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Anatomy and Relationships of 

Gilmoreosaurus mongoliensis

(Dinosauria: Hadrosauroidea) from the 

Late Cretaceous of Central Asia

ALBERT PRIETO-MÁRQUEZ1 AND MARK A. NORELL2

ABSTRACT

The osteology of the hadrosauroid dinosaur Gilmoreosaurus mongoliensis is redescribed in 

detail based on the disarticulated cranial and postcranial elements of at least four individuals. 

These together constitute the lectotype and hypodigm of this species. The diagnosis is emended 

to include two autapomorphies (paddle-shaped postacetabular process that is less than 70% of 

the length of the iliac central plate and manual phalanx III-1 with greatly asymmetrical distal 

surface) and the unique combination of two iliac characters (presence of ischial tuberosity and 

supraacetabular process with apex located posterodorsal to ischial peduncle). The distinction 

of G. mongoliensis from B. johnsoni is confirmed on the basis of characters of the maxilla, denti-

tion, ilium, ischium, and pubis. Maximum parsimony analysis places G. mongoliensis as a 

closely related outgroup to the Hadrosauridae, the sister taxon to the clade composed of all 

hadrosauroids closer to Telmatosaurus transsylvanicus than to Bactrosaurus johnsoni.

INTRODUCTION

Hadrosauroids are a diverse clade of ornithopod dinosaurs, consisting of Hadrosaurus 

foulkii Leidy, 1858, and all taxa more closely related to it than to Iguanodon bernissartensis

Boulenger in Beneden, 1881 (Prieto-Márquez, 2010). These herbivores were equipped with 
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dental batteries with masticatory capability and, in the case of the most derived Late Cretaceous 

hadrosaurids, with hypertrophied nasal passages and elaborated supracranial ornamentation 

(Horner et al., 2004). The hadrosauroid fossil record is very rich and often well preserved, span-

ning the last 60 million years of the Cretaceous (Early Aptian to Late Maastrichtian) of Europe, 

Asia, the Americas, and Antarctica (Norman, 2002; You et al., 2003a; Lund and Gates, 2006).

Since the early 20th century, Asia has been the focus of numerous discoveries of hadro-

sauroid ornithopods that have filled a gap in our understanding of the early evolution of the 

clade, particularly regarding the skeletal modifications that took place from basal iguanodon-

tians to hadrosaurids (Gilmore, 1933; Rozhdestvensky, 1966; Xu et al., 2000; Wang and Xu, 

2001; You et al., 2003a, 2003b; Godefroit et al., 2005). One of the first hadrosauroids found in 

Asia, albeit one of most poorly understood, is Gilmoreosaurus mongoliensis (Gilmore, 1933; 

Brett-Surman, 1979).

The first fossil remains of Gilmoreosaurus mongoliensis were collected in 1923 by George 

Olsen during the Central Asiatic Expeditions of the American Museum of Natural History 

(Gilmore, 1933). The material consisted of disarticulated bones from various individuals from 

two quarries (AMNH localities 145 and 149) in the Upper Cretaceous Iren Dabasu Formation, 

Inner Mongolia, northern China (Godefroit et al., 1998).

The Iren Dabasu Formation (Berkey and Morris, 1922; Granger and Berkey, 1922) has 

yielded a diverse fauna that includes rays and sharks, plesiosaurs, turtles, lizards, crocodilians, 

pterosaurs, and theropod (dromaeosaurid, ornithomimid, troodontid, tyrannosaurid, therizino-

saur), sauropod, ankylosaur, and ornithopod (hadrosauroid) dinosaurs, as well as various inver-

tebrate groups (Currie and Eberth, 1993). Gilmore (1933) tentatively referred the fossils bones 

from localities 145 and 149 to the genus Mandchurosaurus (Riabinin, 1930) as the new species 

M. mongoliensis. This referral was motivated by a lack of characters distinguishing M. mongoli-

ensis from M. amurensis at a generic level. However, no formal diagnosis of M. mongoliensis was 

provided; Gilmore noted only that there were “inconsistencies” between these two species.

Considering Mandchurosaurus as a nomen dubium, Brett-Surman (1975; 1979) removed 

Gilmore’s hadrosaurid from that taxon and placed it in a new genus Gilmoreosaurus as the new 

combination G. mongoliensis. Furthermore, he provided the first diagnosis of G. mongoliensis

in his master’s thesis (Brett-Surman, 1975; see discussion below), which consisted of a combi-

nation of basal iguanodontian and hadrosaurid characters.

The taxonomic status and phylogenetic affinities of Gilmoreosaurus mongoliensis remains 

poorly understood. Originally, Gilmore (1933) recognized Bactrosaurus johnsoni, another hadro-

sauroid discovered in the same Iren Dabasu strata just about a kilometer from quarries 145 and 

149, as distinct from G. mongoliensis. Gilmore primarily based his distinction on various osteo-

logical differences between the cranial and appendicular bones of these species. Although this 

distinction has been followed by several authors (Brett-Surman, 1975, 1979, 1989; Maryanska and 

Osmolska, 1981; Weishampel and Horner, 1986, 1990; Godefroit et al., 1998; Horner et al., 2004), 

other studies have synonymized G. mongoliensis with B. johnsoni (Rozhdestvensky, 1966; 1977).

The evolutionary relationship of Gilmoreosaurus mongoliensis within the Hadrosauroidea 

has remained contentious. While many studies have positioned this species within the Hadro-

sauridae (Gilmore, 1933; Young, 1958; Steel, 1969; Rozhdestvensky, 1966, 1977; Brett-Surman, 
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1975, 1979, 1989; Maryanska and Osmolska, 1981; Weishampel and Horner, 1986, 1990; Head, 

1998; Kirkland, 1998), others have proposed a more basal phylogenetic placement as an out-

group taxon to hadrosaurids (Godefroit et al., 1998; Wagner, 2001; Prieto-Márquez et al., 2006b). 

Among those who considered G. mongoliensis a hadrosaurid, a number of authors (Gilmore, 

1933; Brett-Surman, 1979; Maryanska and Osmolska, 1981; Weishampel and Horner, 1986) 

regarded it as a member of Hadrosaurinae, whereas others consider it a basal species outside 

the major radiation composed of Lambeosaurinae and Hadrosaurinae (Weishampel and Hor-

ner, 1990; Head, 1998; Kirkland, 1998; Horner et al., 2004).

This lack of consensus on the systematic position of Gilmoreosaurus mongoliensis primarily 

stems from the poor documentation of its remains, which have received only cursory descrip-

tion (Gilmore, 1933). The inadequacy of the description has limited comparison with the 

numerous hadrosauroid taxa that have been erected and described over the last several decades. 

In turn, this shortcoming has made it difficult to interpret G. mongoliensis in the context of 

current phylogenetic analyses. Importantly, G. mongoliensis is one of the rare Asian hadro-

sauroids for which the postcranial skeleton is nearly completely preserved.

Because this taxon has been largely ignored, the cranial and postcranial anatomy of Gil-

moreosaurus mongoliensis is thoroughly described in detail. The osteological observations 

resulting from this study allow a reassessment of its taxonomic status and an emended diag-

nosis. For the first time, the evolutionary relationships of G. mongoliensis are resolved by inte-

grating this species into a phylogenetic analysis encompassing a large taxonomic sample of 

hadrosauroid taxa, which, not counting the subject of this study, includes 12 of the 15 non-

hadrosaurid hadrosauroid genera and 21 of the 28 hadrosaurid genera known as of 2009 (valid 

genera after Prieto-Marquez, 2010).

MATERIALS AND METHODS

Osteological description and character coding of Gilmoreosaurus mongoliensis was based 

on reexamination of all the material available for this species. The comparative osteological 

data and character coding for most of the hadrosauroid taxa were also obtained from direct 

observation of specimens. Exceptions were Aralosaurus tuberiferus, Jaxartosaurus aralensis, 

Eolambia caroljonesa, Penelopognathus weishampeli, Probactrosaurus gobiensis, Nanyangosaurus 

zhugeii, and Shungmiaosaurus gilmorei, the anatomical data of which had to be obtained from 

the literature.

The phylogenetic position of Gilmoreosaurus mongoliensis was inferred via parsimony anal-

ysis using the character data set of Prieto-Márquez (2010). In addition to G. mongoliensis, the 

present analysis included 40 hadrosauroid species (28 Hadrosauridae and 12 non-hadrosaurid 

Hadrosauroidea), sufficient enough to provide a wide representation of the taxonomic diversity 

of the clade. Outgroup taxa consisted of two non-hadrosauroid iguanodontoidean species, 

Iguanodon bernissartensis and Mantellisaurus atherfieldensis. The character data of Prieto-

Márquez (2010) consisted of 286 equally weighted morphological characters (196 cranial and 

90 postcranial). Characters 1, 4, 16, and 19 were ordered, following the recommendation of 

Prieto-Márquez (2010). The search for the optimal tree(s) using maximum parsimony was 
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conducted in TNT version 1.0 (Goloboff et al., 2008). A heuristic search of 10,000 replicates 

using random additional sequences was performed, followed by branch swapping by tree-

bisection-reconnection (TBR; Swofford et al., 1996) holding 10 trees per replicate. Bremer 

support (Bremer, 1988) was assessed by computing decay indices (Donoghue et al., 1992) using 

MacClade version 4.0 (Maddison and Maddison, 2003) and PAUP version 4.0b10 (Swofford, 

2002). Bootstrap proportions (Felsenstein, 1985) were also calculated using PAUP, setting the 

analysis to 5,000 replicates using heuristic searches, where each search was conducted using 

random additional sequences with branch-swapping by subtree pruning and regrafting (SPR) 

and 25 replicates.

SYSTEMATIC PALEONTOLOGY

Dinosauria Owen, 1842

Ornithischia Seeley, 1888

Ornithopoda Marsh, 1881

Iguanodontia Dollo, 1888

Hadrosauroidea Cope, 1870

Gilmoreosaurus Brett-Surman, 1979

G. mongoliensis Gilmore, 1933

Lectotype: AMNH FARB 30735, a complete right ilium.

Referred Material: AMNH FARB 30653, right maxilla; AMNH FARB 30655, left lacri-

mal; AMNH FARB 30656, right lacrimal; AMNH FARB 30657, partial right jugal; AMNH 

FARB 30658, partial right squamosal; AMNH FARB 30659, left quadrate; AMNH FARB 30660, 

partial right quadrate; AMNH FARB 30654, partial right dentary; AMNH FARB 30661, den-

tary tooth; AMNH FARB 30662 through 30669, eight maxillary tooth crowns; AMNH FARB 

30670, cervical vertebral centrum; AMNH FARB 30671–30673, three nearly complete middle-

posterior cervical vertebrae; AMNH FARB 30674 and 30675, two anterior dorsal centra; 

AMNH FARB 30676 and 30677, two anterior dorsal neural arches with diapophyses and neural 

spines; AMNH FARB 30678, 30679, and 30680, three nearly complete vertebrae; AMNH FARB 

30681 and 30682, two partial middle dorsal vertebrae; AMNH FARB 30683–30685, three par-

tial posterior dorsal vertebrae; AMNH FARB 30686, four fused sacral neural arches with neural 

spines; AMNH FARB 30687, four coossified sacral centra; AMNH FARB 30688, three coossi-

fied sacral centra with partial transverse processes and neural arches; AMNH FARB 30689 

through 30695, seven proximal caudal vertebrae; AMNH FARB 30696 through 30721, 26 distal 

caudal vertebrae; AMNH FARB 30722, 30723, and 30724, three left coracoids; AMNH FARB 

30725, left scapula; AMNH FARB 30726 and 30727, two right scapulae; AMNH FARB 30728, 

right humerus; AMNH FARB 30729, left ulna and left radius; AMNH FARB 30730, left meta-

carpal IV; AMNH FARB 30731, right metacarpal IV; AMNH FARB 30732, right manual pha-

lanx II-1; AMNH FARB 30733, right manual phalanx III-1; AMNH FARB 30734, partial left 

ilium; AMNH FARB 30735 and 30736, two right ilia; AMNH FARB 30737, preacetabular pro-

cess of left ilium; AMNH FARB 30738, partial right pubis; AMNH FARB 30739, left ischium; 
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AMNH FARB 30740, right ischium; AMNH FARB 30741, right femur; AMNH FARB 30742–

30745, four left tibiae; AMNH FARB 30746 and 30747, two right tibiae; AMNH FARB 30748 

and 30749, two left fibulae; AMNH FARB 30750 a left astragalus; AMNH FARB 30751 and 

30752, two right astragali; AMNH FARB 30753, right calcaneum; AMNH FARB 30754 and 

30755, two right metatarsals III; AMNH FARB 30756 and 30757, two right metatarsals IV;

AMNH FARB 30758, left pedal phalanx II-1; AMNH FARB 30759 and 30760, two right pedal 

phalanges II-1; AMNH FARB 30765, left pedal phalanx II-2; AMNH FARB 30761, right pedal 

phalanx III-1; AMNH FARB 30762, left pedal phalanx III-1; AMNH FARB 30763, left pedal 

phalanx IV-1; AMNH FARB 30764, right pedal phalanx IV-1; AMNH FARB 30766, right distal 

pedal phalanx from digit IV; AMNH FARB 30767, left distal pedal phalanx from digit IV; 

AMNH FARB 30768–30773, six ungual phalanges; and AMNH 6369, a nearly complete pre-

dentary (Gilmore [1933] originally listed this specimen as cotype of Gilmoreosaurus mongoli-

ensis; however, because the International Code of Zoological Nomenclature currently does not 

contemplate cotypes [International Commission on Zoological Nomenclature, 1999], this spec-

imen is here included in the hypodigm). All these bones, including the lectotype ilium, repre-

sent a minimum number of four individuals, based on the maximum number of bones from 

the same side of the most abundant element in the sample, the tibia.

