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ABSTRACT

SERTEL, E.; CIGIZOGLU, H.K., AND SANLI, D.U., 2008. Estimating daily mean sea level heights using artificial
neural networks. Journal of Coastal Research, 24(3), 727–734. West Palm Beach (Florida), ISSN 0749-0208.

The main purpose of this study is to estimate daily mean sea level heights using five different methods, namely the
least squares estimation of sea level model, the multilinear regression (MLR) model, and three artificial neural net-
work (ANN) algorithms. Feed forward back propagation (FFBP), radial basis function (RBF), and generalized regres-
sion neural network (GRNN) algorithms were used as ANN algorithms. Each method was applied to a data set to
investigate the best method for the estimation of daily mean sea level. The measurements from a single tide gauge
at Newlyn, obtained between January 1991 and December 2005, were used in the study. Daily mean sea level esti-
mation was carried out considering the precedent 8-day mean sea level data of the same station, the average and
standard deviation of each day for a 15-year period, and 6 monthly and yearly periodicities in tidal variations. Results
of the study illustrated that the ANN and MLR models provided comparatively better results than the conventional
model used for estimating sea level, least squares estimation. FFBP, RBF, and MLR algorithms produced significantly
better results than the GRNN method, and the best performance was obtained using the FFBP algorithm. From the
graphs and statistics, it is apparent that neural networks and MLR solution can provide reliable results for estimating
daily mean sea level.

ADDITIONAL INDEX WORDS: Feed forward back propagation, radial basis function, generalized regression neural
networks.

INTRODUCTION

Various geophysical processes within the Earth’s system
cause changes in global mean sea level: processes such as sea
water density variations resulting from temperature and sa-
linity variations, water masses transport among oceans, land
and atmosphere, changes in glacial and polar ice sheet mass,
terrestrial water storage changes (in soil moisture, snow, and
ground water), and atmospheric water vapor variations
(CHEN et al., 2000, 2005; DOUGLAS et al., 1990; MINSTER et
al., 1999; SCHMITT, 1995). Estimating the mean sea level in
coastal zones is important for monitoring and predicting
changes in complex marine ecosystems, protecting coastal
zone residents, supporting coastal construction plans in these
regions, and improving ocean-based technologies (MAKARYN-
SKYY et al., 2004). It is important to estimate sea level and
its variations to study the impact of temporal variation of sea
level on coastline and consequently on the engineering works
conducted near the coast.

Sea level has been conventionally measured by tide gauges
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since the mid-nineteenth century. Several types of tide gaug-
es have been designed to date, from a simple tide pole to more
sophisticated acoustic and pressure gauges (PUGH, 1987;
TOLKATCHEV, 1996). However, recent studies revealed that
the records of tide gauges are biased because of land motion
that occurs for any reason such as tectonic motion, local sub-
sidence or uplift, and postglacial rebound because they are
usually located on the ground (BAKER, 1993; DOUGLAS, 1991;
WOODWORTH, SPENCER, and ALCOCK, 1990). The global po-
sitioning system (GPS) is frequently used to correct sea level
records for vertical land motion, i.e., to obtain true sea levels
at tide gauge sites (SANLI and BLEWITT, 2001). This tech-
nique provides millimeter-level accuracy; hence yearly sea
level rise due to global warming could be monitored at the
expected level of precision (NEILAN, VAN SCOY, and WOOD-
WORTH, 1997). A direct measurement of sea level is also pos-
sible from space using an altimetry satellite. It is usually
used to produce global sea level variations offshore and pro-
vides an alternative to that of GPS and tide gauge techniques
(NEREM et al., 1997).

Sea level heights are traditionally predicted by least
squares estimation using harmonic analysis (DOODSON,
1958; PUGH, 1987). The functional model takes into account
the secular variation (long term sea level rise) of the sea level
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Table 1. Summary statistics of daily mean sea level data set.

Data Mean (m) Median (m)
Standard

Deviation (m)
Sample Variance

(m2) Kurtosis Skewness Min (m) Max (m) Count

Total 3.193 3.183 0.145 0.021 2.299 0.407 2.043 3.968 5471
Training 3.188 3.177 0.148 0.022 2.324 0.392 2.043 3.968 4383
Testing 3.212 3.203 0.130 0.017 1.948 0.629 2.812 3.944 1088

due to global warming, and a wide spectrum of tidal compo-
nents as well as atmospheric influences such as pressure,
temperature, and wind stress are also included (HANNAH,
1990; VANICEK, 1978). Tidal components are identified by
power spectral analysis of the sea level data, and meteoro-
logical stations are employed at nearby tide gauges to include
the contribution of atmospheric parameters. Refer to LEE

(2004) to find reviews of analysis methods employed in sea
level prediction.

