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Applications

in Plant Sciences
APPLICATION ARTICLE

BARCODED NS31/AML2 PRIMERS FOR SEQUENCING
OF ARBUSCULAR MYCORRHIZAL COMMUNITIES IN
ENVIRONMENTAL SAMPLES!

BeNiAMIN S. T. MoORGAN?3 AND LoUISE M. EGERTON-W ARBURTONZ3+4

2Program in Plant Biology and Conservation, Northwestern University, Sheridan Road, Evanston, Tllinois 60208 USA; and
3Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022 USA

e Premise of the study: Arbuscular mycorrhizal fungi (AMF) are globally important root symbioses that enhance plant growth and
nutrition and influence ecosystem structure and function. To better characterize levels of AMF diversity relevant to ecosystem
function, deeper sequencing depth in environmental samples is needed. In this study, Illumina barcoded primers and a bioinfor-
matics pipeline were developed and applied to study AMF diversity and community structure in environmental samples.

e Methods: Libraries of small subunit ribosomal RNA fragment amplicons were amplified from environmental DNA using a single-
step PCR reaction with barcoded NS31/AML?2 primers. Amplicons were sequenced on an Illumina MiSeq sequencer using
version 2, 2 X 250-bp paired-end chemistry, and analyzed using QIIME and RDP Classifier.

*  Results: Sequencing captured 196 to 6416 operational taxonomic units (OTUs; depending on clustering parameters) represent-
ing nine AMF genera. Regardless of clustering parameters, ~20 OTUs dominated AMF communities (78-87% reads) with the
remaining reads distributed among other OTUs. Analyses also showed significant biogeographic differences in AMF communi-
ties and that community composition could be linked to specific edaphic factors.

e Discussion: Barcoded NS31/AML2 primers and Illumina MiSeq sequencing provide a powerful approach to address AMF di-
versity and variations in fungal assemblages across host plants, ecosystems, and responses to environmental drivers including

global change.

Key words:
forest.

Arbuscular mycorrhizal fungi (AMF) are a globally impor-
tant group of fungi that form mutualistic associations with the
roots of the majority of land plants (74%; Brundrett, 2009).
These mutualisms often improve plant growth and resource ac-
quisition, and thus AMF are recognized as drivers of plant com-
munity structure and function and biogeochemical cycling (van
der Heijden et al., 1998; Eom et al., 2000). Despite their eco-
logical importance, our understanding of AMF diversity lags far
behind that of other groups of fungi (Sanders and Rodriguez,
2016), largely due to the cryptic diversity of phenotypically
similar species, late adoption of modern molecular methods,
and a study bias toward grassland ecosystems. This limits our
understanding of how AMF diversity feeds back to influence plant
species’ distribution, productivity, diversity, and community
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assembly (Davison et al., 2012; Bainerd et al., 2014), as well as
how AMF-plant interactions vary in response to abiotic drivers
such as temperature and precipitation regimes (Egerton-Warburton
et al., 2007; Camenzind et al., 2014) and edaphic stresses (e.g.,
eutrophication, metal-contaminated soils; Cabello, 1997; Bunn
et al., 2009; Hassan et al., 2011).

Recent advances in molecular genetic approaches, notably
amplicon-targeted high-throughput sequencing technologies
such as 454 pyrosequencing, have largely revolutionized the
characterization of AMF diversity, phylogeny, and biogeogra-
phy (Opik et al., 2009; Schiiiler and Walker, 2010) and have
revealed high levels of species diversity and complex relation-
ships between AMF and their host plants. For example, these
technologies have led to the identification of more than 350
well-characterized molecular taxa (Opik et al., 2010); shown
fine-scale spatial and temporal structuring of AMF communi-
ties (Lekberg et al., 2007; Dumbrell et al., 2010, 2011; Bainerd
et al., 2014), especially to edaphic constraints (Wang et al.,
2016; Wilson et al., 2016); and enabled a sweeping systematic
revision of the Glomeromycota (Schiifiler and Walker, 2010;
Redecker et al., 2013). Although these technologies specifically
target AMF species, there is a need to achieve deeper sequenc-
ing depth in environmental samples to more completely charac-
terize levels of AMF diversity that are relevant to ecosystem
function (Smith and Peay, 2014; Sanders and Rodriguez, 2016).

Applications in Plant Sciences 2017 5(8): 1700017; http://www.bioone.org/loi/apps © 2017 Morgan and Egerton-Warburton. Published by the Botanical
Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which
permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed
under the same license as the original.
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Ultra-high-throughput amplicon sequencing capacity using
the Illumina MiSeq platform far surpasses 454 technology. It
follows that the use of barcoded AMF primers that take advan-
tage of the deep sequencing capacities of the Illumina MiSeq
platform could be a promising way to address these needs
(Caporaso et al., 2010, 2011). Our objective was to adapt an
AMF-specific primer pair (NS31/AML2) with barcodes and to de-
velop and apply a broadly applicable protocol for AMF commu-
nity amplicon sequencing on the Illumina MiSeq platform. Here,
we report on these primers, detail the sequencing protocol and
bioinformatics pipeline, and demonstrate the efficacy of our ap-
proach by sequencing AMF communities in complex environ-
mental samples from tropical dry forests.

MATERIALS AND METHODS

Sampling sites and edaphic factors—Primers and protocols were tested on
environmental samples collected in two seasonally dry tropical forest sites lo-
cated in the Yucatan Peninsula, Mexico: Reserva Ecolégico El Eden (21.195°N,
87.167°W) and Rancho La Higuera (20.445°N, 87.352°W). These sites are pri-
vately operated conservation areas (>60 yr after the last disturbance). The local
landscape consists of porous Cenozoic limestone (<150 m a.s.l.) overlain by shal-
low (10-20 cm deep) soils with high organic matter content (20-39% carbon by
combustion). The plant community comprises secondary successional forests and
is dominated by a high diversity of woody tree species. The climate of the region
is warm, subhumid (mean annual temperature 26°C), and strongly seasonal with
a wet season (May—October) followed by a marked dry season (November—
April). Precipitation ranges from 1100 to 1600 mm/yr, with ~80% of the total
precipitation received during the wet season (Lopez-Martinez et al., 2013).

Single soil samples comprising mixed soil and roots (to 20 cm deep) were
collected at the drip line of mature Brosimum alicastrum Sw., Vachellia cornigera
(L.) Seigler & Ebinger, Metopium brownei (Jacq.) Urb., Ceiba pentandra (L.)
Gaertn., Bursera simaruba (L.) Sarg., and Manilkara zapota (L.) P. Royen trees
in February 2013 (dry season; N = 48). Soil samples were imported into the
United States under a U.S. Department of Agriculture (USDA) Animal and Plant
Health Inspection Service (APHIS) Permit to Receive Soil (P330-11-00358),
and all further handling and processing of these samples were conducted in the
APHIS authorized containment facility at the Chicago Botanic Garden. Samples
were stored frozen (—20°C) until analysis.

