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Direct optimization, sensitivity analysis, and the 

evolution of the hymenopteran superfamilies

ANSEL PAYNE,1,2 PHILLIP M. BARDEN,1,2 WARD C. WHEELER,2 AND JAMES M. 

CARPENTER2

ABSTRACT

Even as recent studies have focused on the construction of larger and more diverse datas-

ets, the proper placement of the hymenopteran superfamilies remains controversial. In order 

to explore the implications of these new data, we here present the first direct optimization-

sensitivity analysis of hymenopteran superfamilial relationships, based on a recently published 

total evidence dataset. Our maximum parsimony analyses of 111 terminal taxa, four genetic 

markers (18S, 28S, COI, EF-1α), and 392 morphological/behavioral characters reveal areas of 

clade stability and volatility with respect to variation in four transformation cost parameters. 

While most parasitican superfamilies remain robust to parameter change, the monophyly of 

Proctotrupoidea sensu stricto is less stable; no set of cost parameters yields a monophyletic 

Diaprioidea. While Apoidea is monophyletic under eight of the nine parameter regimes, no set 

of cost parameters returns a monophyletic Vespoidea or a monophyletic Chrysidoidea. The 

relationships of the hymenopteran superfamilies to one another demonstrate marked instability 

across parameter regimes. The preferred tree (i.e., the one that minimizes character incongru-

ence among data partitions) includes a paraphyletic Apocrita, with (Orussoidea + Stephanoi-

dea) sister to all other apocritans, and a monophyletic Aculeata. “Parasitica” is rendered 

paraphyletic by the aculeate clade, with Aculeata sister to (Trigonaloidea + Megalyroidea).

1  Richard Gilder Graduate School, American Museum of Natural History. 
2 Division of Invertebrate Zoology, American Museum of Natural History.
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INTRODUCTION

Despite being one of the most diverse, well-studied, and economically important groups 

of insects (Goulet and Huber, 1993; Grimaldi and Engel, 2005), the Hymenoptera (ants, bees, 

wasps, and sawflies) still present major problems for phylogenetic systematists. While certain 

aspects of the group’s phylogeny—the paraphyly of the “Symphyta,” the monophyly of the acu-

leate wasps, and the rise of the Aculeata from within a paraphyletic “Parasitica”—are relatively 

uncontroversial, the proper placement of the order’s 22 extant superfamilies (Sharkey, 2007) 

remains elusive. 

While recent efforts associated with the Hymenoptera Tree of Life project (HymAToL; e.g., 

Vilhelmsen et al., 2010; Heraty et al., 2011; Sharkey et al., 2012; Klopfstein et al., 2013) repre-

sent major advances in taxon sampling and character scoring, the results of those studies still 

point to a deep instability among higher-order hymenopteran relationships. In an effort to 

further explore the implications of these new data, and to more precisely define regions of 

topological instability, we here present the first direct optimization-sensitivity analysis of 

hymenopteran superfamilial relationships, based on a reanalysis of the most recently published 

total evidence dataset (Sharkey et al., 2012).

BACKGROUND I:  

GENERAL OUTLINE OF HYMENOPTERAN PHYLOGENY

A long list of synapomorphies—including a unique hamulus-based wing-joining mecha-

nism, protibial antennal cleaners, and a haplodiploid sex determination system (among others, 

see Sharkey, 2007)—clearly unites the hyperdiverse membership of the Hymenoptera as a natu-

ral group (Goulet and Huber, 1993; Grimaldi and Engel, 2005). In addition, the general outline 

of the order’s higher-level relationships are more or less clear: a basal grade, the “Symphyta,” 

comprising no more than 5% of hymenopteran diversity leads to an extremely diverse suborder, 

the Apocrita, united by the evolution of the wasp waist (Vilhelmsen et al., 2010) and a series 

of highly successful developments in the parasitic lifestyle.