Except AMNH FARB 6369, all the elements were originally cataloged as a single lot as 

AMNH FARB 6551. Current cataloguing practices do not provide for lot cataloging of separate 

individuals. Therefore, we have recataloged the individual elements as separate numbers and 

designated AMNH FARB 30735, a complete right ilium, the lectotype specimen. The only evi-

dence for association of more than one bone to a single specimen was found in the only left 

radius and ulna; these two elements match in size and articulate with each other in such a way 

that it is likely that they correspond to the same individual.

Occurrence: Approximately 14 km east of the Iren Dabasu telegraph station (Gilmore, 

1933) and 14 km northeast of the town of Erenhot, Inner Mongolia (northern China), near the 

border with Mongolia (Young, 1958; Godefroit et al., 1998). The two quarries (AMNH localities 

145 and 149) where the bones were collected are located approximately 1 km apart from one 

other (Godefroit et al., 1998) and lie in the Iren Dabasu Formation. Considerable debate has sur-

rounded the age of this formation: it has been estimated as Early Cretaceous (Berkey and Mor-

ris, 1927), Cenomanian (Rozhdestvensky, 1966; 1977), pre-Turonian (Weishampel and Horner, 

1986), pre-Santonian (Brett-Surman, 1979), Early Late Creatceous (Godefroit et al., 1998), Early 

Campanian (Jerzykiewicz and Russell, 1991; Currie and Eberth, 1993), and Maastrichtian (Chen, 

1983; Liu and Wu, 1990). More recently, Van Itterbeeck et al. (2005) restudied the stratigraphy 

and sedimentology of the Iren Dabasu Formation and concluded that it is most probably latest 

Campanian–Early Maastrichtian in age. They base this conclusion on the age provided by 

microfossils, particularly four species of charophytes and eight species of ostracods.

Emended Diagnosis: Hadrosauroid ornithopod characterized by the following autapo-

morphies and unique combination of characters: paddle-shaped postacetabular process that is 

less then 70% of the length of the iliac central plate; ilium combining the presence of ischial 

tuberosity and supraacetabular process with apex located posterodorsal to ischial peduncle; 

manual phalanx III-1 with greatly asymmetrical distal surface.
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OSTEOLOGY

Cranial Elements

Maxilla: The maxilla of Gilmoreosaurus mongoliensis (AMNH FARB 30653) is triangular 

in lateral view and dorsoventrally shallow, being three times longer than it is tall at midlength 

(fig. 1). At the anterior end of the element, the anteroventral process is missing adjacent to the 

large rostral foramen. This foramen is elliptical, opening anterolaterally and slightly dorsally 

(fig. 1A–B). Its relatively low position within the ventral half of the anterodorsal region of the 

maxilla, just posterior to the anteroventral process of the maxilla, is typical of non-hadrosaurid 

hadrosauroids such as Equijubus normani (IVPP V12534) and Jinzhousaurus yangi (IVPP 

V12691). This is in contrast with the condition in hadrosaurids, where the large rostral maxil-

lary formen occupies a much higher position within the dorsal half of the anterodorsal region 

of the maxilla (e.g., Gryposaurus notabilis, ROM 873, or Lambeosaurus lambei, CMN 351).

Medial to the rostral foramen is the anterodorsal process of the maxilla, which is present 

in all iguanodontoideans except Lambeosaurinae (Horner et al., 2004). The process is medially 

offset from the anterior body of the maxilla and projects anteroventrally, its dorsal margin 

forming a 20° angle to the tooth row (fig. 1B). The lateral surface of the process is nearly verti-

cal (showing a slight dorsal orientation) and supported the posteroventral process of the pre-

maxilla. This articular surface becomes dorsoventrally wide toward the anteroventral end of 

the maxilla. Posteriorly, this surface becomes continuous with a narrow premaxillary groove 

that extends until the lacrimal contact with the maxilla, parallel with the anterodorsal margin 

of the element (fig. 1B). The medial side of the anterodorsal process has a large longitudinal 

ridge. This ridge extends medially and slightly dorsally, and forms the medial margin of a wide 

and shallow groove (fig. 1A, C). The lateral margin of this groove is formed by the dorsal mar-

gin of the anterodorsal process. The groove represents the articular facet for the anterior end 

of the vomer. Below the medial ridge lies the anterior region of the dental parapet in the medial 

wall of the maxilla.

The anterodorsal region of the lateral surface of the maxilla is shallow, as in non-hadro-

saurid hadrosauroids such as Telmatosaurus transsylvanicus (e.g., NHM R3386). In contrast, all 

hadrosaurids except Brachylophosaurus canadensis (e.g., MOR 1071-7-6-98-79) and Maiasaura 

peeblesorum (OTM F138) show a more elevated anterodorsal region of the maxilla than their 

hadrosauroid outgroup taxa (Prieto-Márquez, 2010).

In Gilmoreosaurus mongoliensis, as in non-hadrosaurid hadrosauroids such as Bactrosau-

rus johnsoni and Telmatosaurus transsylvanicus (Prieto-Márquez and Wagner, 2009), the artic-

ular facet for the jugal perches above the ectopterygoid ridge, lying on a promontorium that 

is elevated and detached from the anterior ectopterygoid shelf (fig. 1B). On this promonto-

rium the articular surface slopes ventrally to face laterodorsally. A thick ridge limits the pos-

terior extent of the jugal’s articular facet, where the promontorium protrudes posterolaterally 

forming the apex of the jugal process (fig. 1B). A row of three peribuccal foramina lay below 

the lateral margin of the jugal process, near the anterior limit of the ectopterygoid shelf. Dor-

sal to the promontorium, on the lateral surface of the base of the dorsal process of the maxilla, 

the jugal-maxilla joint surface faces laterally and wedges anteriorly into a sharp point. This 
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FIGURE 1. Right maxilla of Gilmoreosaurus mongoliensis (AMNH FARB 30653). A, dorsal; B, lateral; 
C, medial; D, ventral. Abbreviations in appendix 2.
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suggests that the anterior end of the rostral process of the jugal was pointed. The dorsal region 

of the jugal-maxilla joint is separated by an anteroventrally directed ridge from the articular 

surface for the lacrimal. The latter facet is dorsoventrally narrow and occupies the antero-

dorsal region of the preserved lateral surface of the dorsal process of the maxilla. The dorsal 

maxillary process is low, triangular, and mediolaterally compressed. Its anterior and posterior 

margins form an angle of approximately 110°. The base of the dorsal process is centered rela-

tive to the anteroposterior length of the maxilla. The posterior margin of the process slopes 

posteroventrally in continuity with the posteromedial border of the promontorium holding 

the jugal-maxilla joint.

The posterior third of the maxilla contains the palatine and pterygoid processes medially 

and the ectopterygoid shelf and ridge laterally. Posteroventral to the jugal process, the ectopter-

ygoid ridge is proximally narrow but abruptly thickens and forms slightly more than the dorsal 

half of the depth of the lateral surface of the maxilla. The ectopterygoid shelf is mediolaterally 

wide and slopes posteroventrally to form an angle of 19° to the posterior segment of the tooth 

row. This condition is shared with the hadrosauroid Telmatosaurus transsylvanicus and the 

hadrosaurid Secernosaurus koerneri, and is in contrast with the more pronounced slopes of 

other hadrosauroids and the nearly horizontal shelves of hadrosaurids (Prieto-Márquez, 2008: 

fig. D56). In Gilmoreosaurus mongoliensis the ectopterygoid shelf accounts for 30% of the total 

length of the maxilla, as in non-hadrosaurid hadrosauroids such as Bactrosaurus johnsoni (e.g., 

AMNH FARB 6553) and Protohadros byrdi (SMU 74582).

The palatine process forms the dorsal margin of the posteromedial wall of the maxilla and 

the mediodorsal border of the ectopterygoid shelf. The process bulges smoothly from the dorsal 

profile of the maxilla, showing an anteriorly skewed medial contour. Posteroventrally, the pala-

tine process slopes gently becoming continuous with the pterygoid process. The latter lies at 

the posteromedial corner of the maxilla and projects posteriorly a short distance. Its distal end 

is incompletely preserved. This process is mediolaterally compressed and separated from the 

ectopterygoid shelf by a short cleft.

The medial surface of the maxilla is flat and bounded by the parapet of the dental battery. 

A slightly arched row of alveolar foramina is located within the dorsal half of the maxilla. There 

are a minimum of 26 alveolar positions in the maxilla, the precise number being uncertain due 

to incomplete preservation of teeth and alveoli. Of these, 22 alveoli bear teeth at different stages 

of eruption. All but one of these teeth are still unworn. There is no trace of the longitudinal 

ventral vascular furrow that is commonly present in the maxillae of other hadrosauroids (e.g., 

Bactrosaurus johnsoni, AMNH FARB 6553, or Brachylophosaurus canadensis, MOR 1071-8-

13-98-559).

Jugal: The only preserved jugal (AMNH FARB 30657) is missing the anteriormost region 

of the rostral process, the distal end of the postorbital ramus, and most of the posterior region 

above the posteroventral flange (fig. 2). The fragment is triradiate in lateral profile. The ascend-

ing postorbital ramus forms a 120° angle to the long axes of the rostral process and the pos-

teroventral region of the jugal, whereas the latter forms an angle of 130° to the long axis of the 

rostral process. The jugal is mediolaterally compressed and anteroposteriorly arched, showing 

a concave medial side in dorsal and ventral views.
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As preserved, the rostral process is sub-

rectangular in lateral and medial profiles, and 

slightly expanded dorsoventrally at its ante-

rior end. The posterodorsal margin is dorso-

ventrally shallow, in contrast to the deeper 

region seen in the Hadrosauridae (Weisham-

pel et al., 1993) and similar to the condition 

present in relatively basal hadrosauroids like 

Equijubus normani (IVPP V12534), Jinzhou-

saurus yangi (IVPP V12691), Probactrosaurus 

gobiensis (Norman, 2002), or Lophorhothon 

atopus (FMNH P27383). The lateral surface 

of the rostral process is gently concave, while 

its medial side contains the articular surface 

for the maxilla. This surface extends over the 

entire length and depth of the rostral process, 

facing medially and slightly ventrally. It is 

strongly concave posterodorsally and 

bounded by a prominent rim of bone dor-

sally, posteriorly, and posteroventrally. This 

bony rim is thick dorsally and posteriorly. 

The orientation and morphology of this ar-

ticular surface in Gilmoreosaurus mongo-

liensis is similar to that seen in 

non-hadrosaurid hadrosauroids, such as Ta-

nius sinensis (e.g., PMU R240), Protohadros 

byrdi (SMU 74582), and Bactrosaurus john-

soni (e.g., AMNH FARB 6373). The articular 

surface shows numerous faint striations that 

radiate anterodorsally, anteriorly, and an-

teroventrally from its concave posterior terminus.

The proximodorsal surface of the rostral process forms a flat shelf that is posteriorly con-

tinuous with the base of the postorbital ramus. The latter projects dorsally, while being slightly 

tilted posteriorly. Both the dorsal surface of the proximal region of the rostral process and the 

anterior surface of the postorbital ramus form the anteroventral orbital margin. The proximal 

segment of the postorbital ramus is triangular in cross section due to the presence of anterior, 

lateral, and posteromedial surfaces. Distally, the anterior surface of the ramus is incised with a 

large triangular excavation that wedges ventrally to accommodate the distal end of the jugal 

ramus of the postorbital.

The preserved ventral region of the posteroventral flange of the jugal is D-shaped in lateral 

profile. The straight anteroventral and posteroventral margins of the flange lay at an angle of 

105° from each other. Posteriorly, the flange becomes mediolaterally thinner.

A

B

2.5 cm

2.5 cm

rp

popr

popr

obm

obm
rp

pvf

pvf

arpo

armx

FIGURE 2. Right jugal of Gilmoreosaurus mongo-
liensis (AMNH FARB 30657). A, lateral; B, medial. 
Abbreviations in appendix 2.

Downloaded From: https://bioone.org/journals/American-Museum-Novitates on 05 May 2024
Terms of Use: https://bioone.org/terms-of-use



10 AMERICAN MUSEUM NOVITATES NO. 3694

Lacrimal: As is common in non-lambeosaurine hadrosauroids, the lacrimal (AMNH 

FARB 30655 and 30656) is wedge shaped in lateral view (fig. 3). This bone is mediolaterally 

compressed and contributes to the anterior margin of the orbit. The triangular rostral process 

projects anteroventrally. Its lateral surface is bounded by two medially recessed facets (fig. 3A). 