Artificial neural networks can satisfactorily represent any
arbitrary nonlinear function if a sufficient and properly
trained neural network is employed. ANNs can find useful
relationships between different inputs and outputs. The ANN
method has been widely used for multidisciplinary applica-
tions such as river flow forecasting, modeling river sediment
yield, rainfall-runoff modeling, prediction of the distribution
of vegetation online waves (ABRAHART, SEE, and KNEAL,
2001; AGRAWAL and DEO, 2002; CIGIZOGLU, 2003, 2004; CIG-
IZOGLU and KISI, 2006; HILBERT and OSTENDORF, 2001;
MACKAY and ROBINSON, 2000). Recently, ANNs have also
been used for the mean sea level studies. ROSKE (1997) used
Kohonen networks, one sort of self-organizing neural net-
work, to predict sea levels without using explicit knowledge.
MAKARYNSKYY et al. (2004) used feed-forward neural net-
works to predict hourly sea level variations.

In the majority of these studies, the feed-forward back-
propagation method (FFBP) was employed to train the neural
networks. The performance of the FFBP was found to be su-
perior to conventional statistical and stochastic methods in
continuous flow series prediction (CIGIZOGLU, 2003). Though
limited, comparison of this method with other ANN algo-
rithms is also available in the literature (CIGIZOGLU, 2005a,
2005b; MASON, PRICE, and TEM’ME, 1996). The FFBP algo-
rithm has some drawbacks such as the local minima problem.
In their work, MAIER and DANDY (2000) summarized the
methods used in the literature to overcome this problem of
training a number of networks, starting with different initial
weights, the online training mode used to help the network
to escape local minima, the inclusion of the addition of ran-
dom noise, and the employment of second order (Newton’s
algorithm, Levenberg-Marquardt algorithm) or global meth-
ods (stochastic gradient algorithms, simulated annealing). In
the review study of the ASCE TASK COMMITTEE (2000a,
2000b), other ANN methods such as conjugate gradient al-
gorithms, the radial basis function, the cascade correlation
algorithm, and recurrent neural networks were briefly ex-
plained. The Levenberg-Marquardt algorithm was employed
in the FFBP applications included in the presented study.

In this study, three different ANN methods namely (1)
least squares estimation method, (2) feed-forward back-prop-

agation radial basis function and generalized regression neu-
ral network algorithms, and (3) multilinear regression model
were applied to a site-specific mean sea level data set to ex-
plore the best method(s) for the estimation of daily mean sea
level. Different parameter values for each method were uti-
lized to obtain better performance and accuracy. Results of
five methods with different parameter values were presented
to figure out the best method and applicability of these meth-
ods for daily mean sea level estimation.

DATA ANALYSIS AND FILLING IN THE
MISSING DATA

Data used in this study were obtained from the U.K. Na-
tional Tide Gauge Network. Mean sea level data from the
Newlyn tide gauge, collected time interval between January
1, 1991 and December 31, 2005, were used in the research.
Newlyn station is located at 50�06�10.8� N latitude and
5�32�33.9� W longitude. This station is the oldest station of
the U.K. tide gauge network and has been collecting data
since 1915. Hourly mean sea level data were collected be-
tween 1915 and 1992, and after 1992 the data have been
collected for every 15 min. Daily mean sea level heights were
derived by averaging the hourly and 15-min data. The data
have big gaps in 1984, 1985, and 1986, and many improbable
values for several years prior to 1991. To overcome these
problems, we selected the 1991–2005 period for the study,
and thus we were able to work with continuous and probable
data. The data also have missing values for this period,
namely between December 15, 1998, and December 27, 1998,
and between March 8, 2002, and April 9, 2002. For the in-
terpolation of the missing data in these periods, Equation 1
in the following section was used. After the estimation of un-
known parameters in the equation via least square estima-
tion, a common sea level function was formed to interpolate
the missing data using the time value of the related data.
The total number of data points was 5471; 80% of the data
were used for training and 20% of these data were used for
testing the artificial neural networks. Summary statistics of
training, testing, and total data are given in Table 1.