The Apocrita, or true wasps, are further subdivided into two groups, the “Parasitica” (12 

superfamilies) and the Aculeata (three superfamilies), the latter defined by an unambiguous 

synapomorphy in the form of a complex ovipositor based sting apparatus. No readily apparent 

morphological character unites the extremely diverse parasitican superfamilies (Sharkey et al., 

2012), and the results of many phylogenetic studies have pointed to an aculeate origin from 

within the group (Rasnitsyn, 1988; Dowton and Austin, 1994; Downton et al., 1997; Carpenter 

and Wheeler, 1999; Davis et al., 2010; Vilhelmsen et al., 2010; Peters et al., 2011; Heraty et al., 

2011; Sharkey et al., 2012; but see Ronquist et al., 1999; Dowton and Austin, 2001). 

While this basic outline (fig. 1) is relatively uncontroversial (Sharkey, 2007), the details of 

the superfamilial relationships, and especially of the exact position of the aculeate clade within 

“Parasitica,” are far from settled. Among the more acute problems facing the higher-order 

hymenopteran systematist are: (1) establishing the monophyly of each of the 22 superfamilies 

proposed by Sharkey (2007); (2) establishing the basal most lineage within the order: either 
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Xyeloidea or some combination of Xyeloidea + other symphytan clades; (3) resolving the phy-

logenetic structure of the Vespina (Orussoidea + Apocrita) and determining whether the 

symphytan Orussoidea renders Apocrita paraphyletic (as suggested by Heraty et al., 2011); and, 

finally, (4) inferring the position of the Aculeata among the parasitican lineages and establish-

ing the identity of the group’s sister taxon.

In order to contribute to these efforts, we bring a powerful set of analytical tools—direct 

optimization and sensitivity analysis—to bear on a slightly expanded version of a recently 

published total-evidence dataset. Sharkey et al. (2012) examined 111 taxa, including three 

outgroups and 84 generic exemplars within Apocrita, using 392 morphological and behavioral 

characters, along with eye-aligned sequence data from four genes. While this represents the 

most extensive phylogenetic study of the Hymenoptera to date, their total-evidence analysis 

returned only weak support for a number of important clades and did not address issues of 

parametric contingency in parsimony analysis (Wheeler, 1995; Giribet, 2003). The current 

study was designed to expand upon the previous work’s findings, and to further explore the 

implications of the newly available HymaToL data. 

BACKGROUND II:  

DIRECT OPTIMIZATION

When analyzing molecular-sequence characters, conventional phylogenetic methods 

require two separate and sequential optimization procedures: an initial multiple-sequence 

alignment (MSA), followed by some form of character optimization and tree search. Sequence 

alignment is a necessary first step given that variations in sequence length, which presumably 

reflect long series of historical insertion and deletion events, are a pervasive feature of compara-

tive molecular datasets. 

MSAs are methods for “correcting” this length heterogeneity through the insertion of gaps, 

placeholders that stand in for absent homologous nucleotides. In doing so, they establish puta-

tive homologies among nucleotide base positions across terminal taxa, and at the same time 

present a visible manifestation of that homology in the form of neat columns of molecular 

Aculeata
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FIG. 1. Schematic representation of 
hymenopteran relationships. Box 
size proportional to estimated spe-
cies diversity, based on conservative 
estimates in Goulet and Huber 
(1993): “Symphyta”: ~ 15,000 sp.; 
Aculeata: ~ 92,000 sp.; “Parasitica”: 
200,000 sp. Bars represent key syn-
apomorphies: the wasp-waist (a) and 
the defensive sting apparatus (b). 
Some estimates of species diversity 
within “Parasitica” are much higher; 
see, for instance, the 375,000 to 
500,000 chalcidoids predicted by 
Heraty and Darling (2009).
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characters. Once these putative homologies are established, researchers can treat sequence-

based datasets just as they would any other set of phylogenetically informative static characters 

(Wheeler, 2001). Firmly embedded in a static matrix, aligned nucleotide characters can reveal 

the patterns of state change and stasis that form the backbone of phylogenetic analysis. 

There are, however, problems associated with this separate and sequential approach. Given 

that true multiple-sequence alignment is computationally prohibitive for all but the most trivial 

of datasets (Schulmeister et al., 2002), all of the currently implemented MSA optimization 

methods rely on some form of heuristic search: most often a “binary ‘guide’ tree” that points 

the way, via a series of simpler pairwise alignments, toward an approximation of the global 

optimum (Wheeler, 2001). Unfortunately, different guide trees can produce vastly different 

optimum alignments, which in turn may result in vastly different phylogenetic outcomes. In a 

worst-case, but probably common scenario, the optimum cladogram for a given alignment will 

not represent the lowest-cost cladogram that could have been generated from the same sequence 

data given a different static alignment. 

