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INDIVIDUAL-BASED TRACKING SYSTEMS
IN ORNITHOLOGY:

WELCOME TO THE ERA OF BIG DATA

SISTEMAS DE SEGUIMIENTO INDIVIDUAL
EN ORNITOLOGÍA:

BIENVENIDOS A LA ERA DE LOS DATOS MASIVOS

Pascual LóPEz-LóPEz1 *

SUMMARY.—Technological innovations have led to exciting fast-moving developments in science.
Today, we are living in a technology-driven era of biological discovery. Consequently, tracking tech-
nologies have facilitated dramatic advances in the fundamental understanding of ecology and animal
behaviour. Major technological improvements, such as the development of GPS dataloggers, geolo-
cators and other bio-logging technologies, provide a volume of data that were hitherto unconceivable.
Hence we can claim that ornithology has entered the era of big data. In this paper, which is particularly
addressed to undergraduate students and starting researchers in the emerging field of movement ecolo-
gy, I summarise the current state of the art of individual-based tracking methods for birds as well as
the most important challenges that, as a personal user, I consider we should address in future. To this
end, I first provide a brief overview of individual tracking systems for birds. I then discuss current
challenges for tracking birds with remote telemetry, including technological challenges (i.e., tag minia-
turisation, incorporation of more bio-logging sensors, better efficiency in data archiving and data pro-
cessing), as well as scientific challenges (i.e., development of new computational tools, investigation of
spatial and temporal autocorrelation of data, improvement in environmental data annotation processes,
the need for novel behavioural segmentation algorithms, the change from two to three, and even four,
dimensions in the scale of analysis, and the inclusion of animal interactions). I also highlight future
prospects of this research field including a set of scientific questions that have been answered by means
of telemetry technologies or are expected to be answered in the future. Finally, I discuss some ethical
aspects of bird tracking, putting special emphases on getting the most out of data and enhancing a
culture of multidisciplinary collaboration among research groups.

Key words: animal tracking, Argos, bio-logging, computational science, conservation, datalogger,
geolocator, GPS, movement ecology, PTT, ringing, satellite transmitter, telemetry.

RESUMEN.—Las innovaciones tecnológicas han dado lugar a grandes progresos en ciencia. Estamos
viviendo actualmente en una era en la que los descubrimientos científicos vienen mediados por la tec-
nología. Consecuentemente, la tecnología de seguimiento a distancia ha permitido avances extraordi-
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INTRODUCTION

From early observation of planets through
telescopes by Galileo and Kepler, the de-
velopment of time measurement methods
which allowed navigation, the discovery of
the elemental parts of cells through micro-
scopes, the use of x-ray diffraction to dis-
cover DNA structure, chromatography, spec-
troscopy or DNA sequencing, to modern use
of fast computational tools in the Internet
era, technological innovations have led to
exciting fast-moving developments in
science. Many philosophers and science
historians have long debated whether scien-
tific advances are driven mostly by novel
ideas or by new tools and, although there
is no clear response to this question, no-one
doubts that technology has played a funda-
mental role in scientific progress (Dyson,
2012).

Today, we are living in a technology-
driven era of biological discovery where
extremely large datasets are routinely used
in biology (Ropert-Coudert and Wilson,
2005; Shade and Teal, 2015). In this sense,
the fields of ecology, ethology, zoology and
ultimately, ornithology, have not been una-
ware of these technological innovations, thus
allowing the generation of large amounts of
data owing to the increasingly extensive use
of remote tracking technologies (Benson, in
press). As happened some decades ago with
genomics, proteomics, metabolomics and
other “–omics”, ecology has entered the so
called era of “big data” (Hampton et al.,
2013). The study of animal movement, an
important aspect of ecology, is no exception.

Animal movement, and particularly bird
movement, has long caught the attention of
naturalists and scientists since the time
of Aristotle. As a consequence, there is a
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narios en nuestra comprensión fundamental de la ecología y el comportamiento animal. Las grandes
mejoras tecnológicas, como por ejemplo el desarrollo de dispositivos GPS dataloggers, geolocaliza-
dores y otras tecnologías de seguimiento animal, proporcionan un volumen de datos que era hasta
hace poco inconcebible. Por todo ello, podemos afirmar sin ambages que la ornitología ha entrado en
la era de los datos masivos. En este artículo, que está especialmente dirigido a estudiantes universita-
rios y a investigadores que se inicien en el campo emergente de la ecología del movimiento, resumo
el estado actual de los sistemas de seguimiento individual para aves, así como los retos más importan-
tes que, como usuario personal, considero que deberíamos afrontar en el futuro. Para ello, en primer
lugar muestro un pequeño resumen sobre los sistemas de seguimiento individual que existen para
aves. A continuación, discuto los retos actuales que debemos afrontar gracias al seguimiento de aves
mediante telemetría remota, entre los que se incluyen retos tecnológicos (i.e., miniaturización de los
transmisores, incorporación de más sensores biológicos, mejor eficiencia en el archivo y procesamiento
de datos), así como retos científicos (i.e., desarrollo de nuevas herramientas de análisis, investigar la
autocorrelación espacial y temporal de los datos, mejora del proceso de toma de datos ambientales,
la necesidad de nuevos algoritmos de segmentación del comportamiento, el paso de dos a tres, e in-
cluso cuatro, dimensiones en la escala de análisis, y la inclusión de las interacciones entre animales).
También destaco las perspectivas de futuro de este campo de investigación incluyendo una serie de
preguntas científicas que han sido respondidas mediante telemetría o que se espera que así sea en el
futuro. Por último, discuto algunos aspectos éticos del seguimiento de aves haciendo especial hincapié
en la necesidad de obtener el máximo rendimiento de los datos y de promover una cultura de colabo-
ración multidisciplinar entre grupos de investigación.

Palabras clave: anillamiento, Argos, biologging, ciencia computacional, conservación, datalogger,
ecología del movimiento, geolocalizador, GPS, PTT, seguimiento animal, telemetría, transmisor sa-
telital.
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vast amount of information gathered across
different taxa and geographic regions that
has been the subject of analysis of many
scientific disciplines. In order to provide a
conceptual framework to integrate all this
information, some scientists proposed the
foundation of a new scientific discipline
called “movement ecology” eight years ago
(Nathan et al., 2008). As their proposers
claim, the aim of the movement ecology
concept is “proposing a new scientific para-
digm that places movement itself as the
focal theme, and promoting the development
of an integrative theory of organism move-
ment for better understanding the causes,
mechanisms, patterns, and consequences of
all movement phenomena” (Nathan, 2008).
Accordingly, individual tracking technolo-
gies are the link between the emerging field
of movement ecology and the vast body of
knowledge gathered in traditional scientific
disciplines.