Each soil sample was extracted using a ratio of 1:10 soil : deionized water, after
which the extracts were analyzed for levels of ammonium (NH,; Weatherburn,
1967), nitrate (NOs; Doane and Horwath, 2003), phosphate (P; Baykov et al.,
1988), and pH and electrical conductivity (EC; Hach Instruments, Loveland, Colo-
rado, USA). In general, soils in La Higuera were of higher pH and contained signifi-
cantly higher levels of P and NH, than those at El Eden (Appendix 1). These
differences resulted in a significantly higher soil N : P supply ratio in La Higuera.

TaBLE 1.
this study and their estimated melting temperatures.
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Genomic DNA extraction and amplicon library generation—Genomic
DNA was extracted from each sample using 0.25 g soil/plant material with the
PowerSoil DNA Isolation kit (QIAGEN-MO BIO, Carlsbad, California, USA),
following manufacturer’s protocols.

Libraries of small subunit ribosomal RNA (hereafter referred to as 18S) frag-
ment amplicons were prepared for each sample with a single-step PCR reaction
using primers NS31 (Simon et al., 1992) and AML2 (Lee et al., 2008) that we
modified for use with Illumina sequencing platforms following the protocol of
Caporaso et al. (2011). These modifications include the addition to both primers
of technical adapter sequences for annealing to Illumina flow cells, a standard
“pad” sequence, and a novel two-base linker sequence (Table 1); the pad sequence
and the two-base linker sequence were both designed to reduce secondary struc-
ture formation. Reverse primer constructs were also modified to include a 12-base
Golay error-correcting barcode (or index) to enable demultiplexing during data
processing (Appendix 2). Primer Prospector (Walters et al., 2011) was used with
the MaarjAM database of AMF 18S sequences (Opik et al., 2010) to optimize
linker sequences and to test for secondary structure formation in all barcoded
primer constructs. Complete sequences of primer constructs NS31f-il and
AML2r-il and of all barcodes checked for secondary structure formation are
provided in Table 1 and Appendix 2, respectively.

For each sample, PCR was carried out using 10 puL of SPRIME HotMasterMix,
0.5 uL of NS31f-il, 13 uL of molecular biology—grade water (Fisher Scientific Bio-
Reagents, Fair Lawn, New Jersey, USA), 0.5 UL of uniquely barcoded AML2r-il,
and 1 pL of genomic DNA extract. The PCR reaction was run using the following
thermal cycler program: initial denaturation for 3 min at 94°C; followed by 35
cycles of 45 s at 94°C (denaturation), 60 s at 63.1°C (annealing), and 90 s at 72°C
(extension); followed by a final extension step of 10 min at 72°C. PCR reactions
were carried out in triplicate for each sample and pooled prior to final sequencing
library preparation. The final sequencing library and sequencing reactions were per-
formed at Argonne National Laboratories (Lemont, Illinois, USA). All individual
sample amplicon libraries were quantified fluorometrically with a Quant-iT Pico-
Green dsDNA assay (Invitrogen Molecular Probes, Eugene, Oregon, USA). An
equimolar sequencing library was produced, cleaned using a MO BIO UltraClean
PCR Clean-up kit (QTAGEN-MO BIO), and sequenced on an Illumina MiSeq using
version 2, 2 X 250-bp paired-end chemistry (Illumina, San Diego, California, USA).

Data processing and bioinformatics—Sequence read processing and bio-
informatic analyses (Appendix 3) were performed using QIIME version 1.9.1
(Caporaso et al., 2010), BLAST (Altschul et al., 1990), and the vegan package
(Oksanen et al., 2015) in the R statistical environment (R Core Team, 2014).
Sequence reads were included in the analyses only if the index read matched a
barcode sequence used in this study with two or fewer errors.

During data processing, we found that a large proportion of sequenced ampli-
cons were too long to allow for overlap with the Illumina MiSeq version 2, 2 X
250-bp sequencing technology, and thus could not be aligned and assembled
(Appendix 4). The average amplicon length was ~530 bp based on alignment of
paired forward and reverse reads to full-length amplicon regions in the MaarjAM
Virtual Taxon (VT) database of 348 well-resolved AMF species-level sequence
clusters (http://maarjam.botany.ut.ee). Instead, we conducted all downstream

Individual components and complete sequences of Illumina MiSeq-compatible custom sequencing primers used to sequence amplicon libraries in

PCR direction and primers Primer sequences (5'-3") T, (°C)
Forward
5’ Illumina adapter P5 AATGATACGGCGACCACCGAGATCTACAC —
Forward primer pad TATGGTAATT —
Forward primer linker CT —
Forward primer (NS31) TTGGAGGGCAAGTCTGGTGCC —
Complete forward primer construct AATGATACGGCGACCACCGAGATCTACACTATGGTAATTCTTTGGAGGGCAAGTCTGGTGCC 70.6
(NS31£_il)
Reverse
Reverse complement of 3" Illumina CAAGCAGAAGACGGCATACGAGAT —
adapter P7
Golay barcode (see Appendix 2) ):9:0:0:0:0:0:0:0:0:0.0: —
Reverse primer pad AGTCAGTCAG —
Reverse primer linker AC —
Reverse primer (AML2) GAACCCAAACACTTTGGTTTCC —
Complete reverse primer construct CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXXXAGTCAGTCAGACGAACCCAAACACTTTGGTTTCC 69.8-71.3
(AML2r-il)
Note: T, = melting temperature.
http://www.bioone.org/loi/apps 20of 17
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TasLe 2.  Total number of operational taxonomic units (OTUs) clustered at
three similarity thresholds showing the number of OTUs retained after
each filtering step during data processing, and used in each of the nine
analyzed data sets.

Clustering threshold

Factor 90% 95% 97%

Total OTUs 5975 46,066 102,255
Passed BLAST vs MaarjAM 399 2857 7288
Passed UCHIME 395 2836 7279
Passed BLAST vs NCBI nt 385 2795 7255
No. OTUs in all OTUs data set 365 2524 6416
No. OTUs in >2-ton data set 276 1250 2213
No. OTUs in 210-ton data set 196 374 407

Note: NCBI nt = National Center for Biotechnology Information non-
redundant nucleotide database; OTU = operational taxonomic unit.

analyses using only the 250-bp forward reads based on evidence provided by
Davison et al. (2012). More specifically, Davison et al. (2012) found that artifi-
cially truncating NS31/AML2 reads from 400 to 170 bp resulted in a near identi-
cal capacity to capture AMF diversity because the majority of taxonomically
informative characters occurred in the 5’-most 170 bases.

Raw reads were demultiplexed and quality filtered with default parameters
and a quality threshold of 20. Sequencing reads were truncated after four con-
secutive base calls with quality scores less than 20 (99% confidence interval).
Truncated reads that were less than 75% of their original length were removed
from further analyses. Because input reads were 250 bp, the resulting data set
contained reads with a minimum 187 bp.

