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ABSTRACT

Conservation of bird populations is increasingly focused on landscapes. We combined data collected in 2005-2011
from 16,250 North American Breeding Bird Survey (BBS) survey points with local and remotely sensed environmental
data to model the distribution of 7 grassland bird species in the Northern Great Plains of the United States. We
analyzed data at the survey point level, which is consistent with the scale of conservation treatments that we apply,
and avoided information loss caused by pooling data at the BBS route level. By accounting for observer effects, nesting
of survey points within routes, and sequence of survey points, we accommodated BBS survey design, refined estimates
of important habitat predictors, improved model fit, and reduced or eliminated positive spatial autocorrelation in
model residuals. The predictive power of models was greatly increased by including variables that characterized
annual and long-term precipitation, as well as local land cover attributes not available from satellite-derived land cover
data. Occurrence models from survey-point-level BBS data and environmental data with high thematic resolution were
able to describe habitat relationships that are often associated with fine-grained, local studies, but across broad spatial
extents and at scales relevant to local conservation actions. Predicted occurrence was strongly correlated with
observed numbers, suggesting that occurrence models may be useful indicators of density. Relationships derived from
models allowed us to develop spatially explicit decision support tools, which can be used to target areas for
conservation treatments and to assess the conservation actions of multiple conservation programs and joint ventures
(e.g., Prairie Pothole, Rainwater Basin, and Northern Great Plains joint ventures) in the U.S. Northern Great Plains.

Keywords: conservation planning, landscape, North American Breeding Bird Survey, spatial analysis, species
distribution model, BBS

Desarrollo de modelos espaciales para guiar la conservacion de las aves de pastizal en las Grandes
Llanuras del Norte de EEUU

RESUMEN

La conservacién de las poblaciones de aves se enfoca cada vez mas en los paisajes, aunque las aves son muestreadas
tipicamente a una escala mucho menor. Combinamos datos colectados de 2005 a 2011 a partir de 16,250 paradas del
Muestreo de Aves Reproductivas de América del Norte (BBS por sus siglas en inglés) con datos ambientales locales y
censados con sensores remotos para modelar la distribucion de siete especies de aves de pastizal en las Grandes
Llanuras del Norte de Estados Unidos. Analizamos datos a nivel de parada, lo que es consistente con la escala de las
medidas de conservacion que aplicamos y evitamos la pérdida de informacion causada por la agrupacion de los datos
a nivel de ruta. Cuando consideramos los efectos del observador, el anidamiento de las paradas adentro de las rutas y
la secuencia de paradas, acomodamos el disefio de muestreo del BBS, refinamos las estimaciones para predictores de
habitat importantes, mejoramos el ajuste del modelo y redujimos o eliminamos la autocorrelacion espacial positiva en
los residuos del modelo. El poder predictivo de los modelos se elevé enormemente por la inclusidén de variables que
caracterizan la precipitacion anual y de largo plazo, asi como los atributos de cobertura del suelo no disponibles a
partir de los datos de cobertura del suelo derivados de los satélites. Los modelos de ocurrencia de los datos a nivel de
parada del BBS y de los datos ambientales con alta resoluciéon teméatica permitieron describir las relaciones de habitat
usualmente asociadas con estudios locales de grano fino, pero a través de grandes extensiones espaciales y a escalas
relevantes con las acciones locales de conservacion. Las predicciones de ocurrencia estuvieron fuertemente
correlacionadas con los nimeros observados, sugiriendo que los modelos de ocurrencia podrian ser indicadores utiles
de densidad. Las relaciones derivadas de los modelos nos permitieron desarrollar herramientas espacialmente
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explicitas de apoyo a las decisiones, las cuales pueden ser usadas para determinar las areas donde implementar
medidas y evaluar acciones de conservacion para multiples programas de conservacion y empresas mixtas (e.g., Prairie
Pothole, Rainwater Basin y Northern Great Plains) en las Grandes Llanuras del Norte de EEUU.

Palabras clave: analisis espaciales, BBS, modelos de distribucion de especies, Muestreo de Aves Reproductivas de
América del Norte, paisaje, planificacion de la conservacion

INTRODUCTION

Concern over decreasing bird populations has stimulated a
variety of bird conservation plans, many of which (e.g.,
North American Waterfowl Management Plan, Partners In
Flight, The Nature Conservancy’s Migratory Bird Program)
explicitly promote a landscape approach to bird conser-
vation. Increasing awareness of the importance of land-
scape composition to avian ecology and conservation, in
conjunction with a recent upsurge in the availability of
spatial analysis software and data, has led to increased
development and application of spatially explicit models to
direct conservation actions (Carroll et al. 1996, Askins
2000, Wiens 2002). These models, often referred to as
spatial planning or conservation assessment tools, are used
for a variety of purposes, including identification of habitat
and lands for protection, prioritization of funding, and
identification of opportunities for restoration.

