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ABSTRACT—The Japanese eel has two characteristics advantageous for the study of the mechanisms
controlling spermatogenesis. One is the possibility of artificial induction of the complete process of spermato-
genesis from spermatogonial proliferation to spermiogenesis by exogenous gonadotropin injection, and the
other is the possibility of inducing this process in an in vitro testicular organ culture or germ-Sertoli cell
coculture system. Using the eel system, we analyzed the control mechanisms of spermatogenesis. In
Japanese eel, the whole process of spermatogenesis is regulated by several sex steroid hormones. Sper-
matogonial stem cell renewal is promoted by estradiol-17β (the natural estrogen in vertebrates). Spermatogonial
proliferation can be induced by 11-ketotestosterone, the main androgen in teleost. IGF-I is necessary for the
action of 11-ketotestosterone in the initiation of spermatogenesis. The action of 11-ketotestosterone is medi-
ated by other factors, such as activin B, produced by Sertoli cells. Although 11-ketotestosterone also induce
meiosis and spermiogenesis, the control mechanisms of these processes are not clear. After spermiogen-
esis, immature spermatozoa undergo sperm maturation, thereby becoming capable of fertilization. Sperm
maturation is regulated by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), which is progestogen in
teleosts. The 17α,20β-DP acts directly on spermatozoa to activate the carbonic anhydrase existed in the
spermatozoa. This enzymatic activation causes an increase in the seminal plasma pH, enabling spermato-
zoa to motile.
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INTRODUCTION

Spermatogenesis, the formation of sperm that is highly
adapted for delivering its genes to an egg, is a complex
developmental process. It begins with the mitotic proliferation
of spermatogonia, then proceeds through two meiotic divisions
followed by spermiogenesis, during which the haploid sper-
matids develop into spermatozoa. Spermatozoa then undergo
maturation, obtaining the ability to fertilize.

Although the process of spermatogenesis is the same in
both mammalian and nonmammalian vertebrates, its control
mechanisms are not well understood. Spermatogenesis is
controlled by numerous hormones and unknown factors
(Steinberger, 1971; Hansson et al., 1976; Callard et al., 1978;
Billard et al., 1982; Cooke et al., 1998). In higher vertebrates
such as mammals, it is difficult to analyze the control mecha-

nisms of spermatogenesis because the seminiferous tubules
contain several successive generations of germ cells (i.e., the
testicular organization is complex; Clermont, 1972), and few
culture systems are available for induction of spermatogen-
esis in vitro (Abe, 1987).

Among species of teleosts, various reproductive styles
and gametogenetic patterns. Teleosts constitute the largest
phylum (approximately 23,700species) of living vertebrates
(~48,200 species) (Nelson, 1994). Japanese eel, one of such
species, has a special spermatogenetic pattern. Under cul-
ture conditions, male Japanese eel have immature testes (Fig.
1A) containing only non-proliferated type A and early type B
spermatogonia (Miura et al., 1991a). This immature stage of
the testis is attributed to insufficient gonadotropin in the eel
pituitary (Yamamoto et al., 1972). However, a single injection
of human chorionic gonadotropin (hCG) can induce the com-
plete process of spermatogenesis from the proliferation of
spermatogonia to spermiogenesis (Fig. 1B,C,D,E) (Miura et
al., 1991a). Germ cell development is almost synchronous
throughout the testis and the proliferation of spermatogonia,
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meiosis, and spermiogenesis occur at definite times: 3, 12
and 18 days after hCG injection, respectively (Miura et al.,
1991a). Furthermore, Japanese eel is the only animal in which
complete spermatogenesis has been induced by hormonal
treatment in vitro using an organ culture system (Fig. 2) and a
germ-somatic cells coculture system (Fig. 3), respectively
(Miura et al., 1991b,c, 1996). Therefore, the male Japanese
eel provides an excellent system for studying the mechanisms
of spermatogenesis. This review discusses our recent experi-
mental observations, which indicate the possible molecular
control mechanisms of spermatogenesis in Japanese eel.