Morgan and Egerton-Warburton—Arbuscular mycorrhizal barcoded primers

Operational taxonomic units (OTUs) were clustered using reads from all 48
AMF community libraries using an open reference strategy and the MaarjAM
VT database. We clustered OTUs at 97% similarity, which is conventionally
used as a species-level threshold, and also at 95% and 90% similarities, as nu-
merous reports have documented intraspecific, and even intraindividual, varia-
tion in AMF ribosomal DNA that exceeds the 3% dissimilarity threshold (e.g.,
Clapp et al., 1999; Rodriguez et al., 2004).

Probable artifacts and sequences from nontarget taxa were excluded by
BLAST against the complete MaarjAM database of 5934 AMF 18S sequences.
OTUs were excluded if they did not hit a MaarjAM database sequence with an
E-value below 10" and alignment of at least 90% of the read length with se-
quence identity equal to or greater than the OTU clustering similarity threshold
(e.g., 90% sequence identity for 90% OTUs). We also used a second BLAST
search against a database of primer constructs to screen for OTUs that may have
incorporated any sequence originating from the primer (E-value threshold of
1019; identity threshold of 50%), but no further OTUs were removed in this
step. Chimeric OTUs were identified using the USearch v6 implementation of
UCHIME (Edgar et al., 2011) with default parameters and a database of all 5934
sequences from the MaarjAM database and their reverse complements. Any
OTU with a UCHIME score greater than 1 was removed from further analyses.
Finally, all OTU-type sequences were BLASTed against the National Center for
Biotechnology Information (NCBI) nonredundant nucleotide database, and any
OTU with a best hit that was not identified as an AMF in the GenBank record
was removed from further analyses. Taxonomy was assigned to remaining
OTUs using the QIIME implementation of RDP Classifier (Wang et al., 2007)
retrained using the complete MaarjAM database, and with a minimum confi-
dence threshold of 0.8. Finally, to reduce sampling imbalance between sites,
samples with fewer than 1000 reads remaining after all quality-filtering steps
were removed. This approach resulted in a total of 33 samples, representing 14
samples from El Eden and 19 samples from La Higuera.
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Fig. 1.
El Eden (red) and La Higuera (blue); Venn diagrams illustrating the number of 90% similar (D), 95% similar (E), and 97% similar (F) OTUs unique to
El Eden (EE) or La Higuera (LH), or present at both sites. Data are shown for the most inclusive, all OTUs data sets.
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For each collection of OTUs (El Eden, La Higuera), we explored the effects
of rare taxa on patterns of diversity by conducting three separate sets of analyses
at both sites that included all OTUs, excluded singletons, or excluded all OTUs
with fewer than 10 constituent sequences to capture only core diversity (Smith
and Peay, 2014). The removal of rare OTUs did not result in read numbers fall-
ing below the 1000-reads/sample threshold. Table 2 demonstrates the number of
OTUs retained in each clustering threshold following the quality-filtering steps.

We used QIIME to generate Bray—Curtis dissimilarity matrices for each data
set using rarefied data (1000 reads/sample) and tested for significant differences
in AMF community structure between sites and in relation to soil chemical vari-
ables (log-transformed except pH) using principal coordinates analysis (PCoA)
and PERMANOVA tests with the capscale and ADONIS functions in the vegan
R package. Next, we tested whether there were significant differences in AMF
community dispersion among sites using the betadisper function in vegan. We
used QIIME to generate Chao;, Shannon—Wiener, and Simpson (1-D) alpha di-
versity metrics for each sample (not rarefied). Differences in OTU richness and
diversity and soil chemical variables between sites were analyzed using ANOVA
and Tukey’s honest significant difference posthoc tests in R. Finally, we used the
vegdist function in vegan to generate a Euclidean distance matrix based on soil
chemical variables (NO3;, NH,, P, N: P supply ratio, EC, pH), and used a Mantel
test with Pearson and Spearman coefficients to test for correlation between the
soil chemical and the AMF community matrices.

RESULTS

The 5,977,389 quality-filtered, demultiplexed sequence reads
used in this study have been uploaded to the NCBI Sequence Read
Archive, and are associated with BioProject PRINA329250.

General primer performance—After quality filtering and
exclusion of reads belonging to artifacts, nontarget taxa, and rare
OTUs (if any), each of the nine data sets contained a total num-
ber of reads ranging from 2,325,440 (97%, =10-ton set) to
2,776,849 (90%, all OTUs set). Mean reads per sample ranged
from 70,468 + 116,616 (mean * SD) to 84,146 + 133,491, while
the median number of reads for samples in a data set ranged
from 22,932 to 28,368. Alpha rarefaction indicated that ~20,000
to >60,000 reads per sample may be necessary to adequately
sample these AMF communities, with more reads required at
higher similarity thresholds (Fig. 1A—C). This was particularly
notable in the El Eden data sets (Fig. 2) and in more rare-OTU-
inclusive data (Appendix S1).

AMF species identification—The total number of OTUs in-
creased markedly with increasing clustering similarity threshold
and rare OTU inclusivity in both sites (Fig. ID-F), and ranged
from 196 (90% similar >10-ton OTUs) to 6416 (97% similar all
OTUs; Table 2).

RDP Classifier assigned 91.5% (90% similarity), 99.2% (95%
similarity), and 99.8% (97% similarity) of OTUs to genus-level
or species-level accessions in the VT database with at least 80%
confidence. Overall, these OTUs accounted for >99.5% of the
sequencing reads in each data set.

AMF communities were characterized by a small group of
highly abundant AMF species and numerous rare species. In each
clustering threshold, AMF communities were dominated by 23-25
OTUs that, in total, represented ~78—87% of reads. The remaining
reads were distributed among the numerous subordinate (rare)
OTUs (Appendix S2). This pattern is consistent with the lognormal
model distribution of AMF species noted in previous studies
(Dumbrell et al., 2010) and suggests that a large number of special-
ist and/or narrowly endemic AMF fungi occurred in these forests.

Nine genus-level assignments were made to OTUs and were
consistent with well-characterized AMF genera from community

http://www.bioone.org/loi/apps

Downloaded From: https://bioone.org/journals/Applications-in-Plant-Sciences on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use

Morgan and Egerton-Warburton—Arbuscular mycorrhizal barcoded primers

—— EE97%
8] —— EE95% T
m -
—— EE 90%
g | —— LH97%
o | —— LH95% //
= . LH 90%
O 21
o
j=
] T |
L o
O &7
- ___%_‘__
E— . A X ok

0 10,000 20,000 30,000 40,000 50,000 60,000
Sequences per sample

Fig. 2. Averaged alpha rarefaction curves of observed operational taxo-
nomic unit (OTU) richness at 90%, 95%, and 97% similarity clustering
thresholds in El Eden (EE) and La Higuera (LH). Vertical bars represent
the standard deviation of the mean.

studies (Redecker et al., 2013). As in other studies of AMF com-
munities (Eom et al., 2000; Egerton-Warburton et al., 2007),
Glomus sensu lato (s.1.) (taxa formerly classed as Glomus Group A)
dominated the AMF community and accounted for 76-97% of
OTUs and >90% of all sequence reads in every data set (Table 3;
Fig. 3; Appendix S3).