Wheeler’s (1996) optimization alignment (i.e., direct optimization) algorithm solves this 

problem by combining the sequence alignment and character optimization/tree search steps. 

Putative homologies are no longer determined a priori via a separate and prior MSA, but rather 

with reference to each unique cladogram encountered during a given tree search. Homologies 

are thus “dynamically determined and uniquely tailored to each topology” (Wheeler, 2001: S5), 

with direct optimization based cladograms routinely obtaining lower costs than cladograms 

derived from conventional analyses (Wheeler, 2001). For an introduction to the mechanics of 

the optimization alignment algorithm, see Wheeler (1996); for an extended discussion of its 

advantages in total evidence analysis, see Schulmeister et al. (2002). 

BACKGROUND III:  

SENSITIVITY ANALYSIS

At its most basic, the phylogenetic implementation of maximum parsimony is a method 

for determining the minimum amount of character change demanded by: (1) a given dataset, 

(2) the assumption of common descent, and (3) Hennig’s auxiliary principle (Hennig, 1966). 

As a test of the null hypothesis that putative homology reflects final homology, it does nothing 

more than minimize the number of ad hoc hypotheses of evolutionary convergence required 

to explain patterns present within the data. 

Despite this logical simplicity, parsimony methods cannot escape the need to assign a 

priori costs to the various character transformations we seek to optimize (Wheeler, 1995; 

Donoghue and Ackerly, 1996). While changes in the relative magnitudes of these costs can have 

a dramatic effect on the outcome of phylogenetic analyses, no empirical, extraphylogenetic 

methods exist for determining “realistic” cost assignments.

Sensitivity analysis (sensu Wheeler, 1995) allows for a liberal exploration of the effects of 

varying cost parameters on the outcome of parsimony analyses. By choosing an expanded set 

of transformation cost regimes and using them as the basis for multiple parallel analyses of the 

same character data, we can explore the sensitivity of a given clade or clades to changes in those 
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cost parameters (Wheeler, 1995; Schulmeister et al., 2002). Clades that hold together regardless 

of changes in the relative costs of transitions, transversions, insertion/deletion events, or mor-

phological changes may be considered more stable or more “robust” than those that exist only 

under one or a few cost regimes (Giribet, 2003); such robustness may justify more confidence 

in the clade, and thus function as a form of clade support (Schulmeister et al., 2002). 

Of course, the many trees produced by even a small-scale sensitivity analysis still leave us 

with the dilemma of choosing a “best” tree from among the phylogenetic hypotheses derived 

from competing cost regimes. Wheeler (1995) suggested using one of two measures of congru-

ence, either taxonomic (based on topological agreement) or character based (a measure of 

character conflict among constituent datasets, e.g., the incongruence length difference of Mick-

evich and Farris, 1981). Whichever set of cost parameters minimizes the chosen incongruence 

measure yields the preferred phylogenetic hypothesis.

MATERIALS AND METHODS

Taxa and Characters: Our dataset was nearly identical to the one analyzed by Sharkey 

et al. (2012); it contained the same 111 genus-level terminals (108 ingroup, 3 outgroup), the 

same genetic markers (18S, 28S, COI, EF-1α), and the same 392 morphological/behavioral 

characters. However, ours also included fragments of 23 additional sequences downloaded 

from GenBank and used to fill in gaps in the molecular data matrix (accession numbers in 

table 1). In some cases, these sequences provided molecular characters for genera (Orgilus, 
Plumarius, Spalangia, and Urocerus) that were previously represented by morphology alone 

(Sharkey et al., 2012). All other sequence, morphological, and behavioral data were obtained 

directly from one of the previous study’s authors (J.M.C.).