METHODOLOGY

Least Squares Estimation (LSE) of Sea Level Model

Sea level variation at time ti is simply described with the
following model:

n

SL(t ) � a � a t � b cos(� t )�i 0 1 i j j i
j�1

n

� c sin(� t ) � R(t ) (1)� j j i i
j�1
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Figure 1. Structure of a feed forward neural network (FFBP).

Figure 2. Structure of a radial basis function neural network.

where a0 represents mean sea level for a certain time, ti rep-
resents time, a1 is the sea level rise, bj and cj represent the
tidal constituents, �j is the angular velocity, n is the number
of tidal components, and R is the residual term (PUGH, 1987).

Sea level rise (a1) is the secular component and reveals a
possible rise at tide gauges. A wide variety of tidal compo-
nents need to be removed before the error analysis. Other-
wise the remaining component might affect the rate of the
estimated sea level trend. Tidal components are determined
by the application of Fourier analysis to sea level data and
are included in the analysis model. If the frequency of the
tide is known, it can be directly incorporated into the least
squares model, and the amplitude is solved as an unknown
parameter. The linear regression model can be extended by
adding as many parameters as possible, considering the wide
variety of influences on the sea level. However, adding extra
parameters to the model might weaken the least squares so-
lution (DOUGLAS, 1991; SANLI and BLEWITT, 2001).

Feed Forward Back Propagation Method

A FFBP distinguishes itself by the presence of one or more
hidden layers, whose computation nodes are correspondingly
called hidden neurons of hidden units. A typical feed forward
neural network structure is illustrated in Figure 1. The func-
tion of hidden neurons is to intervene between the external
input and the network output in some useful manner. By
adding one or more hidden layers, the network is enabled to
extract higher order statistics. In a rather loose sense, the
network acquires a global perspective despite its local con-
nectivity because of the extra set of synaptic connections and
the extra dimension of NN interconnections (HAYKIN, 1994).

The ability of hidden neurons to extract higher order sta-
tistics is particularly valuable when the size of the input lay-
er is large. The source nodes in the input layer of the network
supply respective elements of the activation pattern (input
vector), which constitute the input signals applied to the neu-

rons (computation nodes) in the second layer (i.e., the first
hidden layer). The output signals of the second layer are used
as inputs to the third layer, and so on for the rest of the
network. Typically, the neurons in each layer of the network
have as their inputs the output signals of the preceding layer
only. The set of the output signals of the neurons in the out-
put layer of the network constitutes the overall response of
the network to the activation patterns applied by the source
nodes in the input (first) layer (HAGAN and MENHAJ, 1994).
The Levenberg–Marquardt optimization technique was em-
ployed for the FFBP method. It is shown that this optimiza-
tion technique is more robust than the conventional gradient
descent technique (CIGIZOGLU and KISI, 2005; HAGAN and
MENHAJ, 1994).

Radial Basis Function (RBF) Networks

RBF networks were introduced into the neural network lit-
erature by BROOMHEAD and LOWE (1988). The structure of
a radial basis function neural network (RBF) is shown in Fig-
ure 2. The RBF network model is motivated by the locally
tuned response observed in biological neurons. Neurons with
a locally tuned response characteristic can be found in several
parts of the nervous system, for example, cells in the visual
cortex sensitive to bars oriented in a certain direction or other
visual features within a small region of the visual field (POG-
GIO and GIROSI, 1990). These locally tuned neurons show re-
sponse characteristics bounded to a small range of the input
space. The theoretical basis of the RBF approach lies in the
field of interpolation of multivariate functions. The objective
of interpolating a set of tuples (xs, ys) with xs ∈ Rd is to findN

s�1

a function F : Rd → R with F(xs) � ys for all s � 1, . . . , N,
where F is a function of a linear space. In the RBF approach
the interpolating function F is a linear combination of basis
functions

N
sF(x) � w �(�x 	 x �) � p(x) (2)� s

s�1

where � ·� denotes the Euclidean norm, w1, . . . , wN are real
numbers, � is a real valued function, and p ∈ 
 is a poly-d

n

nomial of degree at most n (fixed in advance) in d variables.
The interpolation problem is to determine the real coeffi-
cients w1, . . . , wN and the polynomial term p �
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Figure 3. Daily mean sea level estimation by the LSE.