The dorsal facet is very narrow and overlapped by the ventral margin of the posteroventral 

process of the premaxilla. The ventral facet, which is overlapped by the dorsal margin of the 

rostral process of the jugal, is twice as wide as the dorsal facet and is bounded posteriorly by 

the ventral jugal. The posterodorsal region of the lacrimal shows an extensive recessed and 

smooth surface for reception of the anteroventral process of the prefrontal. The anteroventral, 

ventral, and posteroventral margins of this facet form an arcuate border, which probably mir-

rors the same contour of the anteroventral border of the prefrontal, as is typical in other had-

rosauroids (e.g., Brachylophosaurus canadensis, MOR 794). Although incompletely preserved, 

the dorsal margin of the articular recess for the prefrontal rises dorsal to the posterodorsal 

corner of the lacrimal.

The ventral jugal process forms the posteroventral region of the lacrimal (fig. 3A), where 

the element reaches its greatest mediolateral width. The process is subtriangular in lateral view. 

The ventral surface forms a subelliptical and deep excavation for reception of the posterodor-

sal corner of the rostral process of the jugal (fig. 3D). The lateral margin of the jugal process 

describes a convex ventral profile and is ventrally offset relative to the medial margin (fig. 3C).

The posterolateral orbital margin of the lacrimal is gently concave in lateral profile and is 

continuous ventrally with the ventral jugal process. The posterior orbital surface of the lacrimal 

is pierced by a mediolaterally compressed and dorsoventrally elongate foramen (fig. 3B). This 

lacrimal foramen communicates internally with the lacrimal canal, which exits through a large 

circular foramen on the ventral surface ventrally (fig. 3C). The medial circular foramen of the 

lacrimal canal is anteriorly continuous with a wedge-shaped excavation, which progressively 

shallows anteriorly until disappearing into the slightly convex medial surface of the anterior 

terminus of the lacrimal. Dorsal to the lacrimal canal, the medial surface of the prefrontal flange 

is smooth and slightly concave dorsoventrally, as the flange gently curves medially (fig. 3C).

FIGURE 3. Left lacrimal of Gilmoreosaurus mongoliensis (AMNH FARB 30655). A, lateral; B, posterior; C,
medial; D, ventral. Abbreviations in appendix 2.
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Squamosal: The central body of the squamosal (AMNH FARB 30658) is subtriangular in 

laterodorsal view and its external surface is very slightly convex (fig. 4). In contrast, its ventro-

medial surface is deeply concave and is bisected by a low and poorly defined ridge. Three major 

features project from the central body of the squamosal: the postorbital process anteriorly, the 

postcotyloid process lateroventrally, and the medial ramus. Only the proximal region of the 

postorbital process is preserved. It is mediodorsally compressed so that dorsal and ventral 

margins are nearly parallel. The dorsolateral surface contains a triangular excavation for recep-

tion of the posterior ramus of the postorbital. This articular excavation occupies the ventral 

half of the dorsolateral surface of the postorbital process, with the posteroventral apex of its 

triangular outline lying adjacent to the quadrate cotylus.

FIGURE 4. Right squamosal of Gilmoreosaurus mongoliensis (AMNH FARB 30658). A, dorsolateral; B, ven-
tromedial; C, anterior; D, posteroventral. Abbreviations in appendix 2.
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The quadrate cotylus is twice as wide as it is dorsoventrally high and it has a straight dorsal 

margin. The cotylus is bounded anteriorly by the precotyloid process and posteriorly by the 

postcotyloid process (fig. 4A). The precotyloid process is triangular and relatively short, only 

slightly longer than half the width of the quadrate cotylus. There is no precotyloid fossa (Gates 

and Sampson, 2007: fig. 7). Among non-hadrosaurid hadrosauroids the fossa is also absent in 

Bactrosaurus johnsoni (e.g., AMNH FARB 6365) and Tanius sinensis (PMU R240), being faintly 

developed in Lophorhothon atopus (FMNH P27383), and present in Equijubus normani (IVPP 

V12534) and Jinzhousaurus yangi (IVPP V12691). The distribution of this feature is also vari-

able within the Hadrosauridae, being present in most taxa except Jaxartosaurus aralensis (PIN 

1/5009), Charonosaurus jiayinensis (CUST JV1251-57) and the three species of Parasaurolophus

(e.g., ROM 768, NMMNH P-25100, and UCMP 143270).

The postcotyloid process is bullet shaped in posteroventral and anterodorsal views (fig. 

4C–D). The process is compressed along a posteroventral to anterodorsal axis. This compres-

sion is more obvious distally. Its posteroventral surface is recessed relative to the postero-

medial side of the squamosal. This recessed surface is overlapped by the proximal region of 

the paroccipital process of the exoccipital. Medial to the posteroventral surface of the post-

cotyloid process, the ventral margin of the posteromedial region of the squamosal is incom-

pletely preserved, lacking the articular facet for the supraoccipital. The posteromedial surface 

of the squamosal shows a different, more vertical orientation in contrast to the posteroventral 

face of the postcotyloid process, forming a 90° angle with the dorsolateral surface of the cen-

tral region of the bone. Only the proximalmost region of the medial ramus of the squamosal 

is preserved.

Quadrate: The quadrate (AMNH FARB 30659 and 30660) is nearly straight, showing only 

very gentle curvature along its posterior margin (fig. 5A). The articular surface of the quadrate 

head is triangular and mediolaterally compressed (fig. 5B). A well-developed squamosal but-

tress lies along the dorsal segment of the posterior margin of the quadrate, adjacent to the 

articular head (fig. 5A). The buttress is relatively long, extending only 25% of the length of the 

quadrate. This feature is typically present in basal iguanodontians and non-hadrosaurid had-

rosauroids, as well as in a few hadrosaurids such as Brachylophosaurus canadensis and Gry-

posaurus notabilis (Prieto-Márquez, 2010).

The lateral surface of the quadrate is flat and the anterior margin bears a wide quadrato-

jugal notch (fig. 5A). The center of the notch is located ventral to the midlength of the quadrate, 

as in many (but not all) hadrosauroids (Bactrosaurus johnsoni, Protohadros byrdi, Tanius sinensis, 

Lophorhothon atopus, Telmatosaurus transsylvanicus), and hadrosaurine hadrosaurids (Prieto-

Márquez, 2010). Most of the articular margin of the notch is missing, except for a narrow dor-

sal portion and an elongate ventral facet. The latter projects anterolaterally and is elliptical and 

is located on a protuberance (fig. 5A). However, the prominence of this protuberance is most 

likely an artifact of missing bone on the articular quadratojugal margin immediately dorsal to 

the facet. Although incomplete, enough of the lateral profile of the quadratojugal notch is pre-

served to demonstrate that it is asymmetrical, with a longer dorsal margin, as in Bactrosaurus 

johnsoni, Lophorhothon atopus, and a few hadrosaurids such as Prosaurolophus maximus and 

Saurolophus spp. (Prieto-Márquez, 2010).
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The jugal flange, which typically extends anteriorly above the quadratojugal notch, is not 

preserved. However, the pterygoid flange is nearly complete (fig. 5C–D), being a triangular lam-

ina that projects anteromedially from the medial margin of the quadrate. Dorsally, it originates 

near the articular head, and dorsoventrally 75% of the length of the quadrate. The ventral termi-

nus of the flange merges with the anteromedial margin of the quadrate at a level just above the 

ventral facet of the quadratojugal notch. Most of the medial surface of the pterygoid flange is 

occupied by a deep fossa, while the lateral side is dorsoventrally convex (fig. 5C). The anterome-

FIGURE 5. Left quadrate of Gilmoreosaurus mongoliensis (AMNH FARB 30659). A, lateral; B, dorsal; C,
anterior; D, medial; E, posterior; F, ventral. Abbreviations in appendix 2.
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dial margin of the pterygoid flange is thin, slightly 

thickening dorsally toward the quadrate head.

Ventrally, the quadrate is mediolaterally ex-

panded (fig. 5C) and contains two condyles, which 

form a skewed triangular distal profile (fig. 5F). 

The larger lateral condyle articulates with the 

surangular and displays an equilateral triangular 

cross section. In contrast, the medial condyle, 

which articulates with the articular one, is medio-

laterally elongate and subrectangular in cross sec-

tion. This configuration is similar to that in basal 

iguanodontians and most non-hadrosaurid had-

rosauroids except Telmatosaurus transsylvanicus

and Lophorhothon atopus (Prieto-Márquez, 2010). 

In the latter two and in the Hadrosauridae, the 

difference in size between the lateral and medial 

condyle is greater (Horner et al., 2004; Prieto-

Márquez, 2008). Likewise, in the quadrate of G.

mongoliensis the ventral offset of the lateral con-

dyle relative to the articular margin of the medial 

condyle is less developed than in the Hadrosauri-

dae, but similar to that observable in non-hadro-

saurid hadrosauroids such as Bactrosaurus 

johnsoni, Equijubus normani, or Protohadros byrdi

(Prieto-Márquez, 2010).

Predentary: The predentary (AMNH FARB 

6369) is a U-shaped mediolaterally elongate bar 

from which two long processes project postero-

laterally (fig. 6). The corners of the predentary 

describe smooth curved profiles in dorsal and 

ventral views. The maximum mediolateral width 

of the predentary is approximately equal to the 

length of the lateral processes, as in non-hadro-

saurid hadrosauroids such as Bactrosaurus john-

soni (e.g., SBDE 95E5/36, Godefroit et al., 1998) 

and Protohadros byrdi (SMU 74582), and some 

hadrosaurids (Prieto-Márquez, 2008: fig. C1). The 

anterior surface of the predentary is nearly per-

pendicular, forming an 80° angle to the dorsal 

margin of each lateral process; this condition is 

present in hadrosauroid outgroup taxa such as 

FIGURE 6. Predentary of Gilmoreosaurus mon-
goliensis (AMNH FARB 6369). A, dorsal; B,
anterior; C, ventral; D, posterior; E, right lat-
eral. Abbreviations in appendix 2.
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Iguanodon bernissartensis (e.g., IRSNB 1534) and Mantellisaurus atherfieldensis (IRSNB 1551), 

and in some non-hadrosaurid hadrosauroids such as Protohadros byrdi (SMU 74582). The 

posterior surface of the predentary of Gilmoreosaurus mongoliensis is smooth, flat, and slightly 

anteriorly inclined. It lacks a ridge on the lingual surface. A nearly vertical keellike ridge lies 

on the posteroventral process of the predentary in hadrosaurids, but is absent in Bactrosaurus 

johnsoni, Protohadros byrdi, Protohadros byrdi, and more basal iguanodontians such as Igua-

nodon bernissartensis and Mantellisaurus atherfieldensis (Prieto-Márquez, 2010). A small 

median protuberance present on the ventral margin of the posterior surface of the predentary 

of G. mongoliensis may be the remnant of a ridgeless posteroventral process.

The ventral side of the anterior predentary bar contains a large and mediolaterally elongate 

depression, which is bounded by prominent edges of the ventral borders of the anterior and 

posterior surfaces. A small foramen is present at the center of this depression. The prominence 

of the ventral edge of the anterior face of the predentary is probably all that is left of the ventral 

median process.

The predentary denticles are not limited to the anterior oral margin, but extend posteriorly 

onto the lateral processes, as in basal iguanodontians (e.g., Iguanodon sp., NHM R105) and 

non-hadrosaurid hadrosauroids such as Probactrosaurus gobiensis (Norman, 2002) and Equi-

jubus normani (IVPP V12534). All the denticles are eroded and truncated near their bases (fig. 

6A). There are seven denticles on the dorsal surface of each lateral process, plus an additional 

larger denticle at the sagittal plane of the predentary. A few denticles are elongate and appear 

to be composed of the fusion of two denticles. Although the space between two consecutive 

denticles is smaller than the diameter of the base of each denticle, it is uncertain whether the 

spacing between complete denticles would be as reduced, a condition found in most hadrosau-

rids but not in their outgroup taxa (Prieto-Márquez et al., 2006b).

Each lateral process is slightly compressed mediolaterally along its proximal region becoming 

progressively more dorsoventrally compressed and mediolaterally expanded toward its distal end 

(fig. 6E). As in Bactrosaurus johnsoni (e.g., SBDE 95E5/36, Godefroit et al., 1998) and Probactro-

saurus gobiensis (Norman, 2002), the predentary of Gilmoreosaurus mongoliensis has a shallow, 

short dentary shelf that is limited to the posterolateral region of each lateral process (fig. 6A).

Dentary: The only preserved dentary (AMNH FARB 30654) consists of most of the main 

ramus with a heavily eroded and edentulous dental battery (fig. 7). The dentary ramus is four 

times longer than it is high at midlength. Approximately 15 alveoli are present. As these alve-

oli cover most of the length of the dental battery of the specimen, it is likely that the total 

number of teeth in this taxon did not exceed 30, which is primitive for hadrosauroids (Horner 

et al., 2004).