This paper is particularly addressed to
undergraduate students in their final years,
to recent graduates in the fields of biology
or environmental sciences and especially to
young scientists wishing to start their careers
in the emerging field of movement ecology.
It reflects my personal point of view of the
state of the art of individual-based tracking
methods for birds and the most important
challenges that, as a personal user, I con-
sider we should address in the future. First,
I provide a brief overview of individual
tracking systems for birds. I then discuss
current challenges for tracking birds with
remote telemetry, including technological
and scientific challenges. I also highlight
future prospects for this research field in-
cluding a set of scientific questions that have
been answered by means of remote teleme-
try data or are expected to be answered in the
future. Finally, I discuss some ethical aspects
of animal tracking with particular focus on
bird trapping, attachment methods, tag mass
to body mass ratios and the behaviour of the
species subject to individual tracking.

INDIVIDUAL TRACKING IN ORNITHOLOGY:
A BRIEF OVERVIEW

Individual tracking, or simply tracking
sensu lato (see Box 1), involves methodo-
logical techniques aimed at following and
determining where an animal is located spa-
tially on Earth. Individual tracking has a long
tradition in ornithology, principally in the
form of bird ringing (Newton, 2014). Since
the first metal rings were attached to birds
by Hans Christian Cornelius Mortensen in
1899, the individual identification of birds
by means of metal rings and wing tags has
provided many of the most significant ad-
vances in many fields of animal ecology,
which reach far beyond the field of orni-
thology. Basically, ringing has facilitated
dramatic advances in the fundamental under-
standing of ecology, animal behaviour, bird
conservation and even evolution. Primarily
focused on the fascinating study of bird mi-
gration, individual tracking of birds by using
metal rings has provided valuable insight
into other aspects of bird biology, such as
population monitoring, population dynamics,
dispersal, biometrics, breeding and moult
phenology, orientation and navigation mecha-
nisms, mating systems, genetics, territoriali-
ty, feeding behaviour, physiology, disease
transmission and, more recently, the study of
global climate change (Spina, 1999; Baillie,
2001; Newton, 2014; EURING, 2015; Hays
et al., in press), to give a few examples. A
comprehensive description of major achieve-
ments in animal ecology attributable to bird
ringing is, however, beyond the scope of
this paper. I would kindly ask the reader to
excuse me for this omission.

For present purposes, hereafter I refer to
the study of individual tracking using remote
telemetry methods (Box 1). After ringing,
one of the most significant advances in the
study of bird movements was the develop-
ment of the first radio transmitters in the
late 1950s (Lemunyan et al., 1959; Cochran
and Lord, 1963; White and Garrott, 1990).

Ardeola 63(1), 2016, 103-136

ORNITHOLOGY IN THE ERA OF BIG DATA 105

Downloaded From: https://bioone.org/journals/Ardeola on 05 May 2024
Terms of Use: https://bioone.org/terms-of-use



Ardeola 63(1), 2016, 103-136

LóPEz-LóPEz, P.106

Accelerometer: an electronic device that measures acceleration over time. Acceleration sensors
are usually included in dataloggers and usually record data in multiple axes (i.e., typically in
three axes x, Y, z). Sensor output can change due to two causes: changing orientation of the
device and accelerated translational movement of the device. Raw acceleration data must be
converted to physical units (e.g., m/s2) using mathematical formulae.

Archival data logger (or datalogger): an electronic device attached to or implanted in animals
that registers and stores information in an on board memory. Depending on their size, battery
capacity and species tracked, dataloggers must be recovered for data retrieval. In most advanced
devices data can be remotely transmitted via satellite, GPRS/GSM phone network or through
a wireless link to a base station connected with a special antenna.

Argos location:The ARGOS system allows calculating a transmitter’s location using the Doppler
Effect on transmission frequency, which is the only available position information for small
PTTs not including GPS sensor (e.g., < 5g). Location is calculated using two location-pro-
cessing algorithms: Least-squares analysis and Kalman filtering, which provides more posi-
tions and better accuracy. Regardless of the number of messages received during a satellite
pass, an estimated error is calculated by Argos. This allows a classification of location classes
(LCs) depending on their nominal accuracy as follows: LC3 < 250 m; LC2 = 250 m - 500 m;
LC1 = 500 m - 1500 m; LC0 > 1500m; LCA, LCB = No accuracy estimation; LCz = invalid
location (Argos, 2015).

ARGOS system: a global satellite-based location and data collection system dedicated to
studying animal movement. It allows any mobile object equipped with a compatible trans-
mitter to be located across the world by means of a network of six satellites. Data recorded in
Platform Transmitters Terminals (PTTs) are transmitted to one of these satellites, stored on the
on-board recorder and retransmitted to the ground each time the satellite passes over one of
the three main receiving stations. Processing centres process all received data and make infor-
mation available to users.

Behavioural segmentation (or behavioural annotation): to identify movement trajectories’ sim-
plest functional units (i.e., behavioural modes) and annotate them to each location. Drawing
an analogy, a behavioural mode is to the movement trajectory what a gene is to the DNA
sequence (Nathan et al., 2008; Benson, in press). There are several computational tools and
mathematical algorithms that do this in an unsupervised manner (e.g., binary clustering,
Bayesian estimation methods, state-space models, etc.).

Biologging (or biotelemetry): use of miniaturized animal-attached tags for recording and/or
relaying data about animal’s movements, behaviour, physiology and/or environment. This
term embraces different types of sensors including those aimed at recording fast-tracking
GPS position, accelerometry, conductivity, light-level information, heart rate, neuro-loggers,
body temperature, video recording and even exchange of information with other nearby tags
and base stations.

Conventional tracking (or ground tracking, radio-tracking, VHF tracking): individual
ground-based tracking system based on the emission of short-range very high frequency
(VHF) radio signals which are received by an array of systems including antennas mounted
on towers, vehicles (cars, airplanes, boats…), or handled by persons. Position is estimated by
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triangulation and the main disadvantage is that the receiver must be close to the transmitter
(usually within a few kilometres). Due to the low cost of the equipment and its basic tech-
nology it has been the conventional tracking system used for decades.

Environmental data annotation (or path annotation): a system to add external information
(i.e., environmental data) and/or internal information (physiological) to animal tracking data.
The result is an annotated path that includes additional data to each geographic location of the
moving organism.

Geolocator (or global location sensing/GLS logger, light-level logger, light-sensing geoloca-
tor): small recording data loggers that include a light sensor, which measures solar irradiance,
and an accurate real-time clock to determine the time of sunrise and sunset. The estimated
geographical position is obtained by calculating the day length which indicates latitude, and
the time of solar noon, which indicates longitude.

GPRS: acronym of General Packet Radio Service. An extension of the Global System for Mo-
bile Communications consisting of a packet-oriented mobile data service on the 2G and 3G
cellular communication systems. In contrast to circuit switched data, which is usually billed
per connection time, GPRS usage is typically charged based on volume of data transferred.

GPS: acronym of Global Positioning System. Satellite-based navigation system developed in
the United States that provides location and time information in all conditions with global
coverage on Earth.

GSM: acronym of Global System for Mobile Communications. A digital mobile telephony sys-
tem that is widely used in Europe and other parts of the world for data transmission.