� alpj, where p1, . . . , pD is the standard basis of 
 and a1,D d
l n

. . . , aD are real coefficients. The interpolation conditions are

s sF(x ) � y , s � 1, . . . , N and (3)

N
sw p (x ) � 0, j � 1, . . . , D (4)� s j

s�1

The function � is called a radial basis function if the inter-
polation problem has a unique solution for any choice of data
points. In some cases the polynomial term in Equation (2)
can be omitted and by combining it with Eq. (3), we obtain

�w � y (5)

where w � (w1, . . . , wN), y � (y1, . . . , yN), and � is an N �
N matrix defined by

k s� � �(�x 	 x �) (6)[ ]k,s�1,...,N

Provided the inverse of � exists, the solution w of the in-
terpolation problem can be explicitly calculated and has the
form: w � �	1y. The most popular and widely used radial
basis function is the Gaussian basis function

2	(�x	c�/2
 )�(�x 	 c�) � e (7)

with a peak at center c ∈ Rd and deceasing as the distance
from the center increases.

The solution of the exact interpolating RBF mapping pass-
es through every data point (xs, ys). In the presence of noise,
the exact solution of the interpolation problem is typically a
function oscillating between the given data points. An addi-
tional problem with the exact interpolation procedure is that
the number of basis functions is equal to the number of data
points, and so calculating the inverse of the N � N matrix �
becomes intractable in practice. The interpretation of the
RBF method as an artificial neural network consists of three
layers: a layer of input neurons feeding the feature vectors
into the network; a hidden layer of RBF neurons, calculating
the outcome of the basis functions; and a layer of output neu-
rons, calculating a linear combination of the basis functions
(TAURINO et al., 2003). Different numbers of hidden layer
neurons and spread constants were tried in the study.

Generalized Regression Neural Networks

A schematic of the GRNN is shown in Figure 4. The basics
of the GRNN can be obtained in the literature (SPECHT,
1991). The GRNN consists of four layers: input layer, pattern
layer, summation layer, and output layer. The number of in-
put units in the first layer is equal to the total number of
parameters, including from one to six previous daily flows.
The first layer is fully connected to the second pattern layer,
where each unit represents a training pattern and its output
is a measure of the distance of the input from the stored
patterns. Each pattern layer unit is connected to the two neu-
rons in the summation layer: the S-summation neuron and
the D-summation neuron. The S-summation neuron com-
putes the sum of the weighted outputs of the pattern layer

while the D-summation neuron calculates the unweighted
outputs of the pattern neurons. The connection weight be-
tween the ith neuron in the pattern layer and the S-sum-
mation neuron is yi, the target output value corresponding to
the ith input pattern. For the D-summation neuron, the con-
nection weight is unity. The output layer merely divides the
output of each S-summation neuron by that of each D-sum-
mation neuron, yielding the predicted value to an unknown
input vector x as

n

y exp 	D(x, x )� [ ]i i
i�1ŷ (x) � (8)i n

exp 	D(x, x )� [ ]i
i�1

where n indicates the number of training patterns, and the
Gaussian D function in (8) is defined as

2p x 	 xj ijD(x, x ) � (9)�i � ��j�1

where p indicates the number of elements of an input vector.
xj and xij represent the jth element of x and xi, respectively.
� is generally referred to as the spread factor, whose optimal
value is often determined experimentally (KIM, KIM, and
KIM, 2003). The larger that spread is, the smoother the func-
tion approximation will be. Too large a spread means a lot of
neurons will be required to fit a fast changing function. Too
small a spread means many neurons will be required to fit a
smooth function, and the network may not be generalized
well. In this study, different spreads were tried to find the
best one that gave the minimum MSE for a given problem.
Figure 4 illustrates the general structure of GRNNs.

Multiple Linear Regression Model

Multiple linear regression refers to regression applications
in which there are two or more independent variables, x1, x2,
. . . , xk. A multiple linear regression model with k indepen-
dent variables has the following equation:

y � a0 � a1x1 � a2x2 � . . . � akxk � � (10)
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Figure 4. Structure of a GRNN.

Table 2. Autocorrelogram of data.