Spatial tools for guiding bird conservation may be
particularly important in the Northern Great Plains, which
have the highest diversity of grassland bird species in
North America (Peterjohn and Sauer 1999) as well as 6
species of endemic passerine (Samson et al. 1998). Rich
soils and limited topographic relief also make the Northern
Great Plains an important area for crop production, and
native grasslands in the region are among the most
threatened ecosystems in the world, especially in the
eastern portion of the region where precipitation supports
more crop varieties (Licht 1997, Hoekstra et al. 2005).
Conversion of grassland, particularly native prairie, to
cropland in the region is extensive and ongoing as
agricultural subsidies, new crop varieties, and altered
climate enable the planting of lands that were previously
considered unsuitable for crop production (Stephens et al.
2008, Rashford et al. 2011, Lark et al. 2015). Habitat loss
for grassland birds is exacerbated by roads, shelterbelts,
wind turbines, and oil and gas infrastructure that fragment
the landscape and reduce habitat suitability for grassland
birds (Grant et al. 2004, Shaffer and Buhl 2016, Thompson
et al. 2015). As a consequence of habitat loss and
degradation, grassland birds have a larger proportion of
species that are decreasing than any other bird group in
North America (Askins 1993, Peterjohn and Sauer 1999,
Sauer et al. 2017).

The need for spatial tools that can be used to evaluate,
allocate resources to, and increase efficiency of conserva-
tion actions in the Northern Great Plains is magnified by

the sheer size of the region, extensive private land
ownership, and the variety of available conservation
treatments. The Great Plains region of North America
covers ~162 million ha (Samson and Knopf 1994) and
exhibits considerable variation in climate, topography, soil
quality, and land use (Licht 1997, Samson et al. 2004).
Most land in the Great Plains region is privately owned,
and many conservation programs address the differing
needs and interests that motivate people who own the land
(Heard 2000, Ryan et al. 2003, Ernst and Wallace 2008).
Because of varying interests of landowners and the
diversity of land types and uses in the region, an array of
conservation treatments is available to benefit grassland
birds, including acquisition of perpetual conservation
easements to preserve existing grasslands, as well as
delayed haying, planting of cropland to grassland, tree
and brush removal, prescribed burns, and grazing man-
agement to enhance or restore habitat (Gray et al. 2005,
Johnson 2005, USFWS 2012).

We used data from the North American Breeding Bird
Survey (BBS) in conjunction with environmental pre-
dictors to develop comprehensive, species-specific
spatial planning tools for guiding grassland bird
conservation in the U.S. Northern Great Plains. The
BBS is an annual, continent-wide survey that is the
primary source of information regarding populations of
many North American bird species, thanks to the efforts
of thousands of volunteer observers combined with the
scientific rigor of the survey and analysis of resulting
data (Bystrak 1981, Sauer et al. 2013). Despite not being
intended for the development of spatial models, the
consistent sampling framework, long timeframe, wide-
spread distribution of survey routes, and variety of
habitat types and land uses that the BBS encounters
make BBS data valuable for developing spatial models as
well as for monitoring avian population trends (Niemuth
et al. 2005, Thogmartin et al. 2006a, Sauer et al. 2013,
Gorzo et al. 2016, Sauer et al. 2017). Our study had 3
main objectives: (1) to identify factors, especially
landscape characteristics, associated with the detection
of grassland birds at BBS ‘stops’ (individual survey points
along a BBS route); (2) to create maps showing predicted
occurrences of grassland birds across our study region;
and (3) to use relationships identified in models to
create additional decision support tools to guide
conservation actions for grassland birds in the U.S.
Northern Great Plains.
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FIGURE 1. Locations of Breeding Bird Survey (BBS) routes included in our analysis of grassland bird occurrence in the Great Plains of
Montana, North Dakota, Wyoming, South Dakota, Nebraska, Colorado, and Kansas, USA; inset shows location of study states in

central North America.

METHODS

Study Area

Our study area included the states of North Dakota, South
Dakota, Nebraska, Montana, and Kansas, as well as those
portions of Colorado and Wyoming east of the Rocky
Mountains (Figure 1). This region, which we refer to as the
U.S. Northern Great Plains, is characterized by relatively
flat topography and limited rainfall that follows an east—
west gradient, with higher precipitation in the east (Wiens
1974). Because water is generally limiting in this semiarid
landscape, the precipitation gradient greatly influences
land use, vegetation composition and structure, and bird
communities (Wiens 1974, Samson et al. 1998, Niemuth et
al. 2008). Much native grassland has been converted to
crop production, with losses of native prairie exceeding
99% in the eastern portion of the region (Samson and
Knopf 1994, Licht 1997). In addition to cropland, the study
area has more trees and woody vegetation than it did
historically as a result of fire suppression, altered grazing
regimes, tree planting, and alteration of hydrologic regimes
following settlement by Euro-American immigrants in the
1800s (Licht 1997, Courtwright 2007). The U.S. Northern
Great Plains region also encompasses millions of hectares
of grasslands that have been enrolled in the U.S.
Department of Agriculture (USDA) Conservation Reserve
Program (CRP), which substantially benefits the popula-

tions of many grassland bird species (Johnson and Igl
1995, O’Connor et al. 1999, Johnson 2005).