ICARUS: acronym of International Cooperation for Animal Research Using Space. Interna-
tional initiative aimed at observing global migratory movements of small animals through a
satellite system installed in the Russian module of the International Space Station (ISS)
(www.icarusinitiative.org). This system is equipped with powerful processing capability to
detect and distinguish the weak signals of small tags (< 5g) that are in the reception area of
receive antennas installed in the ISS. Tags record archival data including GPS position,
accelerometer and temperature.

ODBA: overall dynamic body acceleration. A measure of dynamic acceleration induced about
the centre of an animal’s mass as a result of its movement. This measure is derived from
recordings of acceleration in the three spatial dimensions by an accelerometer. ODBA is
considered as a calibrated proxy for rate of oxygen consumption (VO2) and hence animal’s
metabolic rate (i.e., energy expenditure) (Wilson et al., 2006).

PTT: acronym of Platform Transmitter Terminal. Equipment used for measurement through a
set of sensors and one-way transmitting communication.

Telemetry: a word derived from the combination of two Greek words: tele (τῆlε) and metron
(μετρον), which mean remote measurement of data.

Tracking (or individual tracking): methodological technique aimed at following and deter-
mining where an animal is located spatially. For the purposes of this paper, I refer only to
remote telemetry to track animal movement.

BOx 1. Glossary (cont.)
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Due to the low cost of equipment and its ba-
sic technology, very high frequency (VHF)
radio tracking has been the conventional
tracking system used for decades (Kenward,
2001). Like bird ringing, conventional
ground-tracking is still a very useful (and
in some cases the only) system available
to track small organisms, including most
bird species (fig. 1). Later, one of the major
advances in individual tracking was the de-
velopment of the first satellite transmitters in
the 1980s (Fuller et al., 1984; Jouventin and
Weimerskirch, 1990; Nowak et al., 1990).
Satellite transmitters allowed tracking ani-
mals remotely across the globe without the
researcher needing to locate the signal
(Börger, 2016). Hence, questions that so far
had remained unsolved, such as where long-
distance migrants spent their winters, and
concerning important aspects of migratory
connectivity began to be answered. With the
incorporation of GPS receivers, data trans-
mission through the Argos system and the
increase of data storage and battery capacity
(firstly in on-board batteries and afterward
by using solar-powered rechargeable panels),
satellite transmitters have definitely revo-
lutionised the study of animal movement.
Furthermore, new technological innovations
such as the development of light-level geolo-
cators, which allowed estimating geographi-
cal position by calculating the times of sun-
rise and sunset, were made available in the
1990s (Wilson, 1992), helping to address
major research and conservation questions
in avian ecology (Bridge et al., 2013). Their
main advantage is that they provide a rela-
tively lightweight, low-cost alternative to
traditional tracking technologies and, conse-
quently, have allowed significant advances
in the study of small bird species (Stutchbury
et al., 2009). Unfortunately, their main dis-
advantages are that geolocators must be re-
trieved to download data, and so are only
useful for easily recaptured species exhibit-

ing high site-fidelity, and that their location
accuracy, ranging from 50 km up to 200 km,
is low (particularly close to the Poles, the
equator, and during equinoxes). Finally,
archival data loggers (or dataloggers, see
box 1) were first available in the late 1990s
and have become more popular in recent
years mainly due to their capability to incor-
porate new sensors along with GPS location,
these including accelerometers and tempera-
ture, heart rate, conductivity or even video
recording sensors (Cooke et al., 2004; Ropert-
Coudert and Wilson, 2005; Tomkiewicz et
al., 2010; Brown et al., 2013; Hays, 2015).
This fact, combined with improved remote
data download capabilities through the mo-
bile communications GSM network and the
possibility of duty cycle reconfiguration based
on users’ requests, has made near-real-time
monitoring of animals possible. Currently
available commercial dataloggers allow the
collection of up to several thousand loca-
tions per day due to their high frequency of
data acquisition (1 Hz = 1 location/second)
and larger internal memory storage capaci-
ty. In addition, the current dataloggers also
have increased accuracy of location estima-
tion. As a consequence of these major tech-
nological improvements, many researchers
claim that animal movement ecology has
entered a “golden age” during which the
current generation of scientists will witness
unprecedented exciting discoveries (Wilcove
and Wikelski, 2008; Kays et al., 2015).

BIRD TRACKING IN THE CONTExT
OF SCIENTIFIC PUBLISHING

Bird movements have long held great in-
terest for ornithologists. Consequently, the
number of published papers using individual-
based tracking technologies for birds has in-
creased considerably in recent years (Holyoak
et al., 2008). For example, according to a
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literature survey for the period 1950-2015,
the first papers about satellite tracking, data-
loggers, geolocators and accelerometry were
published in 1990, 1991, 2002 and 2002,
and have increased by an average of 42.7%,
27.7%, 79.5%, 51.5% per year in the last 25
years, respectively (fig. 2). In parallel, scien-
tific publishing has experienced an exponen-
tial increase in the last decades (Bornmann
and Mutz, 2015). However, whereas ecology
papers have increased on average by 7.0%

per year, those involving individual-based
tracking technologies for birds have in-
creased on average by 17.6% per year (i.e.,
by 2.52 times over the same period) (fig. 2).
This clearly shows that modern individual-
based tracking technologies have made sig-
nificant contributions to many important
topics in ornithology, or are expected to
do so in the future (table 1), building on
knowledge gained by other methods, such
as ringing and conventional radio-tracking.
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FIG. 1.—Histogram of bird body masses and possible tracking devices according to the 3%-body-weight
rule. This figure has been adapted and updated from Bridge et al. (2011) and Kays et al. (2015). Note
that body mass (g) on the x-axis is shown in log2 scale. Bird body masses of 8,654 species were
obtained from Dunning (2007).
[Histograma de los pesos corporales y posibles dispositivos de seguimiento que se pueden utilizar de
acuerdo con la regla del 3% del peso corporal. La figura ha sido adaptada y actualizada a partir
de Bridge et al. (2011) y Kays et al. (2015). Nótese que la masa corporal (g) en el eje X se muestra
en escala log2. El peso corporal de 8.654 especies de aves fue obtenido de Dunning (2007).]

Downloaded From: https://bioone.org/journals/Ardeola on 05 May 2024
Terms of Use: https://bioone.org/terms-of-use



