𝑑1

(𝑖𝑖)𝐼𝐼
𝑖𝑖=1 = �̅�𝑑1                                                        (2) 

Step 2. At the first stage (k = 1) calculate the first residue as in 
Eq. (1): 𝑟𝑟1 = 𝑥𝑥 − �̃�𝑑1. 

Step 3. Obtain the first mode of 𝑟𝑟1 + 𝛽𝛽1𝐸𝐸1(𝑤𝑤(𝑖𝑖)), i=1, …, I by 
EMD and define the second CEEMDAN mode as: 
�̃�𝑑2 = 1

𝐼𝐼
∑ 𝐸𝐸1 (𝑟𝑟1 + 𝛽𝛽1𝐸𝐸1(𝑤𝑤(𝑖𝑖)))𝐼𝐼
𝑖𝑖=1                                     (3) 

Step 4. For k = 2, …, K calculate the kth residue: 
𝑟𝑟𝑘𝑘 = 𝑟𝑟(𝑘𝑘−1) − �̃�𝑑𝑘𝑘                                                                (4) 
Step 5. Obtain the first mode of 𝑟𝑟𝑘𝑘 + 𝛽𝛽𝑘𝑘𝐸𝐸𝑘𝑘(𝑤𝑤(𝑖𝑖)), i=1, …, I by 

EMD until define the (k + 1)th CEEMDAN mode as: 
�̃�𝑑(𝑘𝑘+1) = 1

𝐼𝐼
∑ 𝐸𝐸1 (𝑟𝑟𝑘𝑘 + 𝛽𝛽𝑘𝑘𝐸𝐸𝑘𝑘(𝑤𝑤(𝑖𝑖)))𝐼𝐼
𝑖𝑖=1                              (5) 

Step 6. Go to step 4 for the next k. 
Iterate the steps 4 to 6 until the obtained residue cannot be 

further decomposed by EMD, either because it satisfies IMF 
conditions or because it has less than three local extrema. 

Observe that, by construction of CEEMDAN, the final residue 
fulfills: 
𝑟𝑟𝑘𝑘 = 𝑥𝑥 − ∑ �̃�𝑑𝑘𝑘𝐾𝐾

𝑘𝑘=1                                                               (6) 
with K being the total number of modes. Therefore, the signal of 
interest x can be expressed as  
𝑥𝑥 = ∑ �̃�𝑑𝑘𝑘 + 𝑟𝑟𝑘𝑘𝐾𝐾

𝑘𝑘=1                                                               (7) 
ensuring the completeness property of the proposed 
decomposition and thus providing an exact reconstruction of the 
original data. The final number of modes is determined only by 
the data and the stopping criterion. The coefficient 𝛽𝛽𝑘𝑘 =
𝜀𝜀𝑘𝑘std(𝑟𝑟𝑘𝑘) allow the selection of the SNR at each stage, where 𝜀𝜀 
is the noise standard deviation.  

However, CEEMDAN still has some aspects that have to be 
improved further: (i) its modes contain some residual noise; and 
(ii) the signal information appears “later” than in EEMD with 
some “spurious” modes in the early stages of the decomposition.  

Let us recall the operator Ek(‧), and let M(‧) be the operator 
which produces the local mean of the signal that is applied to. It 
can be noticed that E1(x) = x - M(x). Let w(i) be a realization of 
white Gaussian noise, x(i) = x + w(i), and 〈‧〉  the action of 
averaging throughout the realizations. For the first EEMD and 
original CEEMDAN modes we have: 

�̃�𝑑1 = 〈𝐸𝐸1(𝑥𝑥(𝑖𝑖))〉 = 〈𝑥𝑥(𝑖𝑖) −𝐼𝐼(𝑥𝑥(𝑖𝑖))〉 = 〈𝑥𝑥(𝑖𝑖)〉 − 〈𝐼𝐼(𝑥𝑥(𝑖𝑖))〉  (8) 
By estimating only the local mean and substracting it from the 

original signal, we have: 
�̃�𝑑1 = 𝑥𝑥 − 〈𝐼𝐼(𝑥𝑥𝑖𝑖)〉                                                               (9) 
In this way, we obtain a reduction in the amount of noise 

present in the modes.  
 