The proximal edentulous margin of the dentary and most of the articular border for the 

predentary are eroded. However, the fact that both of these margins account for less than 25% 

of the length of the dental battery indicates that the edentulous region of the element was 

reduced (fig. 7B), as is typical of non-hadrosaurid hadrosaurids such as Shungmiaosaurus gil-

morei (You et al., 2003b), Penelopognathus weishampeli (Godefroit et al., 2005), or Bactrosaurus 

johnsoni (e.g., AMNH FARB 6553). Anteriorly, the ventral margin of the dentary gently deflects 
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ventrally, forming an angle of 10° to the horizontal dorsal margin of the medial wall of the 

dental battery. The Meckelian groove wedges anteriorly on the medial side of the ventral mar-

gin of the dentary. The medial projection of the symphyseal process is very reduced. The ratio 

between its labiolingual extension and the labiolingual width of the dentary is 1.20. As is typical 

of most non-hadrosaurid hadrosauroids (Prieto-Márquez, 2010), the mandibular symphysis of 

G. mongoliensis is oblique relative to the long axis of the dentary. This is in contrast to the 

symphysis of the Hadrosauridae, which is set practically parallel to the long axis of the den-

tary (Prieto-Márquez et al., 2006b). Likewise, the tooth row of G. mongoliensis is oriented 

anterolaterally (fig. 7A), as in non-hadrosaurid hadrosauroids such as Bactrosaurus johnsoni

(e.g., AMNH FARB 6553), Eolambia caroljonesa (Kirkland, 1998: fig. 6), Penelopognathus 

weishampeli (Godefroit et al., 2005), and Shungmiaosaurus gilmorei (You et al., 2003b), but 

unlike the condition seen in Hadrosauridae, where the tooth row is oriented parallel to the 

lateral wall of the dentary (Prieto-Márquez et al., 2006b).

FIGURE 7. Right dentary of Gilmoreosaurus mongoliensis (AMNH FARB 30654). A, dorsal; B, medial; C,
lateral. Abbreviations in appendix 2.
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The lateral surface of the dentary is dorsoventrally convex and smooth in texture, bearing 

a minimum of seven foramina scattered over the anterodorsal and anteroventral surfaces (fig. 

7C). The coronoid process and the posterior region of the dentary are not preserved. The 

posterior extent of the Meckelian canal is exposed medially at the posterior end of the speci-

men. The exposed segment of this canal is subcylindrical and extends anteriorly at middepth 

of the dentary.

Dentition: The available dentition of Gilmoreosaurus mongoliensis is composed of those 

teeth still in place in the maxilla (AMNH FARB 30653) and nine isolated tooth crowns (AMNH 

FARB 30661–30669) (fig. 8). Of the latter, only one is recognizable as a dentary tooth (AMNH 

FARB 30661; fig. 8G–H). Maxillary tooth crowns have a length/width ratio of 2.75, a measure 

obtained from the most complete of the isolated crowns (AMNH FARB 30662; fig. 8B–C). 

There is a single median ridge on the enamel covered labial surface of the maxillary teeth, and 

no sign of secondary ridges. The median ridge is straight and centered in the middle of the 

FIGURE 8. Dentition of Gilmoreosaurus mongoliensis. A, labial view of two tooth crowns from the middle of 
the dental battery of the right maxilla (AMNH FARB 30653) in figure 1. B–C, maxillary tooth crown (AMNH 
FARB 30662) in labial and marginal views. D–E, maxillary tooth crown (AMNH FARB 30663) in labial and 
marginal views, with F, a detail of marginal papillae. G–H, dentary tooth crown (AMNH FARB 30661) in 
lingual and marginal views.
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crown in all the teeth (fig. 8D). A centered ridge is also present in most maxillary teeth of 

Shungmiaosaurus gilmorei (You et al., 2003b), Lophorhothon atopus (AUMP 2295), some speci-

mens of Bactrosaurus johnsoni (e.g., AMNH FARB 6553), and the Hadrosauridae (Prieto-

Márquez, 2010). Denticles are present on the mesial and distal margins and are equal in size, 

becoming progressively larger toward the apex of the crown. Each denticle forms a ledge 

composed of a minimum of three knoblike projections. Other hadrosauroids showing similar 

denticles are Protohadros byrdi (SMU 74582) and Lophorhothon atopus (AUMP 2295), as well 

as a number of lambeosaurine hadrosaurids (Prieto-Márquez, 2010). The maxillary occlusal 

plane of G. mongoliensis probably had two functional teeth exposed at midlength along the 

dental battery. Although no occlusal plane is preserved in the maxilla, in some areas there is 

one tooth and one empty alveolus arranged mediolaterally, which, combined with the substan-

tial mediolateral breadth of the dental battery, suggests that at midlength of the dental battery 

there was more than one tooth exposed on the occlusal plane.

The dentary tooth is represented by a worn half crown (AMNH FARB 30661; fig. 8G–H). 

This tooth crown shows a single ridge that lies off center, closer to one of the margins. Only 

three minute denticles are present on a very short segment of one of the margins. As in the 

maxillary teeth, these denticles form ledges composed of at least three knoblike structures. The 

wear surface of the tooth crown is flat and subtriangular in occlusal view, forming an angle of 

60° with the lingual enameled side.

Vertebral Column

The vertebrae of Gilmoreosaurus mongoliensis (figs. 9–10) are indistinct from those of other 

hadrosauroids, which have already been described in detail (Lull and Wright, 1942; Parks, 1920; 

Godefroit et al., 1998; Prieto-Márquez, 2007). Thus, only a concise description will be provided 

here, emphasizing those few characters that are phylogenetically informative.

The cervical vertebrae of Gilmoreosaurus mongoliensis (AMNH FARB 30671–30673) have 

centra that are strongly opithocoelous, heart shaped in posterior view, and mediolaterally com-

pressed (fig. 9A–B). The neural canal is large and nearly circular. The postzygapophyseal pro-

cesses are less than three times as long as the neural arch and are consequently less posteriorly 

elongate than in the Hadrosauridae, and more like the condition in non-hadrosaurid hadrosauroids 

(Horner et al., 2004). The centra of the anterior dorsals (AMNH FARB 30674–30680) (fig. 

9C–D) are less opisthocoelous and more mediolaterally compressed than the condition in the 

cervicals. These centra have heart-shaped anterior and posterior facets. The transverse pro-

cesses are large and long, being oriented laterodorsally and posteriorly. The neural canal is still 

large in the anteriormost dorsals, but decreases in diameter posteriorly along the series. The 

neural spines are subrectangular laminae that are posteriorly tilted and become mediolaterally 

thicker at their distal ends. In the middle and posterior dorsals (AMNH FARB 30681–30685), 

the neural spines are more vertically oriented and mediolaterally thicker distally. In the most 

complete posterior dorsal vertebra (fig. 9E–F) the neural spine is slightly more than twice as 

tall as the centrum. In the middle and posterior dorsal vertebrae the centra remain heart 

shaped anteriorly and posteriorly, but become anteroposteriorly compressed, with flat anterior 
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facets and slightly opisthocoelous posterior 

surfaces. The transverse processes are later-

ally and slightly dorsally oriented. 

The first of the three preserved sacral 

fragments consists of three coossified verte-

brae from the anterior part of the sacrum 

(AMNH FARB 30688; fig. 10A–C). The cen-

tra are platycoelous, relatively elongate, and 

preserve the heart-shaped anterior profile 

seen in the dorsal series. A median longitu-

dinal ridge is present on the ventral surface 

of the centra, as in Iguanodon bernissartensis

(e.g., IRSNB 1723), Bactrosaurus johnsoni

(Godefroit et al., 1998), Claosaurus agilis

(Carpenter et al., 1995), and many other had-

rosauroids (Prieto-Márquez, 2008: table G2). 

The neural canal is relatively large and dors-

oventrally elongate. The transverse processes 

are only partially preserved in the two pos-

terior vertebrae. These processes anteroposte-

riorly expand at their lateral ends and their 

ventral surfaces merge with the neural arches 

via dorsoventrally extensive laminae. Ven-

trally, at the level of the lateral side of the 

centra, there is a fragment of the longitudinal 

bar that unites the sacrum with the medial 

surface of the ilium. The anterior two centra 

of this fragment are excluded from the bar. A 

second sacral fragment preserves four fused 

neural spines (AMNH FARB 30686; fig. 10D). 

These spines are anteroposteriorly wider than 

those of the dorsal vertebrae, and becoming 

mediolaterally thick distally. The bony lami-

nae that unite the transverse processes to the 

neural arches are, like the latter, incompletely 

preserved. A vertical ridge is exposed later-

ally marking the union of two consecutive neural arches. The third sacral fragment (AMNH 

FARB 30687) consists of four coossified centra, which are posteriorly twice as wide mediolater-

ally as the anteriormost centrum of the specimen (fig. 10E). The posterior facet of this series 

is slightly concave, whereas the anterior one is flat. A ventral sulcus is present on the posterior 

three centra (fig. 10E). Ventral sulci, like ventral ridges, are intraspecifically variable in Hadro-

sauroidea (Godefroit et al., 1998; Prieto-Márquez, 2008: table G2).

FIGURE 9. Selected axial elements of Gilmoreosau-
rus mongoliensis. A–B, cervical vertebra (AMNH 
FARB 30671) in anterior and left lateral views. C–D,
anterior dorsal vertebra (AMNH FARB 30678) in 
anterior and left lateral views. E–F, posterior dorsal 
vertebra (AMNH FARB 30683) in anterior and right 
lateral views. Abbreviations in appendix 2.
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FIGURE 10. Selected axial elements of Gilmoreosaurus mongoliensis. A–C, partial sacrum (AMNH FARB 
30688) in left lateral, posterior, and ventral views, respectively. D, neural arches and neuroapophyses of partial 
sacrum (AMNH FARB 30686) in left lateral view. E, coossified sacral centra (AMNH FARB 30687) in ventral 
view. F–G, caudal vertebra from proximal series (AMNH FARB 30689) in anterior and right lateral views. 
Abbreviations in appendix 2.
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As usual in iguanodontians, proximal caudal vertebrae (AMNH FARB 30689–30695) show 

large anteroporsteriorly compressed centra with hexagonal articular surfaces, proportionally 

small neural canals, laterally projected transverse processes, and posteriorly oriented neural 

spines (fig. 10F–G). Distally, caudal vertebrae (AMNH FARB 30696–30721) acquire progres-

sively more elongate centra and neural spines that are gradually more posteriorly oriented.

Pectoral Girdle

Coracoid: The coracoid is a mediolaterally compressed and oval bone (AMNH FARB 

30722–30724; fig. 11A–C). Posteriorly, the element is greatly expanded mediolaterally to form 

the articular facets for the scapula and the humerus (the glenoid fossa). The scapular facet is 

equilateral and triangular. The glenoid is D-shaped and lies ventral and adjacent to the scapular 

facet. These facets are approximately equal in length and their lateral margins form an angle 

greater than 115°, as in Bactrosaurus johnsoni (e.g., SBDE/95E), Lophorhothon atopus (e.g., 

AUMP 2295), and Probactrosaurus gobiensis (Norman, 2002). A large and slightly elliptical 

coracoid foramen pierces the coracoid mediolaterally near the junction of the glenoid and 

scapular facets. The anterodorsal margin of the coracoid is slightly concave (fig. 11B), as in 

B. johnsoni (Godefroit et al., 1998: pl. 10), but much less so than the typical hadrosaurid 

condition (e.g., Hypacrosaurus stebingeri, MOR 553-8-28-5-12). The anterodorsal region of the 

coracoid is mediolaterally thin and curved medially. The anterior margin of the coracoid, 

including that of the ventral process, is sinuous. As in basal iguanodontians and non-hadro-

saurid hadrosauroids (Horner et al., 2004), the ventral process is relatively short and triangular 

in lateral view, as well as directed ventrally rather than hooked posteroventrally (fig. 11A–C).

Scapula: The scapula of Gilmoreosaurus mongoliensis has a relatively straight dorsal profile 

(AMNH FARB 30725–30727; fig. 11E–G), as in non-hadrosaurid hadrosauroids except Tanius 

sinensis (Prieto-Márquez, 2010). The long axis of the scapula is gently curved anteromedially. 

The medial surface of the element is flat throughout most of its length, becoming dorsoventrally 

convex proximally. The distal blade is only moderately expanded, so that its maximum breadth 

is less than the width of the proximal region (between the ventral process of the glenoid and the 

pseudoacromion process). This condition is typical in non-hadrosaurid hadrosauroids except 

Bactrosaurus johnsoni (e.g., AMNH FARB 6553), where, as in hadrosaurids (Prieto-Márquez, 

2008: fig. H10), the distal end of the scapular blade is broader than the proximal region. The 

proximal constriction, the area of the scapula lying between the proximal region and the distal 

blade, is very narrow; its breadth is about half the width of the proximal region. The pseudo-

acromion process is slightly oriented dorsally at its anterior end, as is commonly observed in 

non-hadrosaurid hadrosauroids and in lambeosaurine hadrosaurids (Prieto-Márquez, 2010). 