RDP Classifier assigned 2-8% of OTUs in each clustering
threshold to a species-level VT. The majority of species-level
assignments were to Glomus VT; this genus comprised 54%,
70%, and 94% of AMF communities in 90%, 95%, and 97%
clustering thresholds, respectively. In each clustering threshold,
at least one species-level assignment was made in each genus
except Gigaspora (Table 3). Complete RDP Classifier assign-
ments for all OTUs at each clustering similarity threshold are
provided in Appendices S4, S5, and S6.

AMF community diversity, structure, and composition—Our
analyses revealed strong positive effects of both increasing
OTU clustering similarity threshold and increasing rare OTU

TasLe 3. Number of operational taxonomic units assigned to each of nine
arbuscular mycorrhizal fungal genera using three clustering similarity
thresholds.

Clustering threshold

Genus 90% 95% 97%

Glomus Tul. & C. Tul. s.1. 277 2392 6229

Diversispora C. Walker & A. SchiifSler 20 71 66

Claroideoglomus C. Walker & A. Schiifller 13 1 2

Paraglomus J. B. Morton & D. Redecker 10 19 15

Acaulospora Gerd. & Trappe 6 2 4

Scutellospora C. Walker & F. E. Sanders 4 14 79

Ambispora C. Walker, Vestberg & A. Schiifiler 1 2 1

Archaeospora J. B. Morton & D. Redecker 2 3 2

Gigaspora Gerd. & Trappe 1 1 2

Genus could not be assigned 31 19 16
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inclusivity on observed and estimated taxonomic richness
(Tables 2, 4). Specifically, increasing the OTU clustering simi-
larity threshold significantly inflated the observed OTU rich-
ness owing to the clustering of rare OTUs (singletons, <10 tons)
in the most read-rich samples in El Eden (Table 4; Appendices
S7, S8, and S9). Even so, there were consistent patterns of OTU
richness and diversity across all data sets. For example, OTU
richness (observed, Chao, estimates) was significantly higher in
El Eden than La Higuera (P < 0.02) while Shannon—Wiener and
Simpson index values did not differ significantly between sites
(Table 4). In addition, OTU richness was negatively correlated
with soil pH (P < 0.020) and NH, levels (P < 0.028) in all data
sets.
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AMF community composition was also impacted by OTU
clustering threshold and rare OTU inclusivity. However, some
consistent trends were apparent. For example, AMF communi-
ties were dominated by species of Glomus s.1., and those in La
Higuera contained a greater abundance and diversity of Diver-
sispora species and lower levels of Claroideoglomus than El
Eden (Fig. 3). Removing the rare OTUs from analyses increased
the similarity in AMF community composition between sites
with respect to the proportion of OTUs assigned to each genus
(Fig. 3A, B; Appendix S3) but had little effect on read abundances
(Fig. 3C, D). These results support the presence of site-specific
AMF taxa and suggest that the primary difference in proportion of
OTUs assigned to each genus among sites was due to relatively
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TasLe4. Observed operational taxonomic unit (OTU) richness per individual sample and site, number of OTUs unique to each site, and indices of diversity
(Chaoy, Simpson, Shannon—Wiener) for arbuscular mycorrhizal fungal communities at both study sites. Values represent the site mean with standard
deviation in parentheses; El Eden, N = 14 samples; La Higuera, N = 19 samples.

No. of OTUs* Diversity indices*
Clustering threshold OTUs Site Per sample Total Unique Chao, Simpson Shannon—Wiener
90% All El Eden 120 (12) 331 126 160 (15) 0.79 (0.050)2 3.24 (0.25)2
La Higuera 79 (15)° 239 34 100 (20)° 0.68 (0.066)" 2.74 (0.33)*
>2 ton El Eden 116 (11) 267 62 144 (13) 0.79 (0.050)2 3.24 (0.25)
La Higuera 78 (15)° 214 9 96 (17)° 0.68 (0.066)" 2.74 (0.33)?
210 ton El Eden 106 (10) 194 19 126 (10) 0.79 (0.050)2 3.24 (0.25)2
La Higuera 75 (13)° 177 2 91 (14)° 0.68 (0.066)" 2.74 (0.33)*
95% All El Eden 337 (44)? 2197 1716 718 (94) 0.84 (0.032)2 3.76 (0.22)?
La Higuera 122 (49)° 808 327 204 (123)° 0.83 (0.042)? 3.44 (0.29)*
=2 ton El Eden 264 (31)* 1178 697 409 (42) 0.84 (0.032)* 3.75(0.22)
La Higuera 109 (41)° 553 72 154 (55)° 0.83 (0.042)? 3.44 (0.29)*
210 ton El Eden 121 (14)2 371 89 186 (15)2 0.84 (0.032)? 3.73 (0.22)
La Higuera 90 (18)° 285 3 113 (20)° 0.83 (0.042)? 3.43 (0.29)°
97% All El Eden 617 (103)? 5871 5416 1845 (329)* 0.79 (0.046)* 3.48 (0.26)
La Higuera 108 (135)° 1000 545 258 (434)° 0.82 (0.060)" 3.23 (0.34)
=2 ton El Eden 349 (50)2 2219 1674 533 (71) 0.79 (0.046)* 3.45 (0.26)
La Higuera 84 (66)° 539 84 132 (94)° 0.82 (0.060)2 3.22 (0.34)
=10 ton El Eden 130 (13)2 402 164 160 (15)? 0.79 (0.046)* 3.41 (0.26)*
La Higuera 65 (18)° 243 5 88 (20)° 0.82 (0.060)" 3.21 (0.34)

*For each clustering threshold and OTU inclusivity level, means within each column with the same letter do not differ significantly at P < 0.05 (Tukey’s
HSD test).

large numbers of rare taxa (i.e., rare Diversispora OTUs at La across clustering thresholds (Appendix S10). Comparisons between
Higuera), while differences in read abundance assigned to gen- PCoA ordinations for environmental variables (Euclidean dis-
era between sites were due to a few highly abundant OTUs. tance; Fig. 6A) and OTUs at all clustering thresholds and inclu-