Sequences were initially aligned by eye using Geneious Pro version 5.5 (Drummond et al., 

2010). This temporary alignment facilitated the identification of nonoverlapping sequence 

regions (e.g., leading and trailing gaps), and allowed for the partitioning of sequences into 

shorter homologous fragments (14 subfragments in 18S; 21 in 28S; 6 in COI; 10 in EF1-α). All 

gaps were removed prior to the direct-optimization phylogenetic analyses described below.

Phylogenetic Analyses: Nine total-evidence maximum parsimony analyses were per-

formed simultaneously using POY version 4.1.2.1 (Varón et al., 2010). These nine analyses 

differed only in terms of the costs assigned to four classes of character transformations: inser-

tion/deletion events, transversion substitutions, transition substitutions, and morphological/

behavioral changes (table 2). “Neuroptera” was designated as the outgroup for all analyses. 

Each analysis began with a 15 hour tree search using POY’s default search command on 

four processors: 

search(max_time:00:15:00)

The trees produced by these nine simultaneous searches were concatenated into a single file that 

served as the input tree file for the next round of heuristic search. Subsequent tree-search itera-

tions each performed 1000 rounds of tree fusing followed by swapping on unique trees: 
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fuse(iterations:1000) select() swap(trees:10) select()

The best trees from all nine analyses were again concatenated and used as input for subsequent 

rounds of fusing and swapping; this procedure continued iteratively until the costs of all nine 

output tree sets equaled the costs of all nine input tree sets for three consecutive rounds (in 

this case, after four rounds of tree fusing and swapping). 

In addition to the total-evidence analyses, all four individual gene partitions and the mor-

phological/behavioral dataset were analyzed separately, using the same iterative procedure 

described above. Analyses were terminated once the input and output tree costs were the same 

for at least two consecutive rounds of tree search (five rounds each for the 18S, 28S, COI, and 

EF1-α partitions; three rounds for the morphology/behavior partition). 

The preferred tree was chosen after calculating the incongruence length difference (ILD; 

Mickevich and Farris, 1981; Wheeler, 1995; Schulmeister et al., 2002) for each total-evidence 

tree and selecting the parameter set that minimized the statistic. The ILD here represents a 

measure of character incongruence, i.e., the character conflict created by the combination of 

multiple data partitions.

Clade sensitivities for groups within the preferred tree were calculated and visualized using 

Cladescan version 1.0 (Sanders, 2010). Bremer supports were calculated using POY version 

5.0.1 alpha (Varón et al., 2011) and based on exhaustive enumeration of the TBR neighborhood 

of the preferred tree: 

swap(tbr,all,visited:”bremertrees.tre”) report(graphsupports:bremer:”bremertrees.tre”)

RESULTS

Each of the nine total evidence analyses returned a set of one or more most parsimonious 

trees (fig. 2); of these, the fully resolved tree generated by the 2:2:1:1 parameter set (indels equal 

to transversions, twice transitions and morphological/behavioral changes) resulted in the low-

est ILD score and was thus chosen as the preferred phylogenetic hypothesis (table 3). Details 

of this minimum ILD (mILD) tree, including Bremer supports and major clade sensitivities, 

are shown in figures 3 and 4, respectively. 

The mILD tree differed in a number of respects from the equal weights parsimony (EWP) 

consensus tree; figure 5 shows a side-by-side comparison of these trees. A simplified version 

of the EWP tree, with sensitivity plots for major clades superimposed, is shown in figure 6. 

DISCUSSION

The results of this study reveal and formalize deep instabilities among higher order hymenopteran 

phylogenetic relationships, at least with respect to variation in four key transformation cost param-

eters. Such instability is consistent with a history of competing, mutually incompatible phylogenetic 

hypotheses (reviewed in Sharkey, 2007; see also Vilhelmsen et al., 2010; Heraty et al., 2011; Sharkey 
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et al., 2012), and serves as a reminder of the difficulties facing hymenopteran systematists. What 

follows are notes on some of the major implications of our results: 

The mILD Tree vs. the EWP Tree

Two of our final consensus trees, the mILD (2:2:1:1) and EWP (1:1:1:1) cladograms, deserve 

special attention: the former, because it maximizes an objective optimality criterion (in this 

case the minimization of the ILD statistic), and the latter because it is the tree most consistent 

with an agnostic, equal-weights approach to parsimony that also minimizes the overall number 

of transformations. 