The deltoid ridge is well developed and extends obliquely from the posteroventral margin of 

the pseudoacromion process to the ventral margin of the scapular blade. The coracoid facet is 

concave and subrectangular. Its lateral margin forms an angle of 125° with the dorsal segment 

of the lateral margin of the glenoid. The latter facet is also concave and twice as long as it is 

mediolaterally wide. Likewise, the glenoid facet is also dorsoventrally curved and its ventral 

end is triangular and mediolaterally expanded.
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FIGURE 11. Pectoral girdle elements of Gilmoreosaurus mongoliensis. A–C, left lateral views of 
three coracoids (AMNH FARB 30722, 30723, and 30724). D–F, lateral views of left (AMNH FARB 
30725), partial right (AMNH FARB 30726), and nearly complete right (AMNH FARB 30727) scap-
ulae. Abbreviations in appendix 2.
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Forelimb

Humerus: The humerus is proportionately short and robust (AMNH FARB 30728; fig. 

12A–B). The articular head is mediolaterally expanded and proximally offset relative to its 

proximolateral corner. The deltopectoral crest projects lateroventrally from the proximal half 

of the humerus. With a maximum width/anteroposterior diameter of the humeral shaft ratio 

of 1.67, the lateroventral extension of the deltopectoral crest is comparable to that of the non-

hadrosaurid hadrosauroids Bactrosaurus johnsoni (e.g., SBDE 95E/24) and Tanius sinensis (e.g., 

PMU R235), and several hadrosaurids, such as Edmontosaurus annectens (e.g., AMNH FARB 

5879) and Gryposaurus latidens (AMNH FARB 5465). However, the crest is relatively short 

proximodistally, with a crest length/humeral length ratio of 0.43. Deltopectoral crests that are 

shorter than half the length of the humerus are also present in basal iguanodontians, the non-

hadrosaurid hadrosaurids Bactrosaurus johnsoni, Tanius sinensis, Lophorhothon atopus, and the 

hadrosaurid Hadrosaurus foulkii (Prieto-Márquez, 2008: fig. H15). The lateral margin of the 

deltopectoral crest greatly thickens toward its ventral margin, which is relatively rounded as in 

non-hadrosaurid iguanodontians except Nanyangosaurus zhugeii (Xu et al., 2000).

The humeral shaft is elliptical in cross section and slightly compressed mediolaterally. A 

prominent median tuberosity is present on the posterior surface of the humerus one-third the 

distance from the proximal terminus (fig. 12A). The distal end of the humerus is mediolaterally 

expanded to form lateral ulnar and medial radial condyles. The ulnar condyle is wider and 

more anteroposteriorly expanded than the radial condyle. A shallow depression separates the 

two condyles on the anterior and posterior surfaces of the distal end of the humerus.

Radius: The radius is subcylindrical (AMNH FARB 30729; fig. 12C–D), with expanded 

proximal and distal ends. This bone articulates with and matches the size of the left ulna 

(AMNH FARB 30729; fig. 12E–F), so that they probably correspond to the forearm of the same 

individual. The proximal region of the radius is expanded in all directions, but slightly more 

so mediolaterally. The ventral surface is flat and triangular, with longitudinal striations. This 

triangular surface rests on the dorsal surface of the proximal ulnar surface. A long ridge extends 

distally from the apex of this proximoventral articular surface and extends to the distal end of 

the radius. The proximal surface of the radius is slightly concave and triangular. The shaft of 

the radius increases in depth more gently toward the distal end than it does proximally. The 

distal end is also triangular in cross section, but deeper dorsoventrally than it is mediolaterally 

wide. A flat surface that faces lateroventrally represents the articulation with the mediodorsally 

facing articular distal end of the ulna. The articular distal surface of the radius is triangular and 

marked with striations. It is twice as long as the proximal articular surface.

Ulna: With a length/dorsoventral width ratio slightly greater than 10, the ulna of Gil-

moreosaurus mongoliensis (AMNH FARB 30729; fig. 12E–F) is a relatively short element com-

pared with other hadrosauroid taxa (Prieto-Márquez, 2008: fig. H19). The ulna is expanded at 

its proximal and distal ends. Proximally, it is at least twice as expanded mediolaterally as it is 

dorsoventrally. The dorsal surface of the proximal third of the ulna shows a gentle depression 

for reception of the proximal radius. The lateral flange is thick and projects dorsolaterally above 

the main shaft of the ulna. The medial flange is dorsoventrally compressed but further expanded 
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FIGURE 12. Forelimb elements of Gilmoreosaurus mongoliensis. A–B, right humerus (AMNH FARB 30728) 
in posterolateral and anteromedial views. C–D, left radius (AMNH FARB 30729) in lateral and dorsal views. 
E–F, left ulna (AMNH FARB 30729) in lateral and dorsal views. G, left metacarpal IV (AMNH FARB 30730) 
in dorsal view, with its proximal articular surface shown below. H, right manual phalanx II-1 (AMNH FARB 
30732) in dorsal view, with its proximal articular surface shown below. I, right manual phalanx III-1 (AMNH 
FARB 30733) in dorsal view, with its distal articular surface shown below. Abbreviations in appendix 2.
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dorsolaterally than the lateral flange. Its medial surface is strongly concave. A shallow and short 

ridge is present on the dorsal margin of the distal region of the medial flange. The olecranon 

process is thick and dorsoventrally compressed, with a flat dorsal surface, a mediolaterally 

convex ventral side, and an elliptical proximal articular facet.

The middle and distal regions of the shaft change from being mediolaterally wider to 

become more expanded dorsoventrally near the distal end of the ulna. The latter is nearly as 

deep as the proximal end of the element. The distal fifth of the ulna has a flat articular surface 

for the radius that faces mediodorsally and shows longitudinal striations. In addition to this 

flat surface, two other dorsoventrally convex surfaces (one lateral and the other medioventral) 

complete the distal region of the ulna, which displays a subtriangular cross section.

Metacarpal IV: This manual element (AMNH FARB 30730 and 30731) is composed of 

a short shaft that is dorsoventrally compressed throughout its proximal two-thirds and medio-

laterally compressed along the distal third (fig. 12G). The proximal articular surface is trian-

gular and slightly convex. The medial and ventral surfaces of the proximal third of metacarpal 

IV show a large triangular and shallow depression. The proximoventral margin of the medial 

surface extends further medially than the proximodorsal margin. The metacarpal is dorsoven-

trally compressed at midshaft, showing a flat ventral surface and a mediolaterally convex and 

laterally sloping dorsal surface. The medial surface of the distal third of the metacarpal is 

slightly concave and terminates in a vertical mediodistal margin. The distal end is mediolater-

ally compressed, so that its distal articular surface is twice as high as it is wide. In distal view, 

the straight vertical medial margin and the convex lateral margin converge dorsally to a point, 

whereas ventrally they are separated by a mediolaterally narrow ventral border.

In Gilmoreosaurus mongoliensis metacarpal IV is proportionately short, with a ratio between 

the total length and the width of the dorsal surface at midshaft of 5.5. This value is comparable 

to that of basal iguanodontians (e.g., Iguanodon bernissartensis, IRSNB 1534 has a ratio of 4.35), 

but is substantially lower than in the Hadrosauridae (e.g., Tsintaosaurus spinorhinus, IVPP V725, 

ratio of 9; Maiasaura peeblesorum, ROM 44770, ratio of 8.7). Examples of metacarpal IV are 

rare among non-hadrosaurid hadrosauroids. Lophorhothon atopus (e.g., AUMP 2295) and 

Probactrosaurus gobiensis (Norman, 2002: fig. 24) have relatively longer metacarpal IVs, with 

length/width ratios of 7. Examination of casts of metacarpals II and III referred to Bactrosaurus 

johnsoni by Godefroit et al. (1998) (SBDE 95E sample) showed relatively short elements, with 

similar proportions than the metacarpal IV of G. mongoliensis. Since at least metacarpals III and 

IV exhibit similar proportions in the iguanodontian manus (Horner et al., 2004; Norman, 2004), 

it is likely that the length/width ratio of these elements in G. mongoliensis and B. johnsoni are 

similar, representing the shortest known metacarpals within Hadrosauroidea.

Manual Phalanges: The manus is represented by two proximal phalanges, II-1 and III-

1. As in the case of metacarpal IV, both phalanges are proportionately shorter than in at least 

some non-hadrosaurid hadrosauroids, such as Probactrosaurus gobiensis (Norman, 2002: fig. 

25–26), and the Hadrosauridae (e.g., Hypacrosaurus altispinus, AMNH FARB 5357, or 

Brachylophosaurus canadensis, MOR 794). Phalanx II-1 (AMNH FARB 30732; fig. 12H) is 

dumbbell shaped and dorsoventrally compressed. It is twice as long as it is wide across its 

broader dorsal surface. The proximal surface is slightly concave, with a crescentic laterodor-
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sal margin, a straight medial border, and a convex ventral margin. A rugose ridge extends from 

the proximal margin on the ventromedial surface of the bone. The distal surface is suboval and 

slightly concave throughout most of its area, except for a convex lateroventral corner.

Phalanx III-1 (AMNH FARB 30733; fig. 12I) is a quadrangular and proximodistally short 

bone. Its dorsal, medial, lateral, and palmar surfaces are proximodistally convex. The proximal 

articular surface is slightly convex and very asymmetric due to the much deeper lateral margin. 

This asymmetry is greater on the saddle-shaped distal surface, where its lateral portion is 

approximately 40% deeper and than the medial one (fig. 12I). The proximal and, especially, the 

distal asymmetrical configuration of phalanx III-1 are far greater than the slight asymmetric 

profiles seen in hadrosaurids (e.g., Maiasaura peeblesorum, ROM 44770, or Hypacrosaurus 

altispinus, 5357). Phalanx III-1 is also remarkable in possessing a relatively deep extensor 

groove on the ventral and, to a lesser extent, the dorsal margins of the distal surface. This con-

dition has also been reported in Bactrosaurus johnsoni (Godefroit et al., 1998).

Pelvic Girdle

Ilium: The ilium of Gilmoreosaurus mongoliensis (AMNH FARB 30734–30737) is propor-

tionately long and shallow (fig. 13). The preacetabular process is long and strongly deflected 

anteroventrally, forming an angle of 146° with a horizontal line uniting the base of the pubic 

and ischial peduncles. The proximal region of the preacetabular process is relatively deep, as 

in most hadrosauroids except Equijubus normani, Probactrosaurus gobiensis, and Claosaurus 

agilis (Prieto-Márquez, 2008: fig. I4), accounting for 60% of the total depth of the anterior 

region of the iliac central plate at the level of the pubic peduncle. The iliac plate is relatively 

shallow, being 70% as deep as it is anteroposteriorly wide. This proportion reflects a relatively 

shallow iliac plate compared to that of many hadrosauroids, where the height/width ratio is 

greater than 0.8 (Prieto-Márquez, 2010).

The dorsal margin of the ilium varies from straight to gently concave above the supraacetabu-

lar process from one specimen (AMNH FARB 30735; fig. 13B) to another (AMNH FARB 30736; 

fig. 13D). The supraacetabular process is asymmetrically V-shaped in profile and is skewed 

posteriorly in lateral view (fig. 13B, D). The process is as long anteroposteriorly as 75%–80% of 

the width of the central plate of the ilium, as in Bactrosaurus johnsoni (e.g., SBDE/95E). Its lat-

eroventral projection is moderate, reaching about 30% of the depth of the ilium. A similar 

degree of projection is only observed in Bactrosaurus johnsoni (e.g., SBDE/95E) and the lam-

beosaurine Velafrons coahuilensis (e.g., CPC uncatalogued specimen, Prieto-Márquez, unpub-

lished data); in other hadrosauroids the supraacetabular process is projected either less than 25% 

or more than half the depth of the iliac plate (Prieto-Márquez, 2010). The supraacetabular pro-

cess extends well into the proximal region of the postacetabular process, so that its ventral apex 

lays posterodorsal to the ischial peduncle, a condition typically present in basal iguanodontians 

(e.g., Iguanodon bernissartensis, IRSNB 1534) and all non-hadrosaurid hadrosauroids (Prieto-

Márquez, 2010). In contrast, in the Hadrosauridae the ventral apex of the supraacetabular 

process is located anterodorsal to the ischiac peduncle (Brett-Surman and Wagner, 2007).
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FIGURE 13. Selected pelvic elements of Gilmoreosaurus mongoliensis. A–C, right ilium (lectotype, 
AMNH FARB 30735) in dorsal, lateral, and ventral views. D–E, right ilium (AMNH FARB 30736) in 
lateral and medial views. Abbreviations in appendix 2.
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The acetabular margin is arcuate and bounded by the pubic peduncle anteriorly and the 

ischiac peduncle posteriorly. The pubic peduncle is triangular and mediolaterally expands, 

more so proximally than distally, as in Bactrosaurus johnsoni, Tanius sinensis, Eolambia carol-

jonesa, Lophorhothon atopus, and the Hadrosauridae (Horner et al., 2004). The ischiac pedun-

cle shows a well-developed posterodorsal tuberosity (fig. 13B, D). This feature is absent in 

non-hadrosaurid iguanodontians, which have a single undivided ischiac peduncle, but is 

always present in hadrosaurids (Brett-Surman, 1975; Godefroit et al., 2001). Notably, Tanius 

sinensis (PMU R242) and one specimen of Bactrosaurus johnsoni (SBDE 95E/25) are the only 

non-hadrosaurid iguanodontians that show an incipient, small posterodorsal tuberosity, and 

may represent a transitional state toward the evolution of this feature in hadrosaurids.