These results were further supported by significant differences sivity levels (Bray—Curtis distance; 90% similar, >2-ton data
in AMF community structure (P < 0.0047, PERMANOVA; shown in Fig. 6B) support a highly significant correlation between
Fig. 4), but no significant difference in dispersion between AMF community composition and soil properties using either
sites (P > 0.28 for all data sets, PERMDISP2). AMF commu- Pearson or Spearman coefficients (Mantel test: P <0.004, R? > 0.20).
nity structure was significantly influenced by pH (P < 0.0035, Data sets using the three OTU clustering similarity thresholds
PERMANOVA) and NH, (P < 0.0062, PERMANOVA; Fig. 4) also showed that AMF community structure was responsive
because OTU richness was negatively influenced by increasing to soil P levels (Appendix S10). Negative relationships be-
soil pH or NH, level (Fig. 5). These patterns were consistent ~ tween taxonomic richness and soil P levels were only supported
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Fig. 4. Principal coordinates analysis (PCoA) ordination plots of arbuscular mycorrhizal fungal (AMF) communities sampled at El Eden (EE, red cir-
cles) and La Higuera (LH, blue triangles) using Bray—Curtis dissimilarities based on all operational taxonomic units (OTUs) clustered at 90% (A), 95% (B),
and 97% (C) similarity thresholds. Percentage values on the axes represent the variation in AMF community dissimilarity explained by each axis. Ellipses
represent the central tendency of communities at each site. Vectors denote the magnitude and direction of statistically significant effects of soil properties on
AMF community dissimilarity.
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(P<0.05, ANOVA) in 95% and 97% similar data sets, while AMF
community structure responses to soil P were only supported in
90% and 97% similar data sets (P < 0.030, PERMANOVA). Rare
OTU inclusivity had little effect on these patterns.

DISCUSSION

The overarching goal of our study was to determine whether
AMF diversity and variations in AMF communities could be
adequately captured on the Illumina MiSeq platform, and to de-
termine its potential utility in large-scale surveys of AMF com-
munities. To address this goal, we modified existing 18S primers
for barcoding, applied robust protocols with which to undertake
18S amplicon analysis on the Illumina MiSeq platform, and de-
veloped bioinformatics pipelines for data processing.

Our results clearly demonstrate that the application of barcoded
NS31/AML2 primers improves the level of resolution in AMF
species identification, diversity, and community composition in
complex environmental samples. This primer pair effectively
amplified a wide diversity of AMF genera and species, and did
not appear to exclude taxa that have been omitted previously due
to primer bias (e.g., Archaeosporaceae and Paraglomeraceae;
Lee et al., 2008). Along with the deeper sequence coverage pro-
vide by the Illumina MiSeq, this approach also revealed one of
the highest levels of AMF species richness recorded to date
(Opik et al., 2010), ranging from 196 OTUs in the most conser-
vative data set (=10-ton, 90% threshold) to more than 6000 at
the highest levels of OTU clustering similarity and rare OTU
inclusivity (all samples, 97% threshold). A large percentage of
AMF taxa were also present in extremely low abundance,
thereby supporting the capacity of our protocols to capture rare
taxa. In contrast, previous studies using 454 pyrosequencing
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indicated that AMF communities hosted, on average, 70 AMF
taxa (e.g., Dumbrell et al., 2010), while estimates using morpho-
logical methods indicated ~45 AMF taxa within a community
(Eom et al., 2000; Egerton-Warburton et al., 2007).

We also captured biogeographic differences in AMF communi-
ties between the two study sites. Across all data sets, there were
consistent and significant differences in OTU richness abundance.
For example, La Higuera contained a greater abundance and diver-
sity of Diversispora species and lower levels of Claroideoglomus
than El Eden. In addition, the significantly higher pH and levels of
NH, and P at La Higuera appeared to drive the observed site effect
on AMF community composition and structure. These results are
in general agreement with spore-based studies of AMF communi-
ties in other systems (Egerton-Warburton et al., 2007). Our study
was not designed to examine the mechanistic basis of these results.
Based on studies elsewhere, however, it is possible that the dry
season constrains the AMF community to taxa that are physically
or physiologically tolerant of low soil moisture (e.g., Glomus and
Diversispora; Augé, 2001) or to high soil P fertility or pH (Wang
et al., 2016). Alternatively, these shifts may reflect differences in
host plant requirements during the dry season for AMF that in-
crease host drought tolerance (e.g., stomatal control, cytokinin pro-
duction; Augé, 2001) or increase the acquisition of limiting
nutrients from carbonate substrates (N, Fe, Zn; Labidi et al., 2012).
Irrespective, our results indicate a high potential to use our AMF
protocol in large-scale sequencing projects to address AMF diver-
sity with sufficient taxonomic precision, to determine the extent to
which AMF assemblages vary across host plants and ecosystems,
and to resolve AMF species’ responses to edaphic stressors, such as
anthropogenic N deposition, in complex environmental samples.

Our study also highlighted a number of technical consider-
ations. First, a key finding was OTU inflation, particularly at the
97% clustering threshold, which is the level applied in most
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Fig. 6. Principal coordinates analysis (PCoA) ordination plot of soil properties (A) and arbuscular mycorrhizal fungal (AMF) communities (B) in El
Eden (EE) and La Higuera (LH). Percentage values on the axes represent the variation in soil properties (A) and AMF operational taxonomic unit (OTU) read
abundance (B) explained by each axis. Ellipses represent the central tendency of communities, and vectors denote the magnitude and direction of the effects

of significant soil nutrients on AMF communities.

mycorrhizal fungal studies. Between the 97% and 90% cluster-
ing thresholds, there was a twofold increase in OTU richness at
the >10-ton level, an 8-fold increase when considering >2-ton
OTUs, and a 17-fold increase when considering all clustered
OTUs (Table 2). In our study, this result was primarily due to the
recovery of numerous rare or unique AMF taxa in the most read-
rich samples (see Table 4; Appendix S1), rather than to issues
such as uneven number of sequences among samples. To avoid
overestimation of AMF community diversity, excluding all
OTUs with fewer than 10 constituent sequences (regardless of
clustering threshold) will result in levels of taxonomic (OTU)
richness consistent with current estimates of AMF species rich-
ness (Opik et al., 2010; Schiifller and Walker, 2010).

Second, the majority of OTUs could not be assigned to any
species-level accession in the MaarjAM database. While this re-
sult indicates that novel AMF species likely occur in the Yucatan
as they do in other tropical systems (Chaiyasen et al., 2014), it
raises questions about our ability to identify AMF species and
catalog their diversity in environmental samples. One possibility
is that OTU matching was hampered by the limited availability
of well-characterized AMF taxa from tropical forests. Alterna-
tively, the clustering of sequences to generate AMF VT (Opik
et al., 2010) may have reduced the potential for OTU matching if
sequences of multiple species were lumped into the same OTU
(Bruns and Taylor, 2016) or if sequences from a single species
were assigned to multiple OTUs (House et al., 2016). Either sce-
nario could mask phylogenetic diversity (and inferences of func-
tionality) or AMF species with large amounts of intraspecific
variation. Thus, a more comprehensive reference database of
AMF sequences is now needed to improve our capacity to identify
AMF to species level and to address within-species sequence
variation (House et al., 2016). In particular, more direct assessments
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that use well-characterized sequences from individual spores or
single-spore cultures are needed.