Day
(t 	 1)

Day
(t 	 2)

Day
(t 	 3)

Day
(t 	 4)

Day
(t 	 5)

Day
(t 	 6)

Day
(t 	 7)

Day
(t 	 8)

Day
(t 	 1) 1,000 0,815 0,815 0,815 0,815 0,815 0,815 0,815

Day
(t 	 2) 0,815 1,000 0,815 0,815 0,815 0,815 0,815 0,815

Day
(t 	 3) 0,676 0,815 1,000 0,814 0,814 0,814 0,814 0,814

Day
(t 	 4) 0,572 0,676 0,814 1,000 0,815 0,815 0,815 0,815

Day
(t 	 5) 0,462 0,572 0,676 0,815 1,000 0,815 0,815 0,815

Day
(t 	 6) 0,364 0,462 0,572 0,676 0,815 1,000 0,814 0,814

Day
(t 	 7) 0,291 0,364 0,461 0,572 0,676 0,814 1,000 0,814

Day
(t 	 8) 0,241 0,290 0,364 0,461 0,571 0,676 0,814 1,000

Figure 5. Daily mean sea level estimation by the FFBP method.

The � is a random variable having mean 0 and variance 
2.
A prediction equation for this model fitted to data can be
written as follows:

y � a0 � a1x1 � a2x2 � . . . � akxk (11)

METHOD APPLICATION

Three MATLAB codes were written: (1) for the feed forward
back propagation algorithm; (2) for the radial basis function
networks; and (3) for the generalized regression algorithm.
LSE and MLR methods were applied using the MATLAB
built-in functions. The autocorrelations for the stations were
calculated to find the appropriate number of input neurons
for ANN analysis. The autocorrelogram shows that the cor-
relation values after 8 days show a significant decrease, and
the values until 8 days are considered in the input layer (Ta-
ble 2). In total, 12 input neurons were used for the ANN ap-
plications; 8 neurons belonging to mean sea level data of pre-
vious 8 days, 1 neuron belonging to average mean sea level
values of each day for 15-yr period, 1 neuron for the standard
deviations of each day for 15-yr period, and 2 neurons for
periodicities in tidal variations, namely 6-mo and 1-yr peri-
odicities.

After preparing 12 input neurons for further utilization of
ANNs to daily mean sea level data, two stages were con-
ducted. The first stage was training of the neural networks,
which was performed using 80% of the input data. This stage
comprised the presentation of daily mean sea level data de-
scribing the input and output to the network and obtaining
the interconnection weights. After the complement of the
training stage, the formed networks were applied to testing
data to analyze the accuracy and performance of suggested
ANN approaches. Assessment of the appropriate neural net-
work architecture is an important issue because the network
topology directly affects its computational complexity and its
generalization capacity (CIGIZOGLU and ALP, 2006). Several
network architectures were designed for each method to ob-
tain more accurate and efficient results.

The performances of LSE, FFBP, RBF, GRNN, and MLR
methods were compared for estimation of daily mean sea lev-
el in Newlyn Tide Gauge Station. The periods selected for

training and testing stages were January 1, 1991–December
31, 2002 and January 1, 2003–December 31, 2005, respec-
tively. Root mean square error (RMSE) values and R2 values
between observed and estimated daily mean sea level were
used to evaluate the performance of each method.

LSE Results of Sea Level Model

In this research, a discrete Fourier transform was applied
to the data to find out the periodicities and model the tidal
variations using Equation 1. Application of a discrete Fourier
transform to the data set denoted that there were 6-mo and
1-yr periodicities available in the data. Using calculated pe-
riodicities, tide gauge measurements, and time knowns, we
formed sea level equations and estimated the unknown pa-
rameters using least square adjustment method. The results
of the model are shown in Figure 3; the fitted model has an
R2 of 0.19 and an RMSE of 0.130 m. The x axis of the figure
shows the standardized time values where 	6 and 6 repre-
sent July 1, 1992, and July 1, 2004, respectively.

As seen from Figure 5, the daily sea level record is very
noisy because of tidal energy and could only be explained to
some degree with the harmonic model adopted here. In prac-
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Table 3. Daily mean sea level estimation by FFBP (testing period).

ANN
Configuration

Nodes in
Hidden Layer Epoch Number

RMSE
(m/d) R2

FFBP (12, 7,1) 7 150 0.072 0.69
FFBP (12, 7,1) 7 150 0.073 0.69
FFBP (12, 7,1) 7 200 0.078 0.65
FFBP (12, 7,1) 7 125 0.071 0.70
FFBP (12, 7,1) 7 100 0.072 0.70
FFBP (12, 8,1) 8 125 0.073 0.69
FFBP (12, 8,1) 8 150 0.071 0.71
FFBP (12, 8,1) 8 200 0.073 0.69

Table 4. Daily mean sea level estimation by RBF (testing period).