The postacetabular process of Gilmoreosaurus mongoliensis is unique among iguanodon-

tians in being both relatively short (less than 70% of the length of the iliac central plate) and 

paddle shaped in lateral profile (fig.13B, D). Other iguanodontians with a short postacetabular 

process have a triangular lateral profile (e.g., Mantellisaurus atherfieldensis, IRSNB 1551) or it 

is paddle shaped and more than 70% of the length of the iliac plate (e.g., Brachylophosaurus 

canadensis, MOR 794, or Parasaurolophus cyrtocristatus, FMNH P27393). G. mongoliensis has 

a brevis shelf on the ventral surface of the postacetabular process (fig. 13C). The shelf faces 

medioventrally and becomes more expanded posteriorly (fig. 13E). As in all hadrosauroids 

except Tanius sinensis (Prieto-Márquez, 2010), the medial sacral ridge is located within the 

dorsal third of the central plate. However, as in all non-hadrosaurid hadrosauroids (excluding 

Lophorhothon atopus) the sacral ridge is anteroposteriorly oriented parallel to the dorsal margin 

of the ilium (fig. 13E).

Ischium: The ischium (AMNH FARB 30739 and 30740) has an anteroposteriorly wide and 

robust iliac peduncle (fig. 14A–B). Its anterior and posterior margins are slightly convergent 

dorsally. The posterodorsal corner of the iliac peduncle is slightly recurved posteriorly, forming 

a thumb-shaped expansion that is nearly as developed as in lambeosaurine hadrosaurids (Wagner, 

2001; Brett-Surman and Wagner, 2007). This condition is typical of, although to a lesser degree, 

non-hadrosaurid iguanodontians, such as Ouranosaurus nigerensis (Taquet, 1976) or Bactrosau-

rus johnsoni (e.g., AMNH FARB 6553). The pubic peduncle is very broad anteroposteriorly and 

strongly compressed mediolaterally. Its articular surface faces anteroventrally as commonly occurs 

in lambeosaurine hadrosaurids and non-hadrosaurid hadrosauroids (Prieto-Márquez, 2008: fig. 

I45). The obturator process is strongly compressed mediolaterally and projects ventrally from 

the proximal region of the ischium. This process is subrectangular, twice as long as it is wide, 

and medially convex. The ischial shaft is moderately thick, having a midshaft diameter that is 

7% of the length of the shaft. The distal end of the shaft is ventrally expanded into the “foot-like” 

process that is so characteristic of non-saurolophine iguanodontians (Horner et al., 2004; Nor-

man, 2004). Although its ventral margin is eroded, enough is preserved to conclude that, as in 

non-hadrosaurid iguanodontians, it is less expanded ventrally than in lambeosaurines.

Pubis: The single available pubis (AMNH FARB 30738; fig. 14C–D) does not preserve the 

anterior margin and anteroventral region of the prepubic process, the shaft of the postpubic 

process, most of the ischial peduncle, and the dorsal margin of the iliac peduncle. The dorsal 
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FIGURE 14. Selected pelvic elements of Gilmoreosaurus mongoliensis. A, left ischium (AMNH FARB 30739) 
in lateral view, with articular surfaces of the iliac and pubic peduncles, and the distal process. B, right ischium 
(AMNH FARB 30740) in lateral view, with articular surfaces of the iliac peduncles and the distal process. C–D,
right pubis (AMNH FARB 30738) in posterior and lateral views, respectively. Abbreviations in appendix 2.
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margin of the prepubic process lies slightly below the level of the preserved dorsal margin of 

the iliac peduncle. Unless the missing ventral region of the prepubic blade is much more 

expanded than the dorsal region, the distal region of the prepubic process does not appear to 

be dorsoventrally deeper then the width of the acetabular margin of the pubis. The proximal 

constriction is relatively broad. Its length is similar to that of the distal blade of the prepubic 

process, as in the non-hadrosaurid hadrosauroid Lophorhothon atopus (e.g., AUMP 2295) and 

several saurolophine (sensu Prieto-Márquez, 2010) hadrosaurids (e.g., Gryposaurus latidens,

AMNH FARB 5465, or Secernosaurus koerneri, MACN RN 2).

The iliac peduncle is tetrahedral and, as preserved, relatively narrow mediolaterally. In the 

acetabular region, the lateral margin of the iliac peduncle extends ventrally forming a prominent 

ridge that merges with the proximal region of the ischiac peduncle (fig. 14D). Such a ridge is 

typically present in non-hadrosaurid iguanodontians (e.g., Bactrosaurus johnsoni, AMNH FARB 

6553, or Mantellisaurus atherfieldensis, IRSNB 1551). The proximal segment of the postpubic 

process is posteroventrally oriented forming an angle of 140° with the long axis of the prepubic 

process. The ischiac peduncle is medially offset relative to the postpubic process and its dorsal 

surface contributes to the arcuate lateral profile of the acetabular margin of the pubis.

Hind Limb

Femur: The femur is slightly curved medially (AMNH FARB 3074; fig. 15A). The medially 

projecting articular head lies proximally. The anterior trochanter is long and relatively large, 

being anteriorly offset and separated from the lateral surface of the proximal femur by a deep 

cleft. The femoral shaft is slightly compressed anteroposteriorly. The fourth trochanter extends 

along the middle third of the posterior surface of the shaft, near its medial side. It is low and 

its triangular profile is asymmetrical and distally skewed (fig. 15B). The distal region of the 

femur is mostly anteroposteriorly expanded to form the medial and lateral condyles, which are 

separated anteriorly and posteriorly by intercondylar grooves (fig. 15A, C).

Tibia: The tibia is the most abundant element in the sample of bones of Gilmoreosaurus 

mongoliensis (fig. 16) represented by six elements (AMNH FARB 30742–30747). It is a robust 

element composed of a subcylindrical shaft that is anteroposteriorly expanded proximally and 

mediolaterally expanded distally. As in other hadrosauroids (Godefroit et al., 2001), the cne-

mial crest is relatively long proximodistally, extending into the proximal third of the tibia (fig. 

16B). At the distal of the tibia, the external malleolus is greatly offset ventrally relative to the 

internal malleolus. The triangular excavation between the two malleoli, for reception of the 

anterior ascending process of the astragalus, is deep and well developed.

The much smaller juvenile tibiae of Gilmoreosaurus mongoliensis (AMNH FARB 30743–

30745) differ little from that of the larger (perhaps adult) individuals in the sample. In juveniles, 

the ventral offset of the external malleolus is less developed (fig. 16E). The distal margin of the 

cnemial crest, near the area where it merges with the anterior surface of the tibia, is less pro-

nounced and not as sharply defined as in the larger specimens (fig. 16E). Likewise, the internal 

condyle at the proximal end of the tibia is less prominent in juveniles (fig. 16G).
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FIGURE 15. Right femur of Gilmoreosaurus mongoliensis (AMNH FARB 30741). A, anterior; B, medial; C,
posterior; D, lateral. Abbreviations in appendix 2.

Fibula: The fibula (AMNH FARB 30748 and 30749) is long and slender (fig. 17A–B). The 

bone is mediolaterally compressed and anteroposteriorly expanded. The anteroposterior expan-

sion occurs very gradually toward the proximal end but abruptly at the distal end. The lateral 

surface of the fibula is anteroposteriorly convex, whereas the medial side bears a long depres-

sion along the proximal half of the shaft. The medial surface of the distal region of the fibula 

shows a flat articular surface that is oriented obliquely in relation to the proximal two-thirds 

of the fibula.

Astragalus: The saddle-shaped astragalus (AMNH FARB 30750–30752) is the largest of 

the proximal tarsals (fig. 17G–H). The extensive dorsal surface is for the most part covered 

medially by the concave articular surface for the tibia. The bone is anteroposteriorly widest 

across the medial margin. The latter becomes progressively thicker posteriorly, toward the 

posterior ascending process. This process is triangular and projects dorsomedially, contributing 

to the medially skewed posterior profile of the astragalus. Similarly, the anterior surface of the 

element contains the triangular anterior ascending process, which is deeper than the posterior 

ascending process and largely contributes to the laterally skewed anterior profile of the element. 

The astragalus is anteroposteriorly constricted at the level of the anterior ascending process. 
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FIGURE 16. Tibiae of Gilmoreosaurus mongoliensis. A–D, left tibia (AMNH FARB 30742) in anterior, lateral, 
posterior, and medial views. E–H, left juvenile tibia (AMNH FARB 30743) in anterior, lateral, posterior, and 
medial views. Abbreviations in appendix 2.
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FIGURE 17. Hind-limb elements of Gilmoreosaurus mongoliensis. A–B, left fibula (AMNH FARB 30748) in 
lateral and medial views. C–D, left metatarsal III (AMNH FARB 30754) in dorsal and medial views. E–F,
right metatarsal IV (AMNH FARB 30756) in dorsal and medial views. G–H, right astragalus (AMNH FARB 
30752) in dorsal and anterior views. I–K, right calcaneum (AMNH FARB 30753) in medial, lateral, and dorsal 
views. Abbreviations in appendix 2.
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On the lateral third of the dorsal surface of the astragalus lies the articular facet for the cal-

caneum, which is deeply concave, more so than the articular surface for the tibia. The ventral 

surface of the astragalus is anteroposteriorly convex and slightly concave mediolaterally.

Calcaneum: The quadrangular calcaneum has four different surfaces (AMNH FARB 

30753; fig. 17I–K). The lateral surface shows the outline of a quarter of a circle and is slightly 

concave. The concave proximal surface receives the distal end of the fibula and is subtrapezoi-

dal, being delimited from the tibial articular surface by a large oblique ridge. The tibial articular 

surface forms the posteromedial surface of the calcaneum and is smooth and proximodistally 

concave. Finally, the distal surface of the calcaneum is anteroposteriorly convex and forms the 

arcuate lateral profile of the element.

Metatarsal III: This element (AMNH FARB 30754 and 30755) is composed of a short 

and robust shaft that expands proximally and distally (fig. 17C–D). The proximal articular 

surface is D-shaped, with the dorsomedial corner of the “D” outline projected medially relative 

to the ventral margin. The proximal half of the medial surface of the bone shows an extensive 

but shallow triangular depression for articulation with metatarsal II. The ventral surface of 

metatarsal III bears a large and thick ridge that extends along the proximal two-thirds of the 

bone. The distal region of the shaft is dorsoventrally compressed, just proximal to the medio-

ventrally expanded distal articular end. The distal surface is dorsoventrally convex and medio-

laterally concave, and displays a subrectangular profile. The lateral and medial surfaces of the 

distal end of metatarsal III are slightly concave (particularly the medial one) and subcircular.

Metatarsal IV: This element (AMNH FARB 30756 and 30757) is relatively more slender 

than metatarsal III and, with the exception of the proximal and distal ends, its shaft is dorso-

ventrally compressed (fig. 17E–F). The long axis of the bone is deflected laterodistally. The 

proximal articular surface is concave and D-shaped, with equally wide dorsal and ventral mar-

gins. The ventral surface of the bone is slightly concave throughout its length. The medial sur-

face bears a large tuberosity just proximal to the midlength of the metatarsal. The distal end is 

nearly equally expanded dorsoventrally and mediolaterally. Its articular surface is dorsoven-

trally convex and gently concave mediolaterally (less so than in metatarsal III). The lateral and 

medial surfaces of the distal end of metatarsal IV are oval and deeply concave. The ventral 

extensor groove is wide and shallow, but slightly more pronounced than in metatarsal III.

Pedal Phalanges: Phalanges II-1 through IV-1 are robust and proximodistally short (fig. 

18A–C). These elements show triangular and concave proximal surfaces, with mediolaterally 

convex dorsomedial and dorsolateral sides, respectively. Phalanx II-1 (AMNH FARB 30758–

30760) is the deepest of the three proximalmost phalanges. Phalanx III-1 (AMNH FARB 

30761 and 30762) is dorsoventrally compressed and has a subelliptical proximal articular 

surface. In these three phalanges the distal surfaces are dorsoventrally convex but gently con-

cave mediolaterally.