CURRENT CHALLENGES OF BIRD TRACKING

Technological challenges

Since Gordon E. Moore, co-founder of
Intel Corporation, stated his famous law in
1965 based on the observation that the num-
ber of transistors in a dense integrated circuit
doubles approximately every two years (i.e.,
Moore’s law) (Moore, 1965), electronic de-
vices have undergone a dramatic miniaturi-
sation process during the last five decades.
Like mobile phones and computers, animal
tracking technologies have downsized by
three or four orders of magnitude, from the
first radio-transmitters weighing as much as
one or two kilograms to small geolocators
lighter than 0.5 g (fig. 1; Supplementary
Electronic Material: table S1). Obviously,
there is a trade-off between the operational

life of tracking devices, maximum number
locations recorded per day, temporal and
spatial resolution, battery size and weight.
Thus, engineers are struggling to get the
most from current technologies, developing
new smaller components and installing more
energy-efficient microprocessors in tracking
devices. For example, just a decade ago,
Platform Transmitters Terminals (PTTs)
attached to resident and migratory birds pro-
vided one or two locations per day based on
Argos Doppler shift (e.g., Cadahía et al.,
2005; Thorup et al., 2006), whereas the best
Argos/GPS transmitters were able to get one
fix every 2-3 hours in the most demanding
duty cycle configuration (e.g., Soutullo et
al., 2007, 2008; Cadahía et al., 2008). In
contrast, modern dataloggers are able to pro-
vide up to one location per second (fig. 3),
also including additional information from
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FIG. 2.—Number of papers published per year referring to individual tracking systems for birds. Infor-
mation is based on a literature survey by using the ISI Web of Science database. The purple line shows
the number of published papers on individual tracking as a percentage of all papers published in the field
of ecology. Search terms are available in Supplementary Electronic Material: Table S2.
[Número de artículos publicados por año referentes a sistemas de seguimiento individual en aves.
La información fue obtenida a partir de una búsqueda bibliográfica en la base de datos del ISI Web of
Science. La línea morada muestra el porcentaje de artículos publicados sobre seguimiento individual
con respecto al número total de artículos publicados en el campo de la ecología. Los términos de bús-
queda están disponibles en el Material Suplementario Electrónico: Tabla S2.]
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TABLE 1

Main topics to which individual-based tracking methods have made significant contributions in orni-
thology (or are expected to do so in the future). The reference list shows some examples to illustrate
addressed topics and only includes information on birds tracked by remote telemetry (examples using
radio-tracking and ringing methods are not shown).
[Principales temas en los que los métodos de seguimiento individual han contribuido a realizar impor-
tantes aportaciones en ornitología (o se espera que así lo hagan en el futuro). La lista de referencias
muestra algunos ejemplos para ilustrar los temas tratados e incluye información solo de aves seguidas
mediante telemetría remota (se han excluido ejemplos en los que se hubiera utilizado radio-seguimien-
to o anillamiento científico).]

Topic Questions and future challenges References

Migratory routes
and wintering
areas

Migratory
connectivity

Carry-over
effects

Description of novel migratory routes (i.e., short-
and long-distance migrations). Analysis of
migratory patterns and strategies (i.e., routes,
directions, speed, timing, altitude, diurnal/nocturnal
migration, loop migration, differential/partial
migration, leapfrog migration, transcontinental
and trans-oceanic migration, migratory divides,
population-specific migration routes).
Identification and characterisation of wintering
areas. Winter ecology of migratory species
(e.g., habitat selection and trophic ecology).

Analysis of the links between breeding and non-
breeding areas. Measurement of the strength of
migratory connectivity (i.e., strong, weak/diffuse).
Effects of migratory connectivity on individual
breeding success and population dynamics.
Behavioural and evolutionary effects. Conservation
implications.

How individuals’ decisions, previous history and
experience explain current and future performance
over the annual cycle. Detailed analysis of key
vital stages (e.g., migration, wintering, breeding)
throughout the annual cycle. Analysis of the
interplay between environmental and intrinsic
factors in determining carry-over effects. Impacts
of environmental change on individuals’ migratory
performance and populations.

Martell et al., 2001;
Meyburg et al., 2004a,
2004b; González-Solís
et al., 2007; Gschweng et
al., 2008; Gill et al., 2009;
López-López et al., 2009;
Egevang et al., 2010;
García-Ripollés et al.,
2010; Klaassen et al.,
2010; Mellone et al.,
2012a, 2013a, 2013b;
Rodríguez-Ruiz et al.,
2014; DeLuca et al., 2015;
Ramos et al., 2015.

Webster et al., 2002;
Bächler et al., 2010;
Robinson et al., 2009;
Cresswell, 2014;
Rodríguez-Ruiz et al.,
2014; Trierweiler et al.,
2014; Ouwehand et al.,
2016.

Norris et al., 2004;
Norris and Marra, 2007;
Harrison et al., 2011;
Arlt et al., 2013;
Daunt et al., 2014;
Senner et al., 2014;
Saino et al., 2015;
Shoji et al., 2015.
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TABLE 1 (cont.)

Topic Questions and future challenges References

Lifetime
tracking

Behavioural
flexibility

Ecological
barriers

Stopover
ecology

Environmental
conditions

Individual monitoring throughout the bird’s
lifetime. Description and analysis of variations
in tracks’ characteristics and movement patterns
over different life-history stages. Analysis of the
role of experience on migratory performance.

Analysis of the degree of flexibility or consistency
in birds’ behaviour. Repeatability in migratory
routes and timing. Examination of annual
schedules of migration and route fidelity.
Evaluation of the role of individuality and
personality in animal behaviour (i.e., behavioural
plasticity) and its consequences on fitness.

Effects of geographical and meteorological
barriers on movement (e.g., migration, altitudinal
movements). Identification of migration corridors,
barriers and main migration flyways. Migration
patterns (e.g., detours, narrow-front migration,
wide-front migration, sea-crossing,
mountain-crossing).

Identification of stopovers along migration routes.
Detailed analysis of birds’ ecology at stopovers
(e.g., foraging and refuelling tactics). Conservation
of stopover sites.

Analysis of the effects of external conditions
on birds’ behaviour. Relationship between global
patterns of productivity (e.g., primary productivity,
upwelling currents, temperatures, etc.) and
movements (i.e., “green wave” hypothesis).
Testing the effects of prevailing winds, atmospheric
pressure and other meteorological conditions
on migratory performance.

Sergio et al., 2014;
Weimerskirch et al., 2014;
Flack et al., 2015;
Kays et al., 2015.

Alerstam et al., 2006;
Quillfeldt et al., 2010;
Vardanis et al., 2011;
Stanley et al., 2012;
Dias et al., 2013; Conklin
et al., 2013; López-López
et al., 2014a;
Müller et al., 2014;
Yamamoto et al., 2014.

Gill et al., 2009;
Strandberg et al., 2009a;
López-López et al., 2010;
Hawkes et al., 2011;
Mellone et al., 2011;
Willemoes et al., 2014;
Adamík et al., 2016.

Shaffer et al., 2006;
Guilford et al., 2009;
Chevallier et al., 2011;
van Wijk et al., 2012;
Kessler et al., 2013;
Shephard et al., 2015.

Klaassen et al., 2010,
2011; Mandel et al., 2011;
Mellone et al., 2012b,
2015a, 2015b; Péron
and Grémillet, 2013;
Trierweiler et al., 2013;
Kölzsch et al., 2015;
Vansteelant et al., 2015;
Bridge et al., in press;
Vidal-Mateo et al.,
in press.
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TABLE 1 (cont.)

Topic Questions and future challenges References

Foraging
ecology

Space use

Social
interactions

Population
dynamics

Detailed study of foraging movements,
identification of feeding locations and food
provisioning. Evaluation of different theoretical
models of food searching behaviour (e.g., central
place foraging theory, Brownian movement,
correlated random walks, Lévy flight/walk,
first-passage time analysis). Analysis of spatial
foraging consistency, foraging site fidelity and
complex foraging strategies (e.g., dual-foraging).
Evaluation of different flight modes (e.g., flapping
flight vs. soaring-gliding flight), energy
consumption and foraging ecology.