Finally, there are limitations to using MiSeq version 2, 2 x 250-
bp chemistry with AMF-barcoded samples. Improvements in the
MiSeq chemistry with version 3 (2 x 300 bp) is expected to further
improve the differentiation of OTUs and the taxonomic resolution
of AMF species by allowing consistent assembly of forward and
reverse reads into a ~530-bp sequence fragment. Preliminary anal-
yses of recent 2 X 300-bp sequencing data suggest that OTUs
clustered using assembled reads are assigned to species level at
approximately two times the rate of OTUs clustered from for-
ward reads alone using similar screening stringency levels
(Morgan and Egerton-Warburton, unpublished data).

Our results support the continuing development and use of high-
throughput sequencing approaches to address the AMF “black
box.” As a first step, the tools detailed herein allow the detection of
ecologically relevant levels of AMF diversity that shape plant
community composition, diversity, and nutrient acquisition in nat-
ural and restored communities, including rare and unique species
(Sanders and Rodriguez, 2016). While this approach is broadly
applicable to most ecosystems, it is especially important in those
where major gaps remain in our understanding of AMF spe-
cies richness and their role in plant community composition and
function.
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Appenpix 1. Levels of soil nitrate (NO5), ammonium (NH,), phosphate (P), pH, and electrical conductivity (EC) in soil samples from each study site. Data
are presented as site means with standard deviation in parentheses.*

Site (No. samples) NO; (ug g soil™) NH, (ug g soil™) P (ug g soil™) pH EC (uS cm™)
El Eden (n = 14) 33 128 13 (5) 7.62 (0.6)* 146 (41)
La Higuera (n = 19) 32 32 (1) 210 (1) 8.34 (0.3)° 173 (60)

*Within each column, means with the same letter do not differ significant at P < 0.05 (Tukey’s HSD test).

Appenpix 2. Twelve-base Golay error-correcting barcode sequences that passed in silico testing for secondary structure formation. Individual barcode
sequences from this list are substituted for XXXXXXXXXXXX in the “Golay barcode” region (Table 2) to generate indexed reverse primer constructs

for PCR.
Barcode name Barcode nucleotide sequence Barcode name Barcode nucleotide sequence Barcode name Barcode nucleotide sequence
AML2_il001 TCCCTTGTCTCC AML2_il027 AGTTACGAGCTA AML2_il053 CGGTCAATTGAC
AML2_il002 GCTGTACGGATT AML2_il028 GCATATGCACTG AML2_il054 GTGGAGTCTCAT
AML2_il003 ATCACCAGGTGT AML2 _il029 CAACTCCCGTGA AML2_il055 GCTCGAAGATTC
AML2_il004 TGGTCAACGATA AML2_il030 TTGCGTTAGCAG AML2_il056 AGGCTTACGTGT
AML2_il005 ATCGCACAGTAA AML2_il031 TACGAGCCCTAA AML2_il057 TCTCTACCACTC
AML2_il006 AGCGGAGGTTAG AML2 il032 CACTACGCTAGA AML2 _il058 ACTTCCAACTTC
AML2_il007 ATCCTTTGGTTC AML2_il033 TGCAGTCCTCGA AML2_il059 CTCACCTAGGAA
AML2_il008 TACAGCGCATAC AML2_il034 ACCATAGCTCCG AML2_il060 GTGTTGTCGTGC
AML2_il009 ACCGGTATGTAC AML2_il035 TCGACATCTCTT AML2_il061 CCACAGATCGAT
AML2_il010 AATTGTGTCGGA AML2_il036 GAACACTTTGGA AML2_il062 TATCGACACAAG
AML2_il011 TGCATACACTGG AML2_il037 GAGCCATCTGTA AML2_il063 GATTCCGGCTCA
AML2_il012 AGTCGAACGAGG AML2_il038 TAATACGGATCG AML2_il064 TAGGCATGCTTG
AML2_il013 ACCAGTGACTCA AML2_il039 TCGGAATTAGAC AML2_il065 AACTAGTTCAGG
AML2_il014 GAATACCAAGTC AML2_il040 TGTGAATTCGGA AML2_il066 GTACGATATGAC
AML2_il015 GTAGATCGTGTA AML2_il041 TACTACGTGGCC AML2_il067 TAGTATGCGCAA
AML2_il016 CCAATACGCCTG AML2_il042 GGCCAGTTCCTA AML2_il068 ATGGCTGTCAGT
AML2_il017 GATCTGCGATCC AML2_il043 GATGTTCGCTAG AML2_il069 GCGTTCTAGCTG
AML2_il018 CAGCTCATCAGC AML2_il044 CTATCTCCTGTC AML2_il070 GTTGTTCTGGGA
AML2_il019 CAAACAACAGCT AML2_il045 ACTCACAGGAAT AML2_il071 ATGTCACCGCTG
AML2_il020 GCAACACCATCC AML2_il046 ATGATGAGCCTC AML2_il072 AGCAGAACATCT
AML2_il021 CGAGCAATCCTA AML2_il047 GTCGACAGAGGA AML2_il073 TGGAGTAGGTGG
AML2_il022 AGTCGTGCACAT AML2_il048 TGTCGCAAATAG AML2_il074 TTGGCTCTATTC
AML2_il023 GTATCTGCGCGT AML2_il049 CATCCCTCTACT AML2_il075 GATCCCACGTAC
AML2_il024 CGAGGGAAAGTC AML2_il050 TATACCGCTGCG AML2_il076 TACCGCTTCTTC
AML2_il025 CAAATTCGGGAT AML2_il051 AGTTGAGGCATT AML2_il077 TGTGCGATAACA
AML2_il026 AGATTGACCAAC AML2_il052 ACAATAGACACC AML2_il078 GATTATCGACGA
AML2_il079 GCCTAGCCCAAT
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AppeENDIX 3. Annotated QIIME workflow.