Pedal phalanx II-2 (AMNH FARB 30765) is a compact bone, twice as wide mediolaterally 

as it is thick proximodistally (fig. 18D). The proximal surface is smooth and gently concave, 

with a subtriangular outline that is slightly skewed medially. The ventral margin of the proximal 

surface is further extended posteriorly relative to the dorsal margin. The restricted dorsal, lat-

eral, and medial surfaces are proximodistally and mediolaterally concave. The distal surface is 
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saddle shaped, with a very gentle ventral concavity. Two additional distal phalanges belong to 

digit IV (AMNH FARB 30766 and 30767) (fig. 18E–F). As usual in hadrosauroids (Prieto-

Márquez, 2007), these distal phalanges are at least twice as proximodistally compressed as 

phalanx II-2. Their distal and proximal surfaces are similar to those of phalanx II-2, but differ 

in being more mediolaterally concave (fig. 18E).

Unguals (AMNH FARB 30768–30773) are dorsoventrally compressed and proximodistally 

convex, with elliptical proximal surfaces. These elements are arrow shaped in dorsal and plantar 

views (fig. 18G–I), unlike the more rounded and proximodistally shortened hooflike contour 

present in the Hadrosauridae (Horner et al., 2004), but similar to the plesiomorphic morphol-

ogy seen in non-hadrosaurid iguanodontians such as Lophorhothon atopus (e.g., FMNH 

P27383) and Probactrosaurus gobiensis (Norman, 2002: fig. 33). The unguals of digits II and 

IV are slightly aymmetrical, with more developed medial and lateral flanges, and longer 

proximal regions (fig. 18G).

DISCUSSION AND CONCLUSIONS

Taxonomic Status and Diagnostic Characters

Brett-Surman (1975) diagnosed Gilmoreosaurus on the basis of a supraacetabular process 

smaller than in any other genus except Bactrosaurus; postacetabular process shorter and more 

dorsomedially deflected than in any other genus; ventrally deflected preacetabular process; 

slight curvature of the ischial shaft; large rounded knoblike process at the distal end of the 

FIGURE 18. Dorsal views of various pedal phalan-
ges of Gilmoreosaurus mongoliensis. A, left pedal 
phalanx II-1 (AMNH FARB 30758). B, left pedal 
phalanx III-1 (AMNH FARB 30762). C, right pedal 
phalanx IV-1 (AMNH FARB 30764). D, Left pedal 
phalanx II-2 (AMNH FARB 30765). E–F, right 
(AMNH FARB 30766) and left (AMNH FARB 
30767) distal pedal phalanges from digit IV. G, pedal 
ungual phalanx from digit II or IV (AMNH FARB 
30768). H–I, pedal ungual phalanges from digit III 
(AMNH FARB 30769 and 30770).
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ischium; ischial shaft thicker than in any hadrosaurine; scapula and pubis of “typical hadro-

saurine form”; clawed unguals; and maxilla of “typical hadrosaurine form” with smaller tooth 

count than other genera of the same size.

Except for the shape and relatively reduced dimensions of the postacetabular process of 

the ilium, these characters do not distinguish Gilmoreosaurus mongoliensis from other had-

rosauroids. Thus, the size of the supraacetabular process includes its anteroposterior length 

and lateroventral projection. Being as long as about 75% the length of the iliac central plate, 

the supraacetabular process of G. mongoliensis (e.g., AMNH FARB 30735) is as long as that of 

some hadrosaurids, such as Gryposaurus notabilis (e.g., ROM 764), G. latidens (e.g., AMNH 

FARB 5465), and Secernosaurus koerneri (e.g., MACN RN2). As for the lateroventral expansion, 

the supraacetabular process of G. mongoliensis is as expanded as in Bactrosaurus johnsoni

(Godefroit et al., 1998). Curved ischiac shafts are not uncommon among hadrosauroids (e.g., 

Hadrosaurus foulkii, ANSP 10005); however, the shaft of the ischium is too susceptible to post-

depositional distortion, and thus, its curvature may not be a reliable character (Prieto-Márquez 

et al., 2006a). The thickness of the ischiac shaft is not greater than in other taxa: its width/

length ratio is approximately 7%, as in non-hadrosaurid hadrosauroids Probactrosaurus gobi-

ensis and Eolambia caroljonesa, and the hadrosaurid Lambeosaurus lambei (Prieto-Márquez, 

2008: fig. I48). In addition, there are taxa with thicker shafts, such as Hypacrosaurus altispinus

(e.g., CMN 8501) and Parasaurolophus cyrtocristatus (e.g., FMNH P27393). The “typical had-

rosaurine form” of the maxilla, scapula, and pubis is an ambiguously defined character. Regard-

less, the maxilla and scapulae of G. mongoliensis show several characters (see description above) 

that are typically present in non-hadrosaurid hadrosauroids and are plesiomorphic for the 

Hadrosauridae. Although the most informative region of the pubis, the prepubic process, is 

incompletely preserved, this element also displays characters that are plesiomorphic for hadro-

saurids and are common in basal hadrosauroids (see description). Finally, the low maxillary 

tooth count, ventral knob at the distal end of the ischial shaft, and claw-shaped unguals are 

plesiomorphic characters in the context of Hadrosauroidea that are typically present in non-

hadrosaurid iguanodontians (Norman, 2004; Prieto-Márquez, 2010).

The phylogenetic analysis and osteological observations reported here support the distinc-

tion of Gilmoreosaurus mongoliensis from Bactrosaurus johnsoni. These two species differ in a 

number of important cranial and appendicular characters (table 1). Some of these have already 

been noted in previous studies, such as the position of the dorsal process of the maxilla, the 

degree of ventral deflection of the dentary, the shape of the prepubic process of the pubis, and 

dorsal profile of pedal ungual phalanges (Gilmore, 1933; Weishampel and Horner, 1986; Gode-

froit et al., 1998). According to Godefroit et al. (1998), the posterior process of the jugal of B. 

johnsoni is narrower than in G. mongoliensis. However, this process is not preserved in the lat-

ter (fig. 2). These authors also consider that preacetabular process of the ilium of B. johnsoni

is more deflected ventrally than in G. mongoliensis. However, in both taxa the process forms 

140°–146° angles with the plane containing the acetabular margin. Two other characters used 

by Godefroit et al. (1998) to distinguish B. johnsoni from G. mongoliensis were the thickness 

and distal process of the ischiac shaft, which they considered greater in the former species. 

However, the shafts of both taxa have a width/length ratio of 7%–8% (Prieto-Márquez, 2008: 
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TABLE 1. Characters distinguishing Gilmoreosaurus mongoliensis from Bactrosaurus johnsoni.

Character Gilmoreosaurus mongoliensis Bactrosaurus johnsoni

Maxilla, position of base of dorsal 
process

At midlength of maxilla Posterior to midlength of maxilla

Maxilla, orientation of ectopterygoid 
ridge

19° 25°–32°

Maxillary teeth, secondary ridges Absent Present

Dentary, ventral deflection relative to 
tooth row

10° 24°

Ilium, ischial tuberosity Present Absent

Ischium, thumblike posterodorsal 
extension of iliac peduncle

Large Small

Pubis, proximal constriction of 
prepubic process

As long as distal blade Shorter than distal blade

Pubis, distal blade of prepubic process Shallow, not deeper than width of 
acetabular margin

Deeper than width of acetabular 
margin

Pedal ungual phalanges Pointed and narrow anterior 
margin

Rounded and broad anterior 
margin

fig. I48). Comparison of the distal process of G. mongoliensis (e.g., AMNH FARB 30739) with 

that of B. johnsoni (e.g., SBDE 95E5/26) showed no substantial difference in size (considering 

also that the ventral end of the distal process of AMNH FARB 30739 is eroded).

Phylogenetic Inference

A parsimony analysis resulted in nine equally most parsimonious trees of 839 steps each 

(CI = 0.54, RI = 0.79, 34.4% missing data) found in 979 of the 10,000 replicates. Gilmoreosaurus 

mongoliensis was inferred to be a non-hadrosaurid hadrosauroid, as the sister taxon to the clade 

composed of all hadrosauroids closer to Telmatosaurus transsylvanicus than to Bactrosaurus 

johnsoni (fig. 19). This phylogenetic position of G. mongoliensis was supported by three unam-

biguous synapomorphies (hereinafter, numbers outside and inside square brackets indicate 

characters and character states, respectively, corresponding to the data set of Prieto-Márquez, 

2010): reduced medial projection of the symphyseal process of the dentary (38[0]); base of the 

maxillary dorsal process centered around the midlength of the maxilla (90[2]); and presence 

of ischial tuberosity, so that the ischial peduncle of the ilium is composed of two protrusions 

of similar size (242[2]). Additionally, Gilmoreosaurus mongoliensis showed two hadrosauroid 

unambiguous synapomorphies: ventral deflection of the dentary originating between two-

thirds and 78% of the length of the dental battery (37[1]) and ilium with a ratio between the 

dorsoventral depth of the central plate and the distance between the pubic peduncle and the 

caudodorsal prominence of the ischial peduncle of 0.8 or greater (234[0]).

Exclusion of Gilmoreosaurus mongoliensis from the Hadrosauridae resulted from lack of 

the following synapomorphies: ilium with ventralmost margin of the supraacetabular process 

located anterodorsally relative to ischial tuberosity of the ilium (235[1]); anteroposterior length 
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FIGURE 19. Strict consensus cladogram of the nine most parsimonious trees resulting from maximum 
parsimony analysis of 41 hadrosauroid species, showing the phylogenetic position of Gilmoreosaurus 
mongoliensis.
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of the supraacetabular process of the ilium being less than 55% the length of the iliac central 

plate (237[3]); absence of ridge on the lateral surface of the acetabular margin of the pubis 

(257[1]); relatively elevated lateral surface of the anterodorsal region of the maxilla (89[1]); 

medial orientation of the articular surface of the rostral process of the jugal, which is bounded 

only caudally by a rim of bone (107[1]); absent or poorly developed squamosal buttress of the 

quadrate (120[0]); angle between the scapular and glenoid facets of the coracoid up to 115° 

(207[1]); strongly concave anteromedial margin of the coracoid (208[1]); long (209[1]) and 

recurved ventral process of the coracoid (210[1]); arcuate dorsal margin of the scapula (211[1]); 

and mediolaterally broad and proximodistally shortened pedal unguals (285[1]).
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ac acetabular margin

adpr anterodorsal process

af alveolar foramina

aicg anterior intercondylar groove

alv alveoli

apr anterior process

ardt articulation surface for dentary

arex articulation facet for exoccipital

arfb articular surface for fibula

arh articular head

arj articulation margin for jugal

arlc articulation surface for lacrimal

armttII articular depression for metatarsal II

armttIII articular depression for metatarsal III

armx articulation surface for maxilla

arpdt articulation margin for predentary

arpf articulation surface for prefrontal

arpmx articulation margin for premaxilla

arpo articulation surface for postorbital

arqj articulation face for quadratojugal

arrd articular depression for radius

artb articular surface for tibia

arv articulation surface for vomer

aspr ascending process

avpr anteroventral process

bcs bicipital sulcus

bct bicipital tubercle

bs brevis shelf

cf coracoid foramen

chsf choanal shelf

cicg caudal intercondylar groove

cnc cnemial crest

cof coracoid facet

ct centrum

APPENDIX 1

Institutional Abbreviations

AMNH FARB American Museum of Natural History (Fossil Amphibian, Reptile, and Bird 

collection), New York, USA

AUMP University of Alabama Museum of Paleontology, Auburn, USA

CMN Canadian Museum of Nature, Ottawa, Canada

CPC Colección Paleontológica de Coahuila, Saltillo, Mexico

CUST Changchun University of Science and Technology, Changchun, China

FMNH The Field Museum, Chicago, USA

IRSNB Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium

IVPP Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China

MACN Museo Argentino de Ciencias Naturales “Bernardo Rivadavia,” Buenos Aires, 

Argentina

MOR Museum of the Rockies, Bozeman, USA

NHM National History Museum, London, United Kingdom

NMMNH New Mexico Museum of Natural History and Science, Albuquerque, USA

PIN Palaeontologiceski Institut, Akademii Nauk, Moscow, Russia

PMU Uppsala University, Museum of Evolution, Uppsala, Sweden

ROM Royal Ontario Museum, Toronto, Canada

SBDE Sino-Belgian Dinosaur Expedition

SMU Shuler Museum of Paleontology, Southern Methodist University, Dallas, USA

UCMP University of California Museum of Paleontology, Berkeley, USA

APPENDIX 2

Anatomical Abbreviations
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dars distal articulation surface

dnt denticles

dp dental parapet

dpc deltopectoral crest

dpr dorsal process

dsbl distal blade

dspr distal process

dtr deltoid ridge

em external malleolus

epr eptopterygoid ridge

eps eptopterygoid shelf

fh femoral head

ftr fourth trochanter

gl glenoid

glf glenoid fossa

gtr greater trochanter

icd internal condyle

icg intercondylar groove

ilpd iliac peduncle

im internal malleolus

ispd ischial peduncle

issh ischial shaft

ist ischial tuberosity

jpr jugal process

lcc lacrimal canal

lcd lateral condyle

lcf lacrimal foramen

ltf lateral flange

ltpr lateral process

ltr lesser trochanter

mcd medial condyle

Mckc Meckelian canal

Mckg Meckelian groove

mdf medial flange

mdr medial ramus

mr median primary ridge

mtb medial tuberosity

na neural arch

nc neural canal

ns neural spine

obm orbital margin

obpr obturator process

opr olecranon process

papr preacetabular process

pars proximal articulation surface

paspr posterior ascending process

pbpd pubic peduncle

pff prefrontal flange

plpr palatine process

pltpr posterolateral process

pmxg premaxillary groove

poapr postacetabular process

pocpr postcotyloid process

polpr posterolateral process

popbpr postpubic process

popr postorbital process

poz postzygapophysis

pozpr postzygapophyseal process

ppbpr prepubic process

ppl marginal papillae

prcpr precotyloid process

prz prezygapophysis

pspr pseudoacromion process

ptb posterior tuberosity

ptf pterygoid flange

ptpr pterygoid process

pvf posteroventral flange

pxcn proximal constriction

qc quadrate cotylus

qh quadrate head

qjn quadratojugal notch

rcd radial condyle

rf rostral foramen

rp rostral process

sapr supraacetabular process

sbl scapular blade

scf scapular facet

scl sacral lamina

sqb squamosal buttress

sym mandibular symphysis

symp symphyseal process

th tooth crowns

tpr transverse process

ucd ulnar condyle

vjpr ventral jugal process

vpr ventral process

vs ventral sulcus

wf wear facet
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APPENDIX 3

Character codings of 43 iguanodontian species for the 287 osteological characters. The first 286 

characters are those in Prieto-Márquez (2010). Character 287 is new and consists of the presence (1) or 

absence (0) of precotyloid fossa in the squamosal. Brackets indicate polymorphism, whereas claudators 

indicate that either one of the character states shown may be present.