ANN
Configuration

Speed Parameter
(s) Epoch Number

RMSE
(m/day) R2

RBF (12, 0.55,1) 0.550 45 0.075 0.68
RBF (12, 0.35,1) 0.350 45 0.084 0.60
RBF (12, 0.65,1) 0.650 45 0.073 0.69
RBF (12, 0.70,1) 0.700 50 0.074 0.69
RBF (12, 0.65,1) 0.650 100 0.073 0.70
RBF (12, 0.65,1) 0.650 200 0.077 0.66

Figure 6. Daily mean sea level estimation by the RBF method.

tice, daily mean tide levels are calculated by averaging the
heights of low water and high water each day. On the other
hand, estimation of secular sea level rise necessitates the use
of monthly or yearly sea level data (DOUGLAS 1991; SANLI

and BLEWITT, 2001). The monthly and yearly means are sim-
ply calculated by averaging hourly heights over a period of a
month and a year, or a low-pass filter is applied to hourly
levels to remove tidal energy at diurnal and higher frequen-
cies from sea level elevations (PUGH, 1987).

FFBP Results

Various epoch and hidden layer node number combinations
were tested for the FFBP algorithm. The first five FFBP com-
binations included seven hidden layer nodes and the last
three included eight hidden layer nodes as shown in Table 3.
A FBBP configuration denoted, for example, as FFBP (12, 7,
1) in Table 3 involves 12 input nodes, 7 hidden nodes, and a
unique output value, respectively. The output node corre-
sponds to the daily mean sea level value at day t. A network
structure with one hidden layer having 8 nodes, and 12 input
nodes in the input layer operated with 150 epochs; the FFBP
(12, 8, 1)-150 epoch provided the best performance criteria
with the lowest RMSE and the highest R2 for the testing pe-
riod (RMSE � 0.071 m/d and R2 � 0.71). In all configurations
the input layer covered daily mean sea level data within a
period of 8 days (days: t 	 1, t 	 2, t 	 3, t 	 4, t 	 5,
t 	 6, t 	 7, and t 	 8) to estimate the daily mean sea level
at day t.

The estimations for the testing period were compared with
the observed daily mean sea level values (Figure 5). The ob-
served mean sea level values and estimated values show
great consistency with centimeter-level RMSE values and
about a 70% R2 value, which are significantly better than the
conventional LSE method. This algorithm can run fast with
a large number of data sets. There is a drawback for FFBP
simulations encountered during the research; different fore-
cast values were obtained within the same network design
after each simulation because of the difference in initial ran-
dom weight assignment in the beginning of each training. To
overcome this problem, simulations were conducted several
times, even with the same network structure, until the best
performance was obtained. The first and second network
structures in Table 3 are an example of this situation.

RBF Results

The same study was carried out by the RBF method. Sev-
eral epoch number and spread parameter combinations were
analyzed for the RBF algorithm. A RBF configuration denot-
ed, for example, as RBF (12, 0.55, 1) in Table 4 involves 12
input nodes, 0.55 as spread parameter, and a unique output
value. A network architecture with 0.65 spread parameter
and 100 epoch number provided the best performance result
with the lowest RMSE and the highest R2 for the testing pe-
riod (RMSE � 0.073 m/day, R2 � 0.70).

The estimations obtained from the RBF algorithm were
compared with the observed daily mean sea level values for
the testing period (Figure 6). The observed mean sea level
values and estimated values show great consistency with the
centimeter level RMSE values and about 70% R2, as in the
FFBP algorithm. This method also has better performance
than the LSE method. There are two advantages of this
method compared with the previous one. This algorithm can
run faster than the FFBP with a large number of data sets.
One can obtain same forecast values for the same network
architecture, unlike in FFBP. However, there is a disadvan-
tage to RBF simulations encountered during the research; it
becomes quite slow, in some cases almost inoperable, when
handling a huge amount of data such as 50 years of daily
measurements.

GRNN Results

The same data were used to evaluate the GRNN method.
Various smoothing parameters were used to obtain the best
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Table 5. Daily mean sea level estimation by GRNN (testing period).