The endocrine control of eel spermatogenesis
Eel spermatogenesis is also endocrinologically controlled,

as is the case in other vertebrates. It is well established that in
vertebrates, including fish, gonadotropins (GTHs) are the pri-

Fig. 1. Light micrographs of eel testis. A) Before hCG injection, and B) 6 days, C) 9 days, D) 12 days, and E) 18 days
after hCG injection. Bar, 10 µm.

mary hormones regulating spermatogenesis (Nagahama,
1987). In most cases, however, it appears that GTHs do not
act directly, but rather work through the gonadal biosynthesis
of steroid hormones, which in turn mediate various stages of
spermatogenesis (Nagahama, 1994).
1) The regulation of spermatogonial stem cell renewal

Spermatogonial mitosis can be categorized by sper-
matogonial stem cell renewal and spermatogonial prolifera-
tion toward meiosis (Clermont, 1972). Recently, it was indi-
cated that estrogen is related to the regulation of the renewal
of spermatogonial stem cells in eel (Miura et al., 1999b).

It is widely accepted that “estrogen” is a “female” hor-
mone. However, it has been reported that estrogen exists in
some male vertebrates (Schlinger and Arnold, 1992; Fasano
and Pieratoni, 1993; Betka and Callard, 1998), and that its
receptors are expressed in the male reproductive organs
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Fig. 2. The eel testicular organculture system.

(Ciocca and Roig, 1995; Callard and Callard, 1987). Estra-
diol-17β (E2), a natural estrogen in vertebrates, was found in
Japanese eel serum, and its receptor was expressed in the
Sertoli cells (the only non-germinal elements within the semi-
niferous epithelium of the testes) during the whole process of
spermatogenesis. These findings suggested that estrogen is
related to the progress of spermatogenesis. We analyzed the
action of E2 in spermatogenesis.

Mitosis of eel spermatogonial stem cells was promoted
by the implantation of E2, but was suppressed by tamoxifen
(an antagonist of estrogen). In vitro, 10 pg/ml of E2 was suffi-
cient to induce spermatogonial stem cell division in cultured
testicular tissue, confirming the in vivo observations. E2 treat-
ments induced only spermatogonial stem cell renewal; they
were not found to promote spermatogonial proliferation and
meiosis. These findings clearly indicate that estrogen is an
indispensable “male hormone”, and plays an important role in
spermatogonial stem cell renewal.

Generally, E2 induces the target gene expression through
its receptor, and the factor translated from this gene affects
the biological process. Recently, using gene expression
screening, we attempted to clone the cDNA that codes those
factors induced or inhibited by E2 stimulation. As a result of
this experiment, we obtained three cDNA clones (in prepara-
tion). The factor coded by some of these clones may act on
spermatogonial renewal.
2) The regulation of spermatogonial proliferation toward
meiosis and spermiogenesis

When GTH is secreted from the pituitary, spermatogo-
nial mitosis switches from stem cell renewal to proliferation
toward meiosis. As a matter of convenience, we call this point

the initiation of spermatogenesis. It appears that in Japanese
eel, GTH does not act directly on germ cells, but rather through
the gonadal biosynthesis of 11-ketotestosterone (Miura
1991a,b). 11-ketotestosterone was first identified by Idler et
al. (1961) as a major androgenic steroid in the male sockeye
salmon (Oncorhynchus nerka). In various teleost fishes, this
steroid has been shown to be synthesized in the testis follow-
ing GTH stimulation, and high levels were detected in the
serum during spermatogenesis (Billard et al., 1982). When
11-ketotestosterone was added to eel testicular organ culture,
spermatogenesis from the proliferation of spermatogonia
to spermiogenesis was induced (Miura et al., 1991b). The
action of 11-ketotestosterone for spermatogenesis is not lim-
ited to the Japanese eel; it has been also recognized in gold-
fish (Kobayashi et al., 1991) and Japanese huchen (Amer et
al., 2001). These findings indicate that 11-ketotestosterone is
one of the factors involved in the initiation of spermatogonial
proliferation toward meiosis.