Iguanodon bernissartensis

00000000000000000000000000000000001000010000100000000000011000000000000000000000000000

000000000000000100000?01001001000100000000001101000?000?000?1000000?00010000000?0001?00?

?0010?00????1010000000000101000000000000000000010000001001010000000011100000000000000001

1000000110000000001000001

Mantellisaurus atherfieldensis

00000000000000000000000000000000011100010000100000000000011000000000000000000000000001

000000000000000100000?01001000000100000000001101000?000?000?1000000?0??10000000?0101?00?

?0010?00????1011000000000100000000000000000000010000001000010000000011100000000000000000

1000000110000000001100001

Shuangmiaosaurus gilmorei

0???????????1?00211?????????????000010011000?00011?????????????????0?0?????????????0?100000100??002

10??????????????????????????????????????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????????????????????????????

Nanyangosaurus zhugeii

?????????????????????????????????????????????????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????????????????????????????????00??????

???????????1??0?11???????????????????????????????????????????1???1?1???????0??

Eolambia caroljonesa

0110300?1000010?0??01???????????001021011000?0001??00?000?0??000000000000000???00000?0?00????

???10?????00?0?01?0102?000???????0????????????00?0?0?????11?0?00???000???0?0???0??0?1???0???????????

????????0?????????????????????????????1???000001??1?0?0??0???????????111101011010?????????????

Equijubus normani

01?0000?0000??0??00000010010000?00101?010000?0????0010??0??000000000000000000010000001?001

??000000??0000000?00001010000100000000000?010???000?000?10?001??0???0???0????100?00??0010?00

????001000?00?000?00?????????????????????????????000000000000??000??0???????????????????????????????

????1

Jinzhousaurus yangi

0?????????????01?0???00?????0??000?02???10?????????0?0??0??000?0000000000000021100??0???00??01?00

???000000?0020010010??1?000000000?00102???00?200?100??????????????????102?00??001000?????1???0?

100???????????????????????????????????????????????????????????????????????????????????????????1

Penelopognathus weishampeli

00?0000?000?01??????????????????010000011000100000????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????????????????????????????????????????

?????????????????????????????????????????????????????????????????????????????????????
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Probactrosaurus gobiensis

011110020000110??0?0?00?0000010?01101101200010001??0?0?????000?00000000000000??0???000????

?0???0?00???00000?00???0????????????000??00?000??00?000?10(01)0????????0???0???0?0???0??0?1???0???

??0?100001??????0?00100000000000000011??01?11?00000000000011000100001201???11101001011000

00?????11000?

Protohadros byrdi

01?01(01)0111001111??10101000??14101012211120001001100010000??11000000000000000?0?0???01

0100101010?1011??00000?01001020100?00?00000?1?????????00?0000????????????????????0101?00??0010

?00????0???00?0????????????????????????000??????????????????????????????????????????????????????????

????????

Bactrosaurus johnsoni

011(12)10022?00110111(01)01001000101000121110120(01)01000110110101001001000000000000000?

000?0?0100101000010110000000?021000101111000000000001110001100?0000100011000111001001??1

00???0??0010?00????1010000?0?00?1?0?102000000100101010100??10?1?12001101011(01)110001000?12

001111111111102100111100?0110100

Gilmoreosaurus mongoliensis

0112????????1?01111010?0??00010?0??01001????100011????????????????????????0000?0???0?0100201000?1

11100?0?00?0??0?0?0111100????00??????????????00????????????????????????0??????00????0???????????????

0???????200000?00010101011{01}??1????1210110101201101010(01)?????0???1111111101100011100?0110000

Tanius sinensis

???????????????????????????????????????????????????????????????????????????????000?????????????????????0000

?000000101??1???0??00011?1?0?01100?000?100011110??1000001001??????????????0????0???000?1?1??2??

????????100000000100?????????12000101011111010000???????????????????????1??1????????0

Telmatosaurus transsylvanicus

01?1200?0?11110?11100???????????000000012000000110?11000100?0000000000000000???000?0?010020

10?002111??0??00?0????0001??11?????00??????00?1100?000?10??1110???100?1????1101?00??0?1???0????0

?0?0000??01???????????????????????????????????????????????????????????????????????????????0?????????

Lophorhothon atopus

???22102110??10??1101??????????????????????????????????????????????00000??00???000?0?00002????0?????

0?00?00????????0111110000000?0???20011100?00001??011???????0??0??00?0???0??0?11010?5??0??1000?1

????????001000000001?00000210??10?1?12?02102?1??000101111??1101??110121????0???10100?0110000

Amurosaurus riabinini

112221122?00111121101???????????201221112(12)10011121111111100???????????????21????00?1?001121

2012?2321??21?1101110111?????120100?1010??11{01}110101211?11021110001100?100??1?1????????0??

1?????010???101??1?????01211111?1?0100221112??1????12?123120?2??????11101101111?102111?2011???

1110??01????1

Aralosaurus tuberiferus

??????????????1??110?????????????????????????????????????0???????????0?0???????????1?000121201??2021??1

1????1??01?0??????00000?001??1?0?1??00??00?1?????????????11??????1???????????1?????0?01?0101????????

????????????????????????????????????????????????????????????????????????????????????
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Brachylophosaurus canadensis

122231122?001111211(01)120211112211312(012)(012)1112111011121111100100213110100000000001

11000?010100202111122210001111012211(01)10112110000100(01)(01)(12)11001100101100020101111

1112001111101(12)00?10??0113010?2??0101100(01)0111110111121121111(01)1?011011121111211120

1220311210001111112111111111011122110???1110010110111

Maiasaura peeblesorum

122231122?001111211??2021111221120211011211101112111110010021311010000000000111000?0101

002021111222100011110122110100121100011000(01)11100210000?100?(12)0101111111200111110110

0?00??0112011?4??01011000011111011?1211?111111?01101111111?21112012203112100011111121111

11111011122110???11100101?0111

Charonosaurus jiayinensis

1123311220??11??????????????????00?1111121100111211111??100???????????????21????00???0?????????

???????2121101010110??????2??0??101112?1210001?2121111211100??100?000??1?1????????0??1?????0

101??101??1???1????????1?11010012111???10???120123?20120000111?1?????11101?2111??0?1111111

11?01?1??0

Corythosaurus casuarius

1222211210111111211??01312111310111(12)(01)111211001112111111110011110000112101?214??100?

1?001121211212321102121101(01)101111000012010021010111121101012111011111100110001101001

(01)1?0?100120??120621010102101101111101121111111101002210121111111120123120121000111110

11011111112111120210101111110101101

Corythosaurus intermedius

1222211210111111211??01312111310111(12)(01)111211001112111111110011110000112101?214??100?

1?001121211212321102121101(01)101111000012010021010111121101012111011111100110001101001

(01)1?0?100120??1206200101021011011111?1121111111101002210121111111120123120121000111110

11011111112111120210101111110101101

Hypacrosaurus stebingeri

11232(01)011011112121???0131211131010122111211001112111111010011110000112101?214??100?1?

00112121121232110212110111011110000120100210101111211010121110111111(01)0110001101??111

?1?100120??1206110101021011?1?2?1?112111111100100221012???????120123120121000111110110111

111021111?011010111?1?0001101

Hypacrosaurus altispinus

1123211?2?01111121112?131221131?1111(12)1112?100?11211111??10011110000112203?214??100?1?00

1121211212321104121101(01)101111000012010021010011121101012111011011100010(01)01101001(0

1)1?1?100120??1206100101021011111211011211111110010022101211111111201231201211201111101

1011111102111110211101110110001101

Lambeosaurus lambei

1(12)2(23)2112101111(12)12111101(23)11011(34)1011111111211001112111111110011110000112211?

213??000?1?0011(12)1211212321102121101(01)1011110000120100110101111211010121110111111001

1010110100111?0?110120??12263001010210110111110112111111100100??1{01}1{12}111111112012312

01210001111101?011111112111120110101111110111101
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Lambeosaurus magnicristatus

1?2?21??????11(12)121111?1(23)1?01131011111??12110?111211111??10011110000112211?213??000?1?0

0112121121232?1021211010101111000012010011010111121?010121??01?111??????1?1101??111?0???01

20??12263101010210?1?11?1??11?????11100100221112111?111120123120121000111?101101111?11211

1120210101111?101??101

Edmontosaurus annectens

232131(01)222001121211?21(01)111?11411(23)100(01)0103(12)10011121111100100213111110000000

00221010?010001202111123210011001010302110112(01)101000001201110111000?0000202011110111

011121011000?10??0111100????01011001010110011112112111111?01(12)111(01)111111111211231211

210001111113101111012012122(01)00???1110010110101

Edmontosaurus regalis

23223102220011212110210111?11411(23)100(01)0103(12)1001112111110010021311111000000000221

010?0100012021111232100110010103021101120101000001201110111000?000020201111011101112101

1000?10??0111100????01011000010110011112111111111?01211111111111112012312112100011111131

01111011012121100???1110010010101

Velafrons coahuilensis

1?2221??????111?211??11212?1131??12111112110011121??????10011110000112?02?214???00?1?00112121

1212121??21211011101101100012??0??10??11???1??101??1?0111??????????1101??111???????20??12?6??01?

10?101???????????????????010??211????1????12011312012012011111????111111?211112011000??????01??101

Jaxartosaurus aralensis

????????????????????????????????????????????????????????????????????????????????00?????????????????????????

??????????????1??0??021?1120?1??101210?01?0111?0???001101????????????????1?????0??1?01?1???????????

????????????????????????????????????????????????????????????????????????????????0

Kritosaurus navajovius

1222210?2?0011212110?001??11021?00120011211001112111110?100????????000000000010010?0002012

02111?23210011101002311010112110100000011102001?000?100?101011110111001121?01?0???0??0112

010?5??010(01)010011?1???????????????????????????????????????????2??????????????????????????????????

??????????1

Gryposaurus notabilis

132121012?001111211??00200010410(12)02(12)(01)0112110011121111100100112110100000001000100

0110002013021110232101111011013110201121101000000111020111000?10002000111?0111001121001

201?30??0111010?1??01000100110110011112111110011?111(12)1(12)111111111111121121122???111?1

1411111???2011122100???1110010011101

Gryposaurus latidens

132031111000111?211?????????????21222011211001112111110010021211??0000000?000100??000020130

211102321??????1??????????????0??0?0?0????20????00?????????????????????????1?0???0??0111010?1??0?0?0??

???01?0?11112111110011?111(01)1201??1????11?121120122000111111411111?012????????0??????0??????1011

Olorotitan ararhensis

1?222112????1121211??11311111?11211111112110011121111111100111100001?2?02?2????0?0?1?00111

1211212321??41211010101111???0?20?00??????????1?????2?1??1??11????????????00?11??????120??120?1?0

10100?0??011?12?1121111111101002210?????????12012312012100011??1?????111?1?2111120110?0111??

????????
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Parasaurolophus walkeri
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Parasaurolophus cyrtocristatus

12222112100011????????????????1????????12???0?11211111??100????????10000??2????0?0?1?0????1????0??
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Prosaurolophus maximus
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Secernosaurus koerneri
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Saurolophus osborni
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Saurolophus angustirostris
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Shantungosaurus giganteus
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Pararhabdodon isonensis
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Tsintaosaurus spinorhinus
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