ANN Configuration
Smoothing

Parameter (
)
RMSE
(m/day) R2

GRNN (12, 0.015,1) 0.015 0.105 0.40
GRNN (12, 0.35,1) 0.350 0.126 0.37
GRNN (12, 0.035,1) 0.035 0.094 0.52
GRNN (12, 0.025,1) 0.025 0.096 0.48
GRNN (12, 0.045,1) 0.045 0.096 0.50

performance results for the GRNN algorithm. A GRNN con-
figuration denoted, for example, as GRNN (12, 0.45, 1) in
Table 5 involves 12 input nodes, 0.45 as smoothing parame-
ter, and a unique output value. A network architecture with
a 0.035 smoothing parameter presented the best performance
result, with the lowest RMSE and the highest R2, for the
testing period (RMSE � 0.094 m/d, R2 � 0.52). The perfor-
mance of the GRNN algorithm increased with a decreasing
smoothing parameter until 0.035; however, it started to de-
crease again when the smoothing parameter was smaller
than 0.035.

The GRNN algorithm provided better results than the LSE
method; however, the estimations obtained from the RBF and
FFBP algorithms gave better results than the GRNN algo-
rithm. The correlation between the observed mean sea level
values and the estimated values was about 45%. Although
the GRNN algorithm could show better performances in some
applications like suspended sediment estimations; in our
case, while dealing with daily mean sea level data, FFBP and
RBF solutions were comparatively better than the GRNN.
The disadvantage of the GRNN algorithm is that it worked
slower than the other two algorithms.

MLR Results

Sea level measurements of the previous 8 days were used
as independent variables to determine mean sea level with
the multiple linear regression model. The MLR equation ob-
tained is calculated as follows:

y � 0.133 � 0.051X � 0.001X(t	8) (t	7)

	 0.023X 	 0.038X 	 0.034X(t	6) (t	5) (t	4)

� 0.083X � 0.044X � 0.749X (12)(t	3) (t	2) (t	1)

where X(t	8), . . . , X(t	1) represents the measurements of the
previous 8 days, respectively, and y is the predicted value of
mean sea level and can be represented as X(t). The fitted mod-
el has an RMSE of 0.73 m and an R2 of 0.68. The performance
of MLR is similar to FFBP and RBF, and is fairly finer than
GRNN and LSE.

DISCUSSION AND CONCLUSION

The knowledge of near-coast sea level variations is an im-
portant issue to deal with for several applications, e.g., pro-
tecting coastal zone residents, supporting coastal construc-
tion plans, and conducting safe navigation. Estimation of the
sea level value for a given period could facilitate sea level–

dependent studies. In this research, daily mean sea level ob-
servations received from Newlyn Tide Gauge Station were
used to develop and validate the ANN and MLR methodology
for sea level estimations. Three different ANN methods,
FFBP, RBF and GRNN, were employed to investigate the
applicability of different ANN algorithms for estimating daily
mean sea level and examine the performance of each model.
Results obtained from ANN and MLR were compared with
the conventional LSE of the sea level model. Both ANN and
MLR gave comparatively better results than conventional
method.

The results of the research illustrated that different ANN
algorithms and MLR can be applied to a sea level data set to
make successful estimations. While the performance of the
conventional method is 0.1312 and 0.1918 for RMSE and R2,
respectively, estimation of daily mean sea level ANN and
MLR methods is fulfilled within centimeter accuracy and
about 70% R2 value. The best result among all of the methods
was obtained using the FFBP algorithm with a 0.071 m value
for RMSE and a 0.71 value for R2.

The MLR model gave similar results to the FFBP and RBF
algorithms; however, it gave significantly better results than
the GRNN method.

Each ANN method used in the study has its own pros and
cons. FFBP and RBF networks gave better results when com-
pared with the GRNN algorithm. Although the GRNN meth-
od can be successfully applied to different datasets from dif-
ferent disciplines, with daily mean sea level data it had the
lowest computation speed and the worst estimation results
collating with the other two methods. FFBP and RBF had
similar satisfactory results for the estimation of mean sea
level. As previously mentioned, FFBP method performances
are sensitive to the randomly assigned initial weight values;
therefore, one can get different estimation and performance
values for the same network architecture. This problem, how-
ever, was not faced in RBF and GRNN simulations. ANN’s
main advantage is its ability to model nonlinear processes of
the system without any a priori assumptions about the na-
ture of the generating processes.
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