However, it is believed that the action of 11-ketotesto-
sterone is mediated by other factors produced by Sertoli cells,
in which the androgen receptor exists (Ikeuchi et al., in press).
It is possible that some of these factors are growth factors,
such as insulin-like growth factor-I (IGF-I) and activin B.

IGFs are known to be mediators of growth hormone
action in vertebrates. In the rainbow trout testis, IGF-I is
expressed in spermatogonia and/or Sertoli cells, and it binds
to type 1 IGF receptors. Further, IGF-I stimulates DNA syn-
thesis in spermatogonia (Loir, 1994; Loir and LeGac, 1994;
LeGac et al., 1996). Although IGF-I is also necessary for the
regulation of eel spermatogenesis, its role is to support the
action of 11-ketotestosterone. More specifically, in Japanese
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esis (Miura et al., 1995a, b; submitted for publication).
It has been reported that FGF, BMP, PDGF and numer-

ous other growth factors regulate the early stage of spermato-
genesis in teleosts and mammals (Watanabe and Onitake,
1995; Zhao et al., 1996; Li et al., 1997; Kim and Fazleabas,
1998). Further investigation is needed for a better understand-
ing of the relationship between growth factors and spermato-
genesis in eel.
3) The entry of spermatogonia into meiosis

Following mitotic proliferation, type B spermatogonia dif-
ferentiate into primary spermatocytes. Generally, the number
of mitotic divisions of spermatogonia preceding meiosis are

Fig. 3. The eel germ-Sertoli cell coculture system.

eel 11-ketotestosterone is necessary for the induction of sper-
matogenesis, whereas IGF-I is necessary for the continua-
tion of the process (Nader et al., 1999).

Activin B is a dimeric growth factor belonging to the trans-
forming growth factor-like (TGFβ) superfamily, and is com-
posed of two activin βB subunits. In the Japanese eel, activin
B was found in the testis at the initiation of spermatogenesis
after hCG stimulation, with its expression site restricted to
Sertoli cells. Both transcription and translation of eel activin B
were induced by 11-ketotestosterone stimulation in vitro. Fur-
ther, activin B induced proliferation of spermatogonia, but its
treatment could not induce meiosis and further spermatogen-
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Table 1. List of cDNA clones obtained by gene expression screening and their expressional patterns.

up- or down- up- or down up- or down- up- or down
eSRS homologous size regulated during regulated by 11- eSRS homologous size regulated during regulated by 11-

No. protein (kb) hCG induced KT stimulation No. protein (kb) hCG induced KT stimulation

spermatogenesis in vitro spermatogenesis in vitro

1 actvin βB 3.4 up up 15 aquaporin 1.4 up up
2 unknown 3.4 up up 16 HMG2 1.1 up up
3 ZP2 1.4 down down 17 histone H2A 1.0 up up
4 ZP3 1.6 down down 18 tublin α 1.6 up –
5 cathepsin S 0.85 down down 19 tublin β 1.5 up up
6 unknown 1.5 down – 20 PLK1 3.0 up up
7 unknown 1.3 down down 21 TGFβ family 2.4 down down
8 unknown 1.4 down – 22 carbonic anhydrase 1.5 up up
9 PCNA 1.6 up – 23 thymidylate synthase 1.2 up –

10 unknown 0.5 up up 24 fatty acid binding protein 1.0 up up
11 histone H1 0.5 up up 25 prothymosin α 1.3 up –
12 CKS1 1.4 up – 26 ictacalcin 0.8 up –
13 unknown – up – 27 cytochrome C 0.8 up –
14 unknown – up – 28 calnexin 2.3 up –