Improved CEEMDAN 
Taking into account the two drawbacks of CEEMDAN, an 

improved algorithm for CEEMDAN (hereinafter, 
impCEEMDAN) is proposed as follows (Colominas et al., 2014): 

Step 1. Calculate by EMD the local means of I realizations 
𝑥𝑥(𝑖𝑖) = 𝑥𝑥 + 𝛽𝛽0𝐸𝐸1(𝑤𝑤(𝑖𝑖)) to obtain the first residue 
𝑟𝑟1 = 〈𝐼𝐼1(𝑤𝑤(𝑖𝑖))〉                                                                (10) 
Step 2. At the first stage (k = 1) calculate the first mode: �̃�𝑑1 =

𝑥𝑥 − 𝑟𝑟1. 
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Step 3. Estimate the second residue as the average of local 
means of the realizations 𝑟𝑟1 + 𝛽𝛽1𝐸𝐸2(𝑤𝑤(𝑖𝑖)) and define the second 
mode:  
�̃�𝑑2 = 𝑟𝑟1 − 𝑟𝑟2 = 𝑟𝑟1 − 〈𝑀𝑀 (𝑟𝑟1 + 𝛽𝛽1𝐸𝐸2(𝑤𝑤(𝑖𝑖)))〉                   (11) 
Step 4. For k = 3, …, K calculate the kth residue 
𝑟𝑟𝑘𝑘 = 〈𝑀𝑀 (𝑟𝑟𝑘𝑘−1 + 𝛽𝛽𝑘𝑘−1𝐸𝐸𝑘𝑘(𝑤𝑤(𝑖𝑖)))〉                                    (12) 
Step 5. Compute the kth mode 
�̃�𝑑𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝑟𝑟𝑘𝑘                                                                 (13) 
Step 6. Go to step 4 for next k. 
Constants 𝛽𝛽𝑘𝑘 = 𝜀𝜀𝑘𝑘std(𝑟𝑟𝑘𝑘) are chosen to obtain a desired SNR 

between the added noise and the residue to which the noise is 
added. In order to obtain noise realizations with smaller 
amplitudes for the late stages of the decomposition, in the rest of 
the modes we will use the noise as resulting from its pre-
processing by EMD, i.e., without normalizing them by its 
standard deviation (𝛽𝛽0 = 𝜀𝜀0std(𝑟𝑟𝑘𝑘),𝑘𝑘 ≥ 1) . In this study, 𝜀𝜀 =
0.02, 𝐼𝐼 = 500, a few hundred of realization, and the same SNR 
are used for all the stages in all analysis. 
 
Statistical significance test 

The ability of EMD to obtain the best IMF with statistical 
significance, physical meaning and uniqueness is debatable. To 
determine whether a dataset or its components contain useful 
information, statistical significance tests were performed using 
Gaussian white noise with EEMD, following Wu and Huang 
(2004). First, decompose the targeted noisy dataset (normalized) 
into IMFs; second, calculate the spread function of given 
percentiles for the IMFs decomposed from Gaussian white noise; 
third, select the confidence level (e.g., 95%) and determine the 
upper and lower spread lines; and finally, compare the energy 
density for the IMFs from the noisy data with the spread functions. 
The IMFs with energy located above the upper bound or below 
the lower bound contain signal information at the selected 
confidence level. In the final step, if the targeted dataset is non-
stationary and it has a significant trend, then the trend should be 
excluded because the Gaussian white noise does not contain any 
trend; then, the energy densities of all oscillatory IMFs should be 
rescaled according to the total energy of all the oscillatory IMFs 

before comparing the energy densities of the IMFs with the spread 
functions from the Gaussian white noise.  

 
Mode reconstruction 

Here, we propose a new approach to reconstruct IMFs to 
increase their statistical significances by using the result of 
statistical significance test. In nature, an average period of an IMF 
is approximately two times longer or two times shorter than 
neighboring IMFs (Huang et al., 1998). Therefore, we propose to 
reconstruct modes if an IMF does not fulfill one of following 
conditions: (i) an average period of an IMF is attributed to be 
approximately two times longer or two times shorter than the 
neighboring IMF, (ii) an IMF should be statistically significant 
with an energy level of an IMF over 95% confidence level.  