Delineation and quantification of home range size.
Evaluation of different methods for estimating
home range (i.e., kernel density estimators,
minimum convex polygons, dynamic Brownian
bridge, local convex hull, etc.). Analysis of habitat
use, habitat selection and its influence on breeding
performance. External and internal drivers of
animal movement across geographical gradients.

Analysis of how intraspecific and interspecific
interactions affect movement. Roles of social
networks and hierarchy in movement behaviour
(e.g., leadership in flocking behaviour).
Development of mechanistic models of territorial
interactions. Use of social information in colonial
species. Tracking of cohort of individuals
of the same guild.

Spatially-explicit analysis of the mechanisms of
population regulation (e.g., individual experience,
territory quality, territoriality, density-dependence
effects). Niche segregation, niche partitioning
and analysis of intraspecific and interspecific
competition in colonial birds.

Jouventin and
Weimerskirch, 1990;
Viswanathan et al., 1996;
González-Solís et al.,
2000; Magalhães et al.,
2008; Pinaud and
Weimerskirch, 2005;
Dean et al., 2012;
López-López et al.,
2013a; Focardi
and Cecere, 2014;
Patrick et al., 2014;
Hernández-Pliego et al.,
2015; Wakefield et al.,
2015.

Soutullo et al., 2008;
Wakefield et al., 2009;
Kie et al., 2010;
Kranstauber et al., 2012;
López-López et al.,
2014c, in press;
Domenech et al., 2015;
Pfeiffer and Meyburg,
2015.

Nagy et al., 2010, 2013;
Weimerskirch et al., 2010;
Usherwood et al., 2011;
Potts et al., 2014;
Müller et al., 2015.

Masello et al., 2010;
López-López et al.,
2013b; Pérez-García
et al., 2013; Wakefield
et al., 2013; Moss et al.,
2014; Thiebot et al.,
2015.
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TABLE 1 (cont.)

Topic Questions and future challenges References

Dispersal

Disease
transmission

Physiology

Orientation
and homing

Conservation

Dispersal studies, post-fledging movements
and site fidelity. Obtaining spatially explicit
information of key events of the life-cycle
(i.e., natal, breeding dispersal and recruitment).
Inter-connection between different populations
in meta-populations. Identification and delineation
of dispersal areas.

Transmission routes of pathogens and
disease-dynamics along migration routes. Study
of outbreaks of emergent diseases (e.g., avian
influenza). Detailed tracking of vectors of disease
transmission. Surveillance of the population
ecology of zoonotic hosts, pathogens or vectors.

Recording of physiological parameters (e.g., heart
rate, body temperature, blood pressure, respiration)
and their interaction with locomotor activity.
Use of body acceleration to estimate energy
expenditure (e.g., ODBA). Analysis of
physiological rhythms at different spatio-temporal
scales. Managing of sleeping habits, starvation
and dehydration during migration.

Disentangling the mechanisms of bird orientation
and navigation (e.g., magnetic field, celestial cues,
sun compass, polarised light, landscape features
and odour cues). Experimental analysis of homing
mechanisms in captive birds. Contribution
to the development of optimal migration models
and detailed understanding of migration routes
(e.g., orthodromes, geographic loxodromes,
magnetoclinic routes, magnetic loxodromes).
Comparison between orientation mechanisms
in captive birds and free-ranging birds.

Identification of critical mortality hotspots along
migration routes and their impact on population
dynamics. Environmental impact assessment
of major threats for endangered species and
obtaining spatially explicit information of where

Cadahía et al., 2008,
2009, 2010; Kays et al.,
2011; Yamaç and Bilgin,
2012; Soutullo et al.,
2013; López-López et al.,
2014b; Bentzen and
Powell, 2015.

Prosser et al., 2009, 2011;
Newman et al., 2009,
2012; Adelman et al.,
2014; Tian et al., 2015;
van Dijk et al., 2015.

Grémillet et al., 2005;
Ropert-Coudert et al.,
2006; Wilson et al., 2006;
Mandel et al., 2008;
Wilson and Vandenabeele,
2012; Liechti et al., 2013;
Dominoni et al., 2014;
Duriez et al., 2014;
Portugal et al., 2014.

Mouritsen et al., 2003;
Bonadonna et al., 2005;
Alerstam, 2006; Biro
et al., 2006; Åkesson
and Hedenström, 2007;
Dell’Ariccia et al., 2008;
Guilford et al., 2011;
Horton et al., 2014;
Reynolds et al., 2015;
Wikelski et al., 2015;
Willemoes et al., 2015.

Strandberg et al., 2009b;
van Heezik et al., 2010;
Grecian et al., 2012;
Mellone et al., 2013;
Phipps et al., 2013;
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other activity sensors, and are able to send
data packages through the GSM network
(e.g., Lanzone et al., 2012) or by automatic
downloading to a base station (e.g., Holland
et al., 2009; Kays et al., 2011; Bouten et al.,
2013; Pfeiffer and Meyburg, 2015).

More sensors in smaller tags

The current technological challenge is to
continue shrinking transmitter size together
with increasing the number of incorporated
bio-logging sensors (Cooke et al., 2004;
Rutz and Hays, 2009). Cutting-edge tracking
devices, unlike traditional tracking methods

such as metal rings or conventional radio-
tracking, are very expensive: from several
hundred to several thousand euros. There is
thus an enormous commercial market behind
tracking technologies, leading companies to
strive vigorously to develop ever-smaller
transmitters with higher capacities at com-
petitive prices (see some examples in table
S1). Future transmitters will have higher in-
ternal storage capacities and longer battery
lifetimes (i.e., more charge/discharge cycles).
In addition, it is expected that remotely
downloadable dataloggers (i.e., transmitters
using radio link for wireless communication)
will have shorter processing times for data
retrieval from multiple tags. Interesting en-
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TABLE 1 (cont.)

Topic Questions and future challenges References

Conservation
(cont.)

Management
actions

Exploitation
of natural
resources

mortality occurs (e.g., electrocution, wind-farms,
illegal hunting, poisoning, light pollution). Impact
of invasive species on native species. Evaluation
of the performance of protected areas and
delineation of new ones (e.g., Marine Important
Bird Areas). Obtaining unbiased mortality
estimations to feed capture-recapture demographic
models.

Evaluation of the effectiveness of different
management actions for bird conservation
and their impacts on movement behaviour
(e.g., reintroduction programmes, removal
of non-native species, supplementary feeding).

Analysis of the interactions between bird
movements and exploitation of natural resources
(e.g., fisheries, game species). Impact of fisheries
bycatch on marine pelagic birds. Movement
of species of economic interest and sustainable
harvesting.

Klaassen et al., 2014;
Braham et al., 2015;
Oppel et al., 2015;
Thaxter et al., 2015.

Margalida et al., 2013;
Monsarrat et al., 2013;
Gil et al., 2014; López-
López et al., 2014c;
Gooch et al., 2015;
Petersen et al., 2015.