Of the two, the mILD tree deviates the most from a traditional and intuitive classification 

of the Hymenoptera. The most dramatic of these deviations is almost certainly a polyphyletic 

Ichneumonoidea, with its closely related families Braconidae and Ichneumonidae placed far 

apart on the tree (fig. 5); given the long list of synapomorphies uniting these families (Goulet 

and Huber, 1993; references therein), this result seems unlikely to reflect actual phylogenetic 

relationships. In addition, the mILD tree also renders Apocrita paraphyletic with respect to 

Orussoidea, as discussed below. 

These features contrast with the more traditional scheme found in the EWP tree, which 

also returns the largest proportion of extant superfamilies as monophyletic groups. The two 

cladograms also differ on many of the details of apocritan relationships. 

While we designate the mILD tree as the “preferred” phylogenetic hypothesis, we recognize the 

value of the EWP tree as an alternate hypothesis and discuss the results of both analyses below.

The Monophyly of the Hymenopteran Superfamilies

Of the 22 superfamilies evaluated here, 14 (Xyeloidea [S], Tenthredinoidea [S], Pamphili-

oidea [S], Cephoidea [S], Xiphydroidea [S], Stephanoidea [P], Evanioidea [P], Trigonaloidea 

[P], Megalyroidea [P], Ceraphronoidea [P], Mymarommatoidea [P], Platygastroidea [P], Cyni-

poidea [P], and Chalcidoidea [P]; S = “Symphyta,” P = “Parasitica,” and A = Aculeata) were 

stable across all nine transformation cost parameter sets. Three more (Orussoidea [S], Ichneu-

monoidea [P], and Apoidea [A]) were monophyletic in eight out of nine analyses. To the extent 

that a clade’s robustness to parametric change may function as a form of clade support (Giribet, 

2003), we consider these groups well supported by the sensitivity analysis. 

Siricoidea, composed of the symphytan families Anxyelidae and Siricidae, was a monophy-

letic group in six of nine analyses, while Proctotrupoidea sensu stricto [P] (i.e., sensu Sharkey, 

2007: Austroniidae + Heloridae + Pelecinidae + Peradeniidae + Proctotrupidae + Proctorenyxi-

dae + Roproniidae + Vanhorniidae) was monophyletic only in four. The remaining three super-

families: the parasitican Diaprioidea (again sensu Sharkey, 2007: Diapriidae + Monomachidae 

+ Maamingidae) and the aculeate Chrysidoidea and Vespoidea did not appear as natural groups 

under any of the cost regimes. 

Diaprioidea is a relatively new concept (Sharkey, 2007), and while the group appeared in 

both the total-evidence parsimony tree of Sharkey et al. (2012) and in the maximum likelihood, 
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1:1:1:2
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31,585 steps

2:1:1:1
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32,547 steps

2:1:1:2
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34,998 steps
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FIG. 2. A–C. Strict consensus trees (on this and following pages) produced by all nine transformation cost 
parameter sets and simplified, when possible, to the superfamilial level; total tree length, as well as the number 
of most parsimonious trees, are shown at the bottom left of each tree. Monophyletic Aculeata highlighted.
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Bayesian, and eye-aligned parsimony trees of Heraty 

et al. (2011), it was not necessarily well supported 

(MP tree: bootstrap < 50% [Heraty et al., 2011]; MP 

tree: symmetric resampling frequency difference = 0 

[Sharkey et al., 2012]). In the current study, the group 

breaks up in a variety of ways depending on the cost 

parameters investigated; however, one consistent fea-

ture is the excision of the diapriid genus Ismarus from 

the rest of Diapriidae and its relocation elsewhere 

within Proctotrupomorpha. In the EWP tree, Ismarus 
is sister to a clade composed of ((Chalcidoidea + 

(Mymarommatoidea + Platygastroidea)) + (Diapri-

idae + (Proctotrupoidea sensu stricto + (Maamingi-

dae + Monomachidae)))). In the mILD tree, the 

topology is ((Chalcidoidea + Ismarus) + the remain-

ing Diaprioidea). This wayward Ismarus and its rela-

tionship to the rest of the Diapriidae were anticipated 

in part by Sharkey (2007), who doubted the latter’s 

monophyly; Vilhelmsen et al. (2010) reached a simi-

lar conclusion based on morphological data alone, 

while Sharkey et al. (2012) raised the Ismarinae to 

family status, Ismaridae. 