species specific. In teleosts, a spermatogonial stem cell of
medaka (Oryzias latipes) yields spermatocytes following 8
mitotic divisions; more specifically, 6 in Sakhalin taimen (Hucho
perryi), 8 in masu salmon (Oncorhynchus masou), 6 in white
spotted char (Salvelinus leucomaenis), 8 in goldfish (Carassius
auratus) (Ando et al., 2000), 14 in guppy (Poecilia reticulata)
(Billard, 1986), 5 or 6 in zebrafish (Danio rerio) (Ewing, 1972),
and there are 10 mitotic divisions in Japanese eel (Miura et
al., 1991a). Although the regulatory mechanisms of the initia-
tion of meiosis are not yet clear, it has been shown that in
Japanese eel there is a regulatory stage around the fifth
mitotic division of spermatogonia prior to the cells entering
meiosis (Miura et al., 1997). To cross this regulatory stage,
some factors regulated by 11-ketotestosterone may be
required. The key genes coding factors that showed unique
expression during spermatogenesis have been considered.
To identify these key genes, we isolated cDNA clones of stage-
specific genes during eel spermatogenesis using cDNA sub-
traction and differential display methods (Miura et al., 1998,
1999a). As a result of these experiments, 28 independent
cDNA clones showing unique expression patterns during sper-
matogenesis were obtained (Table 1). As a matter of conve-
nience, we named these clones “eel spermatogenesis related
substances (eSRSs)” cDNA. Among these eSRSs, 16 clones
are up- or down-regulated by 11-ketotestosterone, the sper-
matogenesis inducing hormone. The initiation of meiosis may
be regulated by some of these factors.
4) Determining whether a control mechanism exists for
spermiogenesis

After two meiotic divisions, the germ cells develop into
spermatids having small, round, and heterogeneous nuclei.
The spermatids transform into spermatozoa through spermio-
genesis. This process is characterized by remarkable mor-
phological changes associated with the formation of a
spermhead with condensed nucleus, a mid-piece, and a fla-
gellum. Eel spermatozoon has an unusual figure (Fig. 4). It
possesses a crescent-shaped nucleus with a flagellum con-

sisting of a 9+0 axonemal structure (generally, the axonemal
structure of the flagellum is 9+2), and a single large spherical
mitochondrion with developed tubular cristae, which are
attached to the caput end at one side of the sperm head (Todd,
1976; Miura et al., 1991a).

In teleosts, it is not yet clear whether regulation mecha-
nisms exist in spermiogenesis. In medaka, it was possible to
induce complete spermiogenesis without hormonal treatment
in in vitro cultured germ cells (Saiki et al., 1997), indicating
that there is no regulational mechanism in medaka spermio-
genesis. However, the figure of the Japanese eel spermato-
zoa produced by in vitro testicular organ culture and germ
cell-Sertoli cell coculture with 11-ketotestosterone is not
exactly similar to the fertilizable spermatozoa of eel produced
by hCG injection in vivo. Based on this discrepancy, it seems
conclusive that regulation mechanisms exist in the spermio-
genesis of Japanese eel.
5) Induction of sperm maturation

In some species, once the spermatozoa in the testis have
completed spermiogenesis, they are not yet capable of fertil-
izing eggs. In salmonids, the spermatozoa in the testis and in
the sperm duct are immotile. If spermatozoa from the
spermduct are diluted with fresh water, they become motile;
in contrast, the testicular spermatozoa remain immotile after
dilution with fresh water. Thus, spermatozoa acquire the abil-
ity of motility during their passage through the sperm duct.

Sperm maturation, the phase during which non-functional
gametes develop into mature spermatozoa (fully capable of
vigorous motility and fertilization) involves only physiological,
not morphological, changes. In salmonids, sperm maturation
(the acquisition of sperm motility) has been induced by
increasing the seminal plasma pH (approximately to pH 8.0)
in the sperm duct, which results in elevation of intrasperm
cAMP levels (Morisawa and Morisawa, 1988; Miura et al.,
1992). Similar results have been reported for Japanese eel
spermatozoa by Miura et al. (1995c) and Ohta et al.(1997).