Brothers et al., 1998;
Okes et al., 2009;
Pichegru et al., 2009;
žydelis et al., 2011;
Caudill et al., 2014;
Ratcliffe et al., 2015;
Weimerskirch et al., 2015.
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terprises, such as the promising ICARUS
project (see box 1), which is aimed at ob-
serving global migratory movements of small
animals through a satellite system installed
in the International Space Station (ISS), are
under development (Wikelski et al., 2007).
This initiative aims to revolutionise current
tracking systems, mimicking conventional

radio-tracking by pointing antennas towards
Earth from near-Earth orbit in the ISS. This
will permit radio transmitters attached to
small animals, from birds to insects, to be
located anywhere on Earth. The scientific
community has great interest on this ini-
tiative and, although several questions still
remain unanswered (e.g., how much will
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FIG. 3.—Example of two individual tracks of a pair of Bonelli’s eagles Aquila fasciata recorded by
high-resolution GPS/GSM telemetry in Spain (López-López and Urios, unpubl. data). Each point
corresponds to a GPS location and shows how male (red) and female (yellow) soar together a two-
hour time window. For this particular study, dataloggers were programmed to record one GPS loca-
tion and tri-axial accelerometer measurements (sampling rate = 33.3 Hz for each axis) every five
minutes according to a basic configuration throughout the year. Furthermore, dataloggers record a GPS
location every second during certain time periods of 15 minutes in length called “super busts”. As a
result, high-resolution GPS telemetry is allowing in-depth analysis of the behaviour of these birds
within their territory.
[Ejemplo de dos “tracks” individuales de una pareja de águilas perdiceras Aquila fasciata en España
gracias a telemetría GPS/GSM de alta resolución (López-López and Urios, datos inéditos). Cada
punto corresponde a una localización GPS y muestra cómo el macho (rojo) y la hembra (amarillo)
ciclean juntos en una ventana temporal de dos horas. En concreto, para este estudio los dataloggers
fueron programados para obtener una posición GPS y medidas del acelerómetro tri-axial (frecuencia
de muestreo = 33 Hz en cada eje) cada cinco minutos de acuerdo con la programación básica para
todo el año. Además, los dataloggers recogen una localización GPS cada segundo durante determi-
nados períodos de tiempo de 15 minutos de duración denominados “super ráfagas”. De este modo, la
telemetría GPS de alta resolución está permitiendo llevar a cabo un análisis en profundidad del com-
portamiento de estas aves en su territorio.]
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transmitters weigh, how much will they cost,
or who will be the final users?), if it succeeds,
this could facilitate a quantum leap in our
knowledge of animal movement.

Data archiving and data processing

As a result of the improved characteristics
of modern dataloggers, we have jumped from
recording very few locations per animal to
hundreds and thousands of locations per ani-
mal and per day. Until recently, raw data were
accessed and downloaded directly by users
at a relatively low frequency (e.g., usually
every week or every ten days from the Argos
system) and could easily be stored in con-
ventional desktop computers. However,
current dataloggers, especially those trans-
mitting information through the GSM mo-
bile network, transmit large amounts of raw
data every day (fig. 2). Hence, storage and
management of extremely large datasets can
be overwhelming, especially for beginners.
To improve this situation, several data reposi-
tories that are freely available on the Internet
allow long-term data archiving in an off-site
location. In addition, these repositories pro-
vide useful services such as automatic data
download from transmitters, data parsing,
data managing, data analysis and environ-
mental annotation (see Box 1). Although
data repositories are freely accessible on the
Internet, it is important to emphasise that
researchers retain ownership of their data
and can choose between different levels of
data accessibility to the public (e.g., data
manager, project’s collaborators, public at
large). One of the most popular data reposi-
tories is Movebank (Wikelski and Kays,
2015), although others such as Satellite
Tracking and Analysis Tool (Coyne and
Godley, 2005) were pioneers in the field
and have been used since early 2000s.
Therefore, I recommend using external data
repositories not only for data backup but

also for data sharing with other members of
the scientific community and citizens at large,
which is probably the most important appli-
cation (see, for example, seaturtle.org and
seabirdtracking.org). This facilitates partici-
pation in collaborative work to help scientists
to address wider scientific questions, and also
attracts public interest. Finally, the informa-
tion available in public repositories is a great
tool for raising public awareness of conser-
vation problems (e.g., for migratory species)
and as a teaching tool at all academic levels.

Scientific challenges

New computational tools

In addition to technological challenges,
individual tracking systems raise many dif-
ferent scientific challenges. Once data are
collected, filtered, and adequately stored in
external repositories, one of the most impor-
tant challenges is data analysis. The analysis
of extremely large datasets introduces com-
putational and statistical challenges mainly
due to massive sample sizes and the high di-
mensionality of big data (Fan et al., 2014).
To overcome this problem needs the develop-
ment of new sophisticated data-management
tools to analyse movement data (Shamoun-
Baranes et al., 2011). This opens new possi-
bilities for research not only for ornitholo-
gists but also for scientists in general. In
particular, we need to train the next genera-
tion of scientists in computing, a field that
has been largely overlooked in graduate
biology programmes, as well as to create
multidisciplinary teams in which ornitholo-
gists take part in contributing to data inter-
pretation (Hampton et al., 2013; Shade and
Teal, 2015). Hence, we need to encourage a
culture of data sharing and interdisciplinary
collaborative work. New toolboxes specially
developed for Geographic Information Sys-
tems, such as Animal Movement Analysis
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software (Hooge and Eichenlaub, 1997),
Home Range Tools (Rodgers et al., 2007),
or Geospatial Environmental Modelling soft-
ware (Beyer, 2012), have been developed. In
addition, freely-available software packages
that contain functions to access movement
data as well as tools to visualise and statis-
tically analyse animal movement datasets
have become very popular. Some examples
are “adehabitat” (Calenge, 2006), “move”
(Kranstauber et al., 2012; Kranstauber and
Smolla, 2015), “GeoLight” (Lisovski and
Hahn, 2012), and reproductible home range
“rhr” (Signer and Balkenhol, 2015) R-pack-
ages. Data reproducibility is an important
issue that still remains a challenge (Peng,
2011). Further improvements in computa-
tional science will provide interesting tools
that will open new avenues of research into
the analysis of bird movements.

Spatial and temporal autocorrelation

Animals move great distances over long
periods following highly variable individual
routes (e.g., López-López et al., 2014a). For
example, bird movements may vary from the
ballistic trajectories recorded during migra-
tion (i.e., following a nearly constant direc-
tion at high speed), to crooked paths with
continual turns and changes in direction at
low speed during intensive foraging. Further-
more, the relocations from individuals show
a spatiotemporal autocorrelation pattern:
i.e., their location at time t + 1 is dependent
on their location at time t (Otis and White,
1999), which is moreover stochastic and
often subject to severe observational error
(Patterson et al., 2008). Dealing with both
uncertainty and spatiotemporal autocorrela-
tion is one of our biggest challenges in the
analysis of movement data (Cagnacci et al.,
2010; Fieberg et al., 2010). Depending on
duty cycle configuration, transmitters record
this information at different sampling rates.