If an IMF is statistically insignificant due to low-energy level, 
or its average period is not twice longer or shorter than 
neighboring IMFs, then we can combine the insignificant IMF 
with a statistically significant neighboring IMF. After combining 
those insignificant IMFs to a common signal, a new set of IMFs 
can be obtained with all resulting modes significant over 95% 
confidence level. 

 
EXPERIMENTS 

Artificial signal test 
In this section, we illustrate the abilities of EMD and its 

variations such as EEMD, CEEMDAN, and impCEEMDAN and 
the reconstruction method. As an example, we propose a mode 
mixing example with a low-frequency oscillation and a linear 
trend. A sustained pure tone plus a gapped one with a higher 
frequency will inevitably show us mode mixing when applied to 
EMD due to the local nature of the method. The analyzed signal 
is signal = c1 + c2 + c3 + c4 with  

𝑐𝑐1 = {
0

sin (2𝜋𝜋0.255(𝑛𝑛 − 501))
0

𝑖𝑖𝑖𝑖 1 ≤ 𝑛𝑛 ≤ 500
𝑖𝑖𝑖𝑖 501 ≤ 𝑛𝑛 ≤ 750
𝑖𝑖𝑖𝑖 751 ≤ 𝑛𝑛 ≤ 1000

 (14) 

𝑐𝑐2 = sin (2𝜋𝜋0.065(𝑛𝑛 − 1))   (15) 
𝑐𝑐3 = sin (2𝜋𝜋0.005(𝑛𝑛 − 1))   (16) 
𝑐𝑐4 = 0.002(𝑛𝑛)     (17) 

 
 

 

 
Fig. 1 (a) Test signal and its components, and resulting IMFs decomposed by (b) EMD, (c) EEMD, (d) CEEMDAN and (e) impCEEMDAN 

 

(c) 

(b) 

(a) 

(e) 

(d) 
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Fig. 2 Results of statistical significance tests of IMFs obtained from (a) EMD, (b) EEMD, (c) CEEMDAN and (d) impCEEMDAN. The upper bound 
(90th and 95th percentiles) and lower bound (5th and 10th percentiles) are determined from the probability distribution of the energy density of the IMFs 
from Gaussian white noise. The asterisks from left to right correspond to the pairs of the normalized energy density and the mean period of IMF1 to the 
last IMF for each case. When the IMF energy is located above the upper bound or below the lower bound, then that IMF should be considered to contain 
information at that selected confidence interval. IMFs within the red circle can be combined to form a single IMF based on the reconstruction requirements. 

 
  

The c1, c2, c3, and c4 can be considered to represent sea-level 
changes due to an intermittent signal such as waves and storm 
surge, tides, seasonal variations, and long-term trend, respectively 
(see Fig. 1). 
 

RESULTS 
Typical decomposition results for the four methods are 

presented in Fig. 1. The mode mixing problem is clearly exhibited 
in the first four IMFs from EMD in Fig. 1(b). For the three noise-
assisted methods the higher frequency intermittent signal is well 
recovered. However, every ensemble of test signal plus noise was 
completely decomposed independently from each other and then 
a total number of eight, nine, and seven modes are obtained, 
although from the third mode onwards they have very small 
energy level compared to the original test signal. In the resulting 
IMFs from EEMD, the energy levels of the last two residual 
trends are very low (Fig. 1(c)). The last two trends, IMF7 and 8 
in Fig. 1(c), are actually spurious modes generated due to the 
different residual noise at each realization (ensemble). This 
symptom is already noticed in Chambers (2015) such that the 
added noise cannot be filtered completely, then propagates into 
low frequency modes, and finally generates spurious modes in 
low frequency band. Therefore, when applying the EEMD 
method for decomposition, care is needed in terms of the number 
of ensemble simulations and the number of resulting IMFs. A 
spurious second mode appears in original CEEMDAN modes in 
Fig. 1(d) due to residual noise with similar scale of the signal. It 
also produces the low-energy modes such as the fifth and sixth 
derived from the fourth of the CEEMDAN result. The result of 
impCEEMDAN shows better performance with no mode mixing, 
no spurious low frequency modes, and no spurious second mode 
(Fig. 1(e)). However, the c2, c3, and c4 are not reproduced 
perfectly. We have also tested the sensitivity of the number of 
realization (ensemble) in EEMD and found that as the number of 
realizations increases, the probability of having different number 
of modes increases, and so does the reconstruction error (Lee, 
2016). 