HHHHHHRHRAR AR

# Front matter

HHHHHHRHRAR AR

# Annotated QIIME workflow

# Performed with QIIME v1.9.1

# Uses four MaarjAM database resource files (Opik M, personal communication)

## MaarjAM Virtual Taxon type sequences: maarjam_vt_types_from_31-03-2013.fasta
## Taxonomy strings for VT type sequences: vt_types_tax_from_31-03-2013.txt

## MaarjAM complete database: maarjAM.5 fasta

## Taxonomy strings for complete database: maarjAM.id_to_taxonomy.5.txt

i

# Demultiplexing and quality filtering raw sequencing reads
i

## -i path to input data in fastq format: used raw read 1 sequence data output by Miseq
## -b path to index read data in fastq format: used raw index read data output by Miseq
## -m path to a tab-delimited text file containing barcode sequences for each sampe ID
## -0 path to directory where demultiplexing output will be generated

## -q sets the maximum unacceptable quality score: used 19 (only qualities >20 accepted)
##-barcode_type sets number of bases in barcode: used golay_12 to indicated use of
## 12 base Golay error correcting barcodes

##-rev_comp_mapping_barcodes set to use reverse complement of barcode sequences
##—max_barcode_errors sets maximum number of errors in index read to still allow

## assignment to a sample: used 2.5, so index reads with three or more errors remain
## unassigned

split_libraries_fastq.py -i /PATH/TO/raw_data_fwd_reads.fastq -b /PATH/TO/raw_data_index_reads.fastq -m /PATH/TO/demultiplex_map.txt -o /PATH/TO/
demultiplexing_output/ -q 19-barcode_type golay_12-rev_comp_mapping_barcodes—max_barcode_errors 2.5

### NOTE: This step processes raw sequencing output for 59 samples that were

### multiplexed in a single run.

#i## Of the total samples, 11 had fewer than 1000 total quality filtered sequencing
### reads, and were excluded from all further sequence data processing and analysis.

HHHHHHHRAR AR

# Removing samples with fewer than 1000 quality filtered sequencing reads

HHHHHHHRAR AR

## -f path to input sequences in fasta format: used quality filtered sequences generated

## in previous step

## -0 path to an output file in fasta format

##—sample_id_fp path to newline-delimited text file where each line contains one

## sample ID to discard: used a list of the 11 samples with fewer than 1000 reads

## -n sets to discard sequences indicated by—sample_id_fp

filter_fasta.py -f /PATH/TO/demultiplexing_output/seqs.fna -o /PATH/TO/demultiplexing_output/fwd_qc20_more100.tasta—sample_id_fp /PATH/TO/discard_ids.txt -n

HHHHHHRHAAH AR
# All subsequent steps were conducted three times, once for each OTU clustering threshold
HHHHHHRHAAH AR

HHHHH T

# Clus operational taxono its using an open reference OTU picking strategy

HHHHHH T

## -i path to input fasta sequence file: using the output of the previous step

## -r path to a reference database of fasta formatted sequences used for open reference

## otu picking: using the MaarjAM VT database

## -0 path to the output directory where the biom formatted OTU table will be written

## -p path to a parameters file with appropriate OTU clustering threshold set
##-—suppress_taxonomy_assignment prevents taxonomy assignment at this step
##—suppress_align_and_tree prevents OTU alignment and tree building at this step
##-min_otu_size sets the minimum number of constituent sequences in an OTU for it to be
## retained in the final OTU table: set to 1 to include all OTUs

pick_open_reference_otus.py -i /PATH/TO/demultiplexing_output/twd_qc20_more100.fasta -r /PATH/TO/maarjAM_vt_types_from_31-03-2013.fasta -o /PATH/TO/
otu_table_output/ -p /PATH/TO/params.txt—suppress_taxonomy_assignment—suppress_align_and_tree—min_otu_size 1

HHHHHHHHRAAR AR

# Excluding probable artifacts and non-target taxa using BLAST stand-alone command line
# tools Nucleotide-Nucleotide BLAST 2.2.26+ (Altschul et al., 1990) against the MaarjAM.5
# database of reference AMF SSU sequences.

HHHHHHHHRAAR AR

## -query path to representative sequences generated by OTU picking step: using rep_set.fna
## generated by the previous step
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## -db path to the database used for BLAST alignments: using the MaarjAM complete database
## -out path to the output directory where alignment table will be stored

## -evalue minimum acceptable BLAST expect value score for a representative sequences to

## be retained for further analysis: set to 1e-50

## -perc_identity sets minimum required percent sequence identity across aligned region for a hit
## to be recorded: set to same level as OTU clustering similarity threshold.

## -qcov_hsp_perc sets the minimum percent of the input sequence length that must align to a
## reference sequence to record a hit: set at 90%

## - num_alignments sets the total number of alignments to record: set to 1

## -outfmt sets output formatting options: set to 6 (tabular output)

blastn -query /PATH/TO/otu_table_output/rep_set.fna -db /PATH/TO/maarjAMS5blastDB -out /PATH/TO/blast_maarjam_output/blast_table_maarjam.txt -evalue le-
50 -perc_identity 90 -qcov_hsp_perc 90 -num_alignments 1 -outfmt “6 gseqid sseqid pident qcovhsp length mismatch gapopen gstart gend sstart send evalue bitscore”
-num_threads 2

HHHHHHHHAAR AR

# Making fasta files for OTUs with and without hits to the MaarjAM database
HHHHHHHHAAR AR

## filter_fasta.py parameters as above

awk '{print $1}' /PATH/TO/blast_maarjam_output/blast_table_maarjam.txt > /PATH/TO/blast_maarjam_output/match_ids.txt
filter_fasta.py -f /PATH/TO/otu_table_output/rep_set.fna -s /PATH/TO/blast_maarjam_output/match_ids.txt -o PATH/TO/blast_maarjam_output/matching.fna
filter_fasta.py -f /PATH/TO/otu_table_output/rep_set.fna -s /PATH/TO/blast_maarjam_output/match_ids.txt -o PATH/TO/blast_maarjam_output/non-matching.fna -n

R s T e L e A A

# Excluding primer artifacts using BLAST implemented in QIIME

R s T e L e A A

## -1 path to representative sequences generated by OTU picking step: using rep_set.fna

## generated by the previous step

## -d path to a database of PCR primer construct sequences, available in Table 1 and Appendix 1
## -0 path to the output directory where results will be stored

## -e minimum acceptable BLAST expect value score for a representative sequences to

## be retained for further analysis: set to default le-10

exclude_seqs_by_blast.py -i /PATH/TO/blast_maarjam_output/matching.fna -d /PATH/TO/pcr_primer_constructs.fasta -o /PATH/TO/primer_artifact_exclusion_
output/ -p 0.5

R s T e L e A A

# Excluding chimeras using uCHIME v4.2 (Edgar et al., 2011) in database mode

R s T e L e A A

##—input path to OTU sequences that passed previous BLAST screenings

##—db path to a database of all MaarjAM.5 forward and reverse complement sequences

##—uchimeout path to a text file to store u~CHIME result scores

## -uchimealns path to a text file to store u”CHIME alignments

uchime—input /PATH/TO/primer_artifact_exclusion_output/non-matching.fna—db  /PATH/TO/full_maarjAM_fwd_and_rc.fasta—uchimeout /PATH/TO/uchime_
results/results.uchime—uchimealns /PATH/TOuchime_results/results.alns