Serious doubts about the monophyly of Vespoi-

dea have been building for some time (Sharkey, 2007; 

Pilgrim et al., 2008; Heraty et al., 2011; Debevec et al., 

2012; Sharkey et al. 2012; Wilson et al., 2013) and the current study supports that notion. At 

the moment, the more interesting question is not whether Vespoidea constitutes a paraphyletic 

group, but rather how, exactly, other aculeates render that paraphyly. In the current study, we 

a see a variety of vespoid deconstructions: In the EWP tree, Scolia is sister to Apoidea, while a 

polyphyletic Chrysidoidea shows up twice among the remaining Vespoidea. In the mILD tree, 

Apoidea is sister to Metapolybia + Rhopalosoma, while Scolia is sister to the chrysidoid genus 

Plumarius, and Sapyga + Dasymutilla is sister to the rest of the chrysidoids. No clear picture 

of aculeate relationships emerges, with the possible exception of a clade composed of Sapygidae 

+ Mutillidae (in six out of nine analyses), and, of course, the monophyly of Apoidea. 

The meaning of a paraphyletic or polyphyletic Chrysidoidea is much harder to gauge. The 

group has traditionally been considered to be a well-established clade, united by a number of 

key synapomorphies (enlarged female femora, reduction of the Cu2 vein of the forewing, etc. 

[Grimaldi and Engel, 2005]). Among the recent HymAToL studies, Vilhelmsen et al. (2010) 

and Heraty et al. (2011) both recovered a nonmonophyletic Chrysidoidea, while Sharkey et al. 

(2012) united their three chrysidoid genera (Plumarius [Plumariidae], Cephalonomia [Bethyli-

dae], and Ycaploca [Scolebythidae]; the same taxa used in the current study). The true nature 

of chrysidoid relationships, both within the group and with the other aculeates, is thus unclear. 
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Outgroups

4:2:1:1
11 trees
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FIG. 2. (continued).
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The Basalmost Lineage of the Hymenoptera

That the “Symphyta” form a paraphyletic grade at the base of the hymenopteran tree has never 

really been in doubt (Schulmeister et al., 2002); instead, debate has centered on the precise nature 

of the relationships of the symphytan superfamilies (Xyeloidea, Pamphilidoidea, Tenthredinoidea, 

Siricoidea, Cephoidea, Xyphidroidea, and Orussoidea) to one other (reviewed in Schulmeister et 

al., 2002) and to the considerably more speciose and economically important Apocrita.

Most recent analyses (Vilhelmsen, 2001; Schulmeister et al., 2002; Schulmeister, 2003; 

Sharkey et al., 2012,) place Xyeloidea, with its single small and geographically restricted fam-

ily, in the basalmost position within Hymenoptera, a placement bolstered in part by the 

group’s ancient fossil record (Goulet and Huber, 1993; Grimaldi and Engel, 2005). That said, 

Heraty et al. (2011) united Xyeloidea with Tenthredinoidea as the basal lineage of the order, 

an arrangement found in three of our nine analyses, including the EWP tree. Four of the 

nine analyses, including the preferred mILD tree, produced a basal lineage composed of 

Pamphilioidea + (Xyeloidea + Tenthredinoidea); only two of our cladograms place Xyeloidea 

alone as the basal lineage. 

Of these hypotheses, the last is the most intuitive. The remaining Hymenoptera (the so-

called Neohymenoptera; Grimaldi and Engel, 2005) share a number of putative morphological 

synapomorphies including certain details of wing venation and postspiracular mesothoracic 

sclerites, among others. Unfortunately, our analyses do little to resolve this debate, except to 

confirm a place for Xyelidae within the basal lineage; whether or not that relict family is joined 

by Tenthredinoidea and Pamphilioidea is unclear. 