After decomposing the time series, the statistical significant 
test was carried out. Figure 2 illustrates the energy level of each 
IMF with asterisks for IMFs from high-frequency in left to low-
frequency in right. Based on the reconstruction method described, 

a low energy IMF can be combined with a high energy IMF if its 
energy-density level is below the low bound of the energy-density 
spread function of the white noise as indicated with red arrows in 
Fig. 2(c). If the mean period of IMF is not approximately two 
times shorter or longer than the neighboring IMF, then it can be 
also combined with the nearest IMF as indicated within the red 
circle in Fig. 2. 

In Fig. 2(a), the second and third IMFs from EMD can be 
combined because they do not fulfill the first requirement for IMF 
reconstruction. In the significance test result for EEMD in Fig. 
2(b), the third from the left shows very low energy level with a 
close period with the second one. Therefore, the third and the 
second IMFs can be combined. The fourth IMF can also be 
combined with the fifth one, and the sixth and the seventh can be 
combined too. In the significance test result for CEEMDAN in 
Fig. 2(c), the fourth and fifth IMFs can be combined to form a 
single IMF, and the seventh and the eighth IMFs can be combined 
to form a single IMF, based on the reconstruction conditions. The 
third and sixth IMFs are statistically insignificant but their 
average periods satisfy the requirement. However, we combined 
IMFs from the third to the sixth for comparison of reconstruction 
results. Lastly, in the significant test of impCEEMDAN in Fig. 
2(d), the IMFs from the second to the fourth can be combined to 
form a single IMF, and the fifth and the sixth IMFs can be 
combined to form a new IMF3. 

Based on the reconstruction results, the new set of IMFs from 
EMD, EEMD, CEEMDAN and impCEEMDAN are presented in 
Fig. 3. Overall, the reconstruction method performs very well in 
reducing insignificant IMFs, but the mode mixing in EMD and 
the spurious IMFs in low frequency in EEMD and the spurious 
mode due to residual noise in high frequency in CEEMDAN are 
still remained. On the other hand, the reconstructed result from 
impCEEMDAN exhibits very good performance in IMF1 and 
IMF2. The new IMF3 shows also very good agreement with the 
c3 signal. The results of EEMD and CEEMDAN still produce 
larger number of IMFs than the test signal components, while the 
EMD and impCEEMDAN result in the same number of IMFs 
with the test components.  

 
 

(a) (b) (c) (d) 
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Fig. 3 (a) Test signal and its components, and reconstructed IMFs from (b) EMD, (c) EEMD, (d) CEEMDAN and (d) impCEEMDAN based on the 
results of statistical significant test 

 
 

CONCLUSIONS 
Empirical mode decomposition (EMD) and its variations such 

as EEMD, CEEMDAN and impCEEMDAN are introduced and 
investigated for their capability in terms of mode separations in 
the case of sea level records. Artificial signal tests illustrate that 
the residual noise and spurious low-frequency in EEMD and 
high-frequency in CEEMDAN modes are improved in 
impCEEMDAN decomposition. Moreover, the reconstruction 
method for decomposed IMFs is proposed based on the 
relationship between energy-density level of IMFs and energy-
density spread function of Gaussian white noise from statistical 
significance test. The artificial signal test shows a good 
reconstructed result that the component signals are well 
reproduced particularly in impCEEMDAN method.  

The EMD and its variations are useful tools for non-linear and 
non-stationary data analysis. However, those issues still remained 
to be solved such as mode mixing in EMD, spurious low 
frequency modes in EEMD and a spurious high-frequency mode 
in CEEMDAN. Therefore, it is of critical importance that an extra 
care is needed when applying them to sea-level records and 
interpreting the resulting low frequency modes. Finally, in this 
study, the end effect in EMD and its variations is found and has 
to be improved in further study. 
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