Sperm maturation is also regulated by the endocrine sys-
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tem. In some teleosts including Japanese eel, it is suggested
that 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP) is
related to the regulation of sperm maturation (Miura et al.,
1991d, e, 1992,). 17α,20β-DP has also been identified as the
maturation-inducing hormone of salmonid oocyte (Nagahama
and Adachi, 1985). 17α,20β-DP does not act directly on the
sperm; its action is mediated through an increase in the semi-
nal plasma pH, which in turn increases the sperm content of
cAMP, thereby allowing the acquisition of sperm motility (Miura
et al., 1991d, 1992, 1995c). However, the mechanisms
involved in the increase of the seminal plasma pH by 17α,20β-
DP remain unclear. Recently, we attempted to elucidate these
mechanisms. As mentioned above, although eSRS22 is one
of the factors cloned by the testicular cDNA subtraction
method, this factor is related to regulation of the increase in
pH (in preparation). In the Japanese eel, eSRS22 is a homo-

Fig. 4. Electron micrographs of eel spermatozoon. A, The whole image by scanning micrograph (Bar, 1 µm); B, sagittal section of spermato-
zoon (Bar, 1 µm); C, cross section of flagella (Bar, 0.1 µm); and D, cross sections of sperm heads. Arrowheads indicate the 9 sets of microtubules
(Bar, 1 µm).

logue of carbonic anhydrase (CA). CA catalyzes the revers-
ible hydration of carbon, and is involved in the regulation of
ion and acid-base balance in various fluids and tissues (Carter,
1972; Maren,1967). In Japanese eel, eSRS22/CA protein was
expressed in the spermatids and spermatozoa membranes.

In some teleosts including eel, it is suggested that a
progesterone receptor exists in the spermatozoon (Gosh and
Thomas, 1995; Thomas et al., 1997). If eSRS22/CA is related
to sperm maturation, its function seems to be correlated with
17α,20β-DP and eSRS22/CA activity. Therefore, the relation-
ship between 17α,20β-DP and eSRS22/CA was examined
using intratesticular sperm incubation in vitro. The pH value
of the artificial seminal plasma (ASP) was increased by
17α,20β-DP treatment. Moreover, acetazoleamide, a specific
inhibitor of CA or anti-eSRS22 specific antibody, suppressed
the increase in pH value induced by 17α,20β-DP stimulation
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(in preparation). These findings suggested the following pos-
sible mechanisms involved in sperm maturation. 17α,20β-DP
acts directly on spermatozoa and induces the activation of
eSRS22/CA; this enzymatic activation causes an increase in
the seminal plasma pH, and spermatozoa subsequently ac-
quire the motile ability. In masu salmon (Oncorhynchus masou),
17α,20β-DP stimulates the CA activity in spermatozoa, and
causes an increase in the pH value of the ASP in vitro.

Conclusion
Fig. 5 illustrates the spermatogenetic cycle and its pre-

dicted regulatory mechanisms in the Japanese eel. By estab-
lishment of testicular organ culture and use of molecular
biology techniques, analysis of the control mechanisms of eel
spermatogenesis has advanced remarkably, and the eel sys-
tem has proven to be an advantageous system for the study
of spermatogenesis. Investigation of the Japanese eel has
led to the discovery of several interesting aspects of sper-
matogenesis. It is highly possible that further investigations of
eel spermatogenesis will lead to a better understanding of the
general aspects of spermatogenesis.

Recently, environmental pollution by chemicals (collec-
tively known as endocrine disrupters) has been shown to stimu-
late or block various biological processes (Colborn et al., 1993),
and to interfere with the sensitive hormonal pathways that

Fig. 5. A schematic summarizing the possible control mechanisms of spermatogenesis in Japanese eel.

regulate the reproductive functions. Especially in male ani-
mals, exposure to estrogenic compounds (environmental
estrogens or exestrogens) can lead to reduced gonad size,
feminization of genetic males, and low sperm count and/or
quality (Sharpe, 1993; Sumpter, 1995). Japanese eel will also
provide an excellent system for analysis of the negative
effects of environmental disrupters on spermatogenesis.
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