The Phylogenetic Structure of Vespina 

While some authors have challenged apocritan monophyly through the unification of 

Orussoidea and Stephanoidea (reviewed in Schulmeister et al., 2002; Heraty et al., 2011), sup-

port for this clade has never been particularly strong, and in fact requires the reversal of the 

wasp waist constriction on the lineage leading to modern orussids. (The close relationship of 

Orussoidea to Apocrita, of course, has never been in doubt.)

The traditional and intuitive arrangement of Vespina (= Euhymenoptera of Grimaldi and 

Engel, 2005) is Orussoidea + (Stephanoidea + all other apocritans); this topology allows for 

a single origin of parasitoid behavior on the branch leading to Vespina, followed by a single, 

unreversed origin of the wasp waist constriction in the branch leading to Stephanoidea + the 

other apocritans. In fact, this arrangement is present here in six out of nine analyses, includ-

ing the EWP tree; only the mILD tree has the Orussoidea + Stephanoidea clade as sister to 

the rest of Apocrita. 

The Position of Aculeata within “Parasitica” 

Deciphering the precise relationships among Aculeata and the other apocritan lineages is 

probably the most challenging issue facing hymenopteran systematists. From the mostly unre-

solved tree of Königsmann (1978, in Whitfield, 1992) to the more or less resolved, but poorly 
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FIG. 3A–B. Fully resolved genus-level cladogram produced by the 2:2:1:1 (mILD) transformation cost param-
eter set, with Bremer supports.
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supported, total-evidence cladogram of Sharkey et al. (2012), a variety of aculeate sister-group 

hypotheses have been proposed including, but not limited to: 

Aculeata sister to Ichneumonoidea (= Ichneumonomorpha; Rasnitsyn, 1988; Dowton 

and Austin, 1994; Dowton et al., 1997; Sharkey, 2007; Vilhelmsen et al., 2010)

Aculeata sister to a monophyletic Parasitica (Ronquist et al., 1999; Dowton and Austin, 2001)

Aculeata sister to Evanioidea (Peters et al., 2011; Sharkey et al., 2012)

Aculeata sister to Trigonaloidea or Trigonaloidea + Megalyroidea (Heraty et al., 2011; 

Klopfstein et al., 2013)

Aculeata sister all apocritans except Stephanoidea (Vilhelmsen et al., 2010) 
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FIG. 4. Simplified 2:2:1:1 (mILD) tree with sensitivity plots for each node. Superfamily sensitivity plots are 
shown to the right of each superfamilial terminal. 
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Our trees present a wide range of possible sister groups (fig. 2), underlining the topological 

instabilities inherent in apocritan relationships, at least given the current state of taxon and 

character sampling. In our mILD tree, Aculeata is sister to Trigonaloidea + Megalyroidea, while 

the EWP tree has Aculeata sister to all other apocritans excluding Stephanoidea, Trigonaloidea, 

and Evanioidea. The important point is that these relationships demonstrate too much instabil-

ity to allow for confident statements regarding final relationships within the true wasps. 

The Deep Structure of Hymenopteran Phylogeny

Besides the monophyly of Hymenoptera itself, none of the order’s deepest and oldest rela-

tionships were unanimously supported across all parameter sets; nevertheless, two important 

clades were present in eight out of nine analyses: Unicalcarida (all Hymenoptera with the 
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UPOIDEA s. str.
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CERAPHRON-
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ICHNEUMON-
OIDEA

CYNIPOIDEA

EWP mILD

FIG. 5. Direct comparison of the 2:2:1:1 (mILD) and 1:1:1:1 (EWP) topologies (simplified to superfamilial 
level). Note the polyphyletic Ichneumonoidea in the mILD tree.
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FIG. 6. Simplified consensus of 24 trees produced by the 1:1:1:1 (EWP) cost parameter set, with sensitivity 
plots for each node. Superfamily sensitivity plots are shown to the right of each superfamilial terminal.
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exception of Xyeloidea, Tenthredinoidea, and Pamphilioidea) and Proctotrupomorpha (Platy-

gastroidea + Cynipoidea + Proctotrupoidea sensu stricto + Diaprioidea + Mymmaromatoidea 

+ Chalcidoidea). The symphytan lineages as a whole clearly form a basal grade relative to 

Apocrita, which may or may not include the orussids as sister to Stephanoidea. 
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