Hence, the length of the gap between con-
secutive locations makes it necessary to use
one or other set of analytical tools (Kie et
al., 2010). This fact gave rise to the develop-
ment of statistical methods such as state-
space models (Jonsen et al., 2005; Patterson
et al., 2008) and Brownian Bridges models
(Horne et al., 2007), which were aimed at in-
terpreting where an animal could be between
consecutive relocations. Nowadays, the de-
gree of uncertainty in animal movement has
been dramatically reduced by high-resolu-
tion GPS telemetry, making formerly very
useful analytical tools somewhat obsolete.
For example, current dataloggers (at least
those available for larger birds, see fig. 1 and
table S1) record GPS locations with 1Hz
frequency and so it is no longer necessary
to interpolate where the bird has moved
between consecutive relocations. We have
shifted from the analysis of a schematic repre-
sentation of a bird’s path, to the analysis of
its true trajectory (Benson, in press). There-
fore, our current challenge is to develop ana-
lytical tools that take into consideration the
intrinsically autocorrelated nature of animal
movement and to investigate the underlying
mechanisms, such as cognitive processes and
memory effects, that cause this spatiotem-
poral autocorrelation (Boyce et al., 2010).

Environmental data annotation

No-one would study fish or cetacean
movements without taking into account
the movement of ocean currents. Corre-
spondingly, analysing bird movement data
without considering environmental condi-
tions would also be meaningless. For their
locomotion birds must push against a fluid,
either air (most species) or water (e.g.,
penguins, ducks, etc.), which is itself also
moving. Hence, it is necessary to correlate
the information of animal movement with
the particular characteristics of the media in
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which they actually move. Linking animal
tracks with environmental data and the un-
derlying context, i.e., the “environmental
data annotation process”, is thus necessary
to understand bird behaviour (Mandel et al.,
2011). However, this represents an analyti-
cal challenge due to the different spatio-
temporal resolution of tracking data and
environmental information (e.g., weather
conditions, topography, primary productivi-
ty, land use, vegetation, snow cover, etc.).
The Env-DATA system (Dodge et al., 2013)
implemented in the Movebank data reposi-
tory provides an interesting free automated
annotation service of movement trajectories
that facilitates the study of bird movements
in their environmental context (e.g., with
respect to wind currents, temperature, ther-
mal uplift, air pressure, and other measures
recorded by remote sensing technologies).
Nevertheless, our current challenge is to
continue creating new analytical tools (e.g.,
under R and MATLAB statistical software
as well as specific extensions for Geographi-
cal Information Systems software), and de-
veloping new interpolation algorithms to
facilitate data integration, resampling and
interpolation at the same rate at which move-
ment data is recorded.

Behavioural segmentation

Inferring behaviour from animal move-
ment data is an important topic in behavioural
ecology. To this end, removing subjectivity
in data interpretation and understanding
behaviour at the appropriate scale in which
it happens becomes essential. Hence, re-
searchers have developed several tools
aimed at splitting behaviour into its elemen-
tary basic units or behavioural modes (i.e.,
displacement, foraging, resting, etc.). This
process is thus known as behavioural seg-
mentation. Traditional approaches include
machine learning languages, fractal analysis,

first passage time, state-space models, be-
havioural change point analysis, k-clustering,
autocorrelation functions, and hierarchical
Bayesian algorithms, but they need substan-
tial input from the researcher and are thus
subject to a certain degree of subjectivity
(Jonsen et al., 2003, 2005; Morales et al.,
2004; Schick et al., 2008; Gurarie et al.,
2009; Dean et al., 2012). Recent advances in
this field are unsupervised and non-intensive
computing algorithms such as the Expecta-
tion-Maximization Binary Clustering imple-
mented in the “EMbC” R-package (Garriga
et al., 2014). EMbC focuses only on the
analysis of two movement variables (veloci-
ty and turn), obtained from the successive
locations of a trajectory, and has been proved
to be well suited for big data recorded at
high-frequency as well as large-scale analy-
sis (e.g., Louzao et al., 2014). Other novel
approaches take advantage of acceleration
data to identify behavioural modes (Nathan
et al., 2012; Williams et al., 2015). There-
fore, our current challenge is to continue de-
veloping new reliable tools for behavioural
segmentation that reflect complexity in
behavioural modes, independent of a priori
assumptions and with the highest explana-
tory potential (Gurarie et al., 2016). Under-
standing how different behavioural modes
interact at different spatiotemporal scales
and incorporating cognitive processes,
behavioural plasticity (i.e., personality)
(Patrick and Weimerskirch, 2014) and
memory effects in the models also remains
a challenge (Hays et al., in press).

From 2D to 3D (and 4D)

Birds use space in three dimensions.
However, despite computational advances,
the analysis of animal movements has typi-
cally been reduced to the quantification of
space use in two dimensions (latitude and
longitude) and has failed to integrate verti-
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cal data into habitat use estimates (Belant et
al., 2012), mainly due to the low precision of
most altitudinal measurements. Therefore, it
is necessary to incorporate the third dimen-
sion (i.e., altitude or depth) in the analysis of
animal movement because this will lead to
better understanding of habitat use and selec-
tion (Cooper et al., 2014). Although several
algorithms, such as “ks” (Duong, 2015) and
“mkde” (Tracey et al., 2014) R-packages,
have been developed to generate novel
movement-based kernel density estimators,
there are very few examples of movement
analysis that consider 3D in the analysis of
space use and quantification of utilisation
distributions (Keating and Cherry, 2009;
Cooper et al., 2014; Cleasby et al., 2015).
Modelling bird movements in three dimen-
sions (or even in four dimensions, thus also
considering time) is hence a promising field
of research, especially for the analysis of
animal interactions both in space and time.
In addition, we need better computer visuali-
sation tools for generating and exploring 3D
as well as incorporating colour images and
videos in traditional publishing (Shamoun-
Baranes et al., 2011; Demšar et al., 2015).