HHHHHHERH R

# Excluding non-target taxa using BLAST stand-alone command line tools

# Nucleotide-Nucleotide BLAST 2.2.26+ (Altschul et al., 1990) against the NCBI non-redundant
# nucleotide database.

HHHHHHERH R

## -query path to OTU sequences that passed previous BLAST screenings

## -db path to a locally stored version of the NCBI nt database

## -out path to a text file to store output

## other parameters as above

blastn -query /PATH/TO/primer_artifact_exclusion_output/non-matching.fna -db nt -out /PATH/TO/blast_nt_output/blast_table_nt.txt -num_alignments 1 -outfmt “6
gseqid sseqid pident qcovhsp length mismatch gapopen gstart gend sstart send evalue bitscore” -num_threads 2

R s T e L e A A

# Extracting hit taxonomic information from the nt database using BLAST stand-alone command
## line tools BLAST 2.2.26+ (Altschul et al., 1990)

HHHHHHHHAAR AR

## -entry_batch path to a file of subject IDs that hit OTU sequences

## -db path to a locally stored version of the NCBI nt database

## -out path to a text file to store output

## -outfmt sets fields to output: set to GI number and scientific name

blastdbcmd -entry_batch /PATH/TO/blast_nt_output/subject_ids.txt -db nt -out /PATH/TO/blast_nt_output/subject_names.txt -outfmt “%g %S”
HHHHHHHHAAR AR

# Removing artifactual, chimeric, and non-target reads from the set of OTU representative

# sequences

R s T e L e A A

## -f path to original representative OTU sequences fasta file

## -s path to list of all OTUs that failed to pass blast and uCHIME screening
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## -0 path to a new representative sequence fasta file excluding screened OTUs
## -n as above

filter_fasta.py -f /PATH/TO/otus_table_output/rep_set.fna -s /PATH/TO/otus_to_exclude_blast.txt -o /PATH/TO/otu_table_output/screened_rep_set.fna -n

HHHHHHHHAAR AR

# Assigning taxonomy to screened OTUs using the QIIME implementation of RDP Classifier

HHHHHHHHAAR AR

## -1 path to fasta formatted sequence file to assign taxonomies to: using representative ## sequences with acceptable BLAST hits from the previous step, matching.fna
## -r path to fasta formatted referece database that will be used to assign taxonomies to input

## sequences: using the MaarjAM.5 complete database

## -t path to taxonomy strings for reference database: using taxonomy file for complete database

## -0 path to directory where taxonomic assignment files will be generated

## -m method of taxonomy assignment to use: set to use RDP Classifier

##-rdp_max_memory sets limit in KB RDP taxonomic assignment can use: set to 20000

assign_taxonomy.py -i / PATH/TO/otu_table_output/screened_rep_set.fna -r /PATH/TO/maarjAM.5.fasta -t /PATH/TO/maarjAM.id_to_taxonomy.5.txt -o /PATH/TO/
taxonomy_assignment_output/ -m rdp—rdp_max_memory 20000

HHHHHHHHAAAR AR
# Making a new OTU table that excludes probable artifacts and non-target taxa and
# includes taxonomic assignments

HHHHH A

## -1 path to the final OTU map generated by initial OTU picking step

## -t path to taxonomic assignments generated in the previous step

## -e path to a list of all OTUs that were excluded from taxonomy assignment
## -0 path to new biom formatted OTU table that will be generated

make_otu_table.py -i /PATH/TO/otu_table_output/final_otu_map.txt -t /PATH/TO/taxonomy_assignment_output/matching_tax_assignments.txt -e /PATH/TO/otus_
to_exclude.txt -o /PATH/TO/otu_table_output/screened_rdptax_otu_table.biom

HHHHHHERH R

# Creating the All OTUs OTU table for this clustering threshold

HHHHEHERH AR

## -i path to an input biom formatted OTU table: using the output of the previous step
## -0 path to generate a new biom formatted OTU table with information about a subset
## of samples from the input file

##-sample_id_fp path to a text file identifying samples to be discarded in the new

## OTU table: set to restrict the OTU table to the 33 samples used in this study
##-negate_sample_id_fp sets list of files to be discarded rather than kept

filter_samples_from_otu_table.py -i /PATH/TO/otu_table_output/screened_rdptax_otu_table.biom -o /PATH/TO/otu_table_output/otu_table_All.biom-sample_id_fp
/PATH/TO/samples_to_exclude.txt —negate_sample_id_fp

HHHHHHHHAAAR AR

# Creating the 2+ton OTUs OTU table for this clustering threshold

HHHHHHHHAAAR AR

## -i path to an input biom formatted OTU table: using the All OTUs table

## -0 path to generate a new biom formatted OTU table with information about a subset
## of samples from the input file

## -n minimum read abundance for OTU to be kept: set to 2

filter_otus_from_otu_table.py -i /PATH/TO otu_table_output/otu_table_All.biom -o /PATH/TO/otu_table_output/otu_table_mc2.biom -n 2

HHHHEHERH AR

# Creating the 10+ton OTUs OTU table for this clustering threshold

HHHHEHERH AR

## -1 path to an input biom formatted OTU table: using the All OTUs table

## -0 path to generate a new biom formatted OTU table with information about a subset
## of samples from the input file

## -n minimum read abundance for OTU to be kept: set to 10

filter_otus_from_otu_table.py -i /PATH/TO otu_table_output/otu_table_All.biom -o /PATH/TO/otu_table_output/otu_table_mc10.biom -n 10

HHHHHH AR
# For each OTU table
HHHHHH AR

HHHHHHHHAAAHR AR

# Making alpha-rarefaction plots

HHHHHHHHAAAHR AR

## -i path to input biom formatted OTU table: using output of previous step
## -m path to a tab-delimited text map file with sample metadata

## -0 path to directory where alpha rarefaction output will be generated

## -p path to parameters file setting indices to use
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alpha_rarefaction.py -i /PATH/TO/otu_table_output/otu_table_All.biom -m /PATH/TO/map.txt -o /PATH/TO/otu_table_All_alpha_rarefaction_output -p /PATH/TO/
params.txt

HHHHHHHHHA AR

# Generating evenly sampled beta-diversity distance matrices, principal coordinates,

# and 3D principal coordinates ordination plots

HHEHHHHA R

## -i path to input biom formatted OTU table: uses eleven_samples table generated above
## -m path to a tab delimited text map file with sample metadata

## -p path to parameters file setting diversity indices to use

## -0 path to directory where beta diversity output will be generated

## -e sets number of sequences to subsample: set to 1000

beta_diversity_through_plots.py -i /PATH/TO/otu_table_output/otu_table_All.biom -m /PATH/TO/map.txt -p /PATH/TO/params.txt -o /PATH/TO/otu_table_All_
beta_diversity_output/ -e 1000

AppenDIx 4. Example alignments of forward and reverse reads assigned to Virtual Taxon sequences from the MaarjAM database showing approximately
30 base regions separating reads and preventing successful assembly. Numbers represent position in MAFFT alignment of MaarjAM Virtual Taxon
database to which the sequence reads were aligned.
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