Animal interactions

The complex behaviour exhibited by birds
is the outcome of the sum of animal-environ-
ment interactions and animal-animal interac-
tions, both at intraspecific and interspecific
levels. There is vast body of ecological litera-
ture on the study of the relationship between
animals and their environment (e.g., on habi-
tat selection, resource use, environmental
niche analysis, etc.). However, the role of
intra- and interspecific interactions and how
they affect bird movements and ultimately
determine their use of space remains poorly
understood. Traditionally, most studies of
bird interactions have focused on spatial

overlap in home ranges or static interac-
tions (i.e., the joint occurrence in space
of two or more individuals), but very few
have addressed dynamic interactions (i.e.,
co-occurrence in both space and time)
(Benhamou et al., 2014). A combination of
the availability of high-resolution telemetry
data and new analytical tools opens new
avenues for future research in the field of
movement ecology (Kays et al., 2015). A
good tool is the “wildlifeDI” R-package
(Long, 2014), which includes a suite of
functions and indexes to quantify animal
interaction (e.g., proximity analysis, coeffi-
cient of association, correlation index, dy-
namic interaction index) (Long et al., 2014).
Importantly, these metrics take into account
the intrinsically autocorrelated nature of
movement data and are thus particularly
suited for analysis of information recorded
by individual-based tracking methods.
Evaluating how intraspecific and inter-
specific interactions affect movement is ex-
tremely important in ornithology, especially
to address such interesting topics such as
the spread of invasive species, disease trans-
mission or for studying territorial and anti-
predator behaviour (see some examples in
table 1). In addition, multi-individual GPS-
tracking expands the scope of animal ecolo-
gy to the study of collective behaviour and
the roles of social networks and hierarchy in
decision-making processes (e.g., leadership
in flocking behaviour) (Couzin et al., 2005;
Usherwood et al., 2011; Flack et al., 2015;
Kays et al., 2015). Our current challenge is
to shift from individual tracking to multi-
individual tracking, e.g., tracking cohorts of
individuals of the same guild, parents and
young of the same family, or different mem-
bers in social or colonial species, in order to
link collective movement with environmen-
tal characteristics and ultimately with popu-
lation dynamics (Morales et al., 2010).
Inferring population-level spatial patterns
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from underlying individual movement and
interaction processes, and developing mecha-
nistic models of territorial interactions, also
constitute promising fields of research (Potts
et al., 2015).

ETHICAL ASPECTS

Studies using individual-based tracking
systems are based on an underlying basic
assumption that bird behaviours are not al-
tered (or are insignificantly altered) by the
effect of transmitters. However, this basic
assumption has rarely been tested and is arbi-
trary to a degree (Caccamise and Hedin,
1985; Barron et al., 2010; Constantini and
Møller, 2013). There is a sizable literature on
the effects of transmitters on birds, yet the
results are inconclusive (Murray and Fuller,
2000). Whereas some authors report nega-
tive effects on birds, with an overall negative
effect on fitness components (i.e., survival
and breeding) (Constantini and Møller,
2013), other researchers have not found
such effects (e.g., Igual et al., 2005) and
argue that the sample sizes in most studies
reporting deleterious effects are low (Sergio
et al., 2015). The correct selection of the type
of transmitter (i.e., PTTs, dataloggers, geolo-
cators, etc.) in combination with an appro-
priate method of attachment (i.e., backpack
harness, collar, glue, tailmount, leg rings,
leg-loop backpack harness, anchor, and even
implantable transmitters that need surgery) is
critical in order to reduce potentially harmful
effects on bird behaviour (e.g., Vandenabeele
et al., 2013; Blackburn et al., 2016).

There is a widely accepted 3-5% “rule of
thumb” for the ratio of tag mass to body
mass, which limits the tracking devices
suitable for a given species (Brander and
Cochran, 1969; Kenward, 2001) (fig. 1).
However, some review studies suggest that
there is no empirical support for this rule

(Barron et al., 2010) and it is up to the re-
searcher’s arbitrary decision to follow the
rule or not. Nowadays there is great pressure
to push technologies to the limit in order to
get better chances of final publication of
results, and consequently some researchers
succumb to the temptation of exceeding the
3-5% tag mass/body mass ratio in some
cases. Nevertheless, the precautionary prin-
ciple should be respected; i.e., the tracking
project should not be permitted if the effects
of the combination of a transmitter and
method of attachment are unknown or are
suspected of harmful effects in related or
morphologically similar species. Hence,
further research is needed to assess which
tracking methods are appropriate, including
not only the effects of tag mass, but also
tag impact on the aerodynamics of different
groups of species and the resulting possible
drag effect (e.g., Pennycuick et al., 2012).
Trial studies with common non-endangered
species could be a good chance to check the
transmitters’ effects on birds under controlled
conditions (e.g., using irrecoverable species
in rehabilitation centres).

Finally, it would be desirable to regulate
the use of individual-based tracking tech-
nologies in some way, including (for exam-
ple) more stringent licensing criteria and
enforcing attendance at training courses
(Sergio et al., 2015). Fitting transmitters im-
plies trapping birds, in some cases of vul-
nerable, rare or endangered species, and
therefore a cost/benefit analysis should be
done before starting a tracking project
(Latham et al., 2015; Pimm et al., 2015).
Trapping, handling and attaching tracking
devices requires a set of skills that must be
taught and constantly re-evaluated. Hence, I
recommend creating special working groups,
as well as open symposia and specific work-
shops for interested researchers. Public
administration and financial entities should
ask for strong ethical commitments before
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starting a tracking project. In addition, a
scientist should clearly justify why tracking
a given species is needed and should state
the main goals of the project and how these
goals are only achievable by using individual-
based tracking technologies. Currently, the
cost of transmitters is decreasing rapidly,
making them more accessible to everyone.
Consequently, some public administrations,
NGOs, land managers, and amateur groups
have found tracking birds an entertaining
hobby that feeds numerous public profiles
in social media (e.g., Facebook, project
websites, etc.) without any intention of ad-
dressing clear questions supported by sound
scientific projects. In my opinion, the sim-
ple curiosity to know where animals move
does not itself justify trapping and tracking
birds. Hence, collaboration among multi-
disciplinary groups and enhanced sharing of
information should be promoted (Hampton
et al., 2013; Pimm et al., 2015).

CONCLUDING REMARKS

We are possibly experiencing the most
productive time for the study of bird move-
ments since the time of Aristotle. Fast-de-
veloping technologies are allowing cutting-
edge studies that reveal an unprecedented
level of detail about animal movements.
Some have taken this opportunity to coin
the term “movement ecology” as a scientific
discipline in order to call attention to this
emerging field. Although from my point of
view movement does not itself constitute a
separate scientific discipline, no-one doubts
the importance of movement and its essen-
tial role in ecology and behaviour (Benson,
in press). Individual tracking technologies
are usually criticised for their elevated cost,
which results in small sample sizes and thus
a limited capacity for ecological inference
(Hebblewhite and Haydon, 2010). Never-
theless, a promising future for the study of

animal movement is assured by the continual
improvements in current tracking technolo-
gies and the increasing number of companies
commercializing remote-tracking devices.
Current challenges include how to scale-up
from individual fine-scale movements to
coarse-scale resource selection and popu-
lation-level dynamics (Hebblewhite and
Haydon, 2010; Morales et al., 2010) and
how to put the information derived from
telemetry into the general framework of the
theoretical body of ecological knowledge.

Finally, we should not forget that indi-
vidual-based tracking systems are just
methods and do not constitute an end in
themselves (Sokolov, 2011). Trapping,
handling and attaching transmitters entail
disturbance (tolerable in most cases) and,
accordingly, a great responsibility. Prior to
starting a tracking project, researchers should
carefully consider the main goals of the study,
the convenience of tracking the species in
question and whether remote tracking is the
best methodology to this end (Latham et al.,
2015). The key challenges ahead are to get
the most out of data and to enhance a culture
of multidisciplinary collaboration among re-
search groups (Pimm et al., 2015). We have
definitely entered a golden era in the study
of animal movement and we should not miss
this opportunity.
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