BBS Data

We downloaded stop-level BBS data from 2005 to 2011 for
routes within our study area from the U.S. Geological
Survey Patuxent Wildlife Research Center, Laurel, Mary-
land, USA (Pardieck et al. 2014). Each 40-km route
contained 50 stops, or survey points, ~0.8 km apart; details
of route placement and sampling are described by Bystrak
(1981). We assigned the resultant 16,250 stops to
geographic coordinates using a variety of techniques, with
55% of locations coming from observer-provided informa-
tion, including GPS locations, field descriptions, and
digitization of stops marked on aerial photographs by
observers, and 45% of locations coming from automated
generation of points at 0.8-km intervals from the starting
point along individual survey routes. The accuracy of
locations of stops assigned at 0.8-km intervals was likely
aided in our study area by the fact that many of the survey
routes followed roads laid out on a 1.6-km grid based on
the public land survey. We selected the 2005-2011
timeframe for bird survey data as it overlapped with the
time period of land cover data collection and provided a
broad range of precipitation conditions. We analyzed data
from 83,500 counts collected at the 16,250 stops along 325
routes by 264 observers, only using data that passed BBS
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quality criteria for weather conditions, daily timing, and
seasonal timing (see www.pwrc.usgs.gov/BBS/help/BBS_
Run_Type_Codes.txt for more information).

We analyzed data for the Upland Sandpiper (Bartramia
longicauda), Sprague’s Pipit (Anthus spragueii), Lark
Bunting (Calamospiza melanocorys), Savannah Sparrow
(Passerculus sandwichensis), Grasshopper Sparrow (Am-
modramus savannarum), Bobolink (Dolichonyx oryzivo-
rus), and Eastern Meadowlark (Sturnella magna), as these
species have been identified as conservation priorities
(Rosenberg et al. 2016), exhibit a variety of grassland
habitat preferences and geographic distributions, and had
sufficient observations with which to develop models.

Predictor Variables

Because many factors affect observations of birds, we
developed models from a suite of candidate predictor
variables that characterized landscape composition and
configuration, weather and climate, daily and seasonal
changes in bird activity and detectability, topographic
variation, and survey structure, all of which have been well
supported by previous research (Table 1). Land cover data
were derived in part from the National Land Cover
Database 2006 (NLCD 2006; Fry et al. 2011). NLCD 2006
has overall agreement of 78% between classified satellite
data and a primary or alternate land cover class visually
interpreted from aerial photography, although accuracy
has been consistently lower among grass-dominated
classes (Wickham et al. 2013). To improve thematic
resolution and classification accuracy of grass-associated
land cover data, we incorporated spatial data from the
USDA National Agricultural Statistics Service identifying
alfalfa (Medicago sativa) fields (Boryan et al. 2011), as well
as data delineating 3.8 million ha of land enrolled in CRP
grasslands, which were mapped rather than interpreted
from remotely sensed imagery. All predictor data were
processed at a spatial resolution of 30 m.

We obtained precipitation and temperature data from
the PRISM (Parameter-elevation Regressions on Indepen-
dent Slopes Model) climate mapping database, which uses
weather station data to model precipitation and temper-
ature across space (Daly et al. 2008). Previous-year and
current-year precipitation were strongly correlated with
long-term precipitation because they generally followed
the same east—west gradient as long-term precipitation.
Therefore, we subtracted previous-year and current-year
precipitation from the long-term mean to create a variable
reflecting the precipitation anomaly for each time period.

Because changes in topography may influence the
detection (Dawson 1981) or densities of birds (Renfrew
and Ribic 2002), we included the standard deviation of
elevation around each survey stop as an index of
topographic roughness; we also included mean elevation
to capture gradients that might be associated with

Using BBS data to target bird conservation 509

topography or soil characteristics. We included the
number of each stop along an individual BBS route as an
index to the time of day, thereby mitigating daily time-
related changes in bird detection, which varies during the
interval required to run a BBS route (Robbins 1981,
Rosenberg and Blancher 2005). Similarly, we included
ordinal date as a covariate to explain seasonal changes in
bird detectability (Anderson et al. 1981, Skirvin 1981). We
also included year as an indicator variable to account for
interannual variation in population size and distribution
not attributable to changes in observers or patterns of
annual precipitation. Even though our objective was to
develop spatial models to predict occurrence across a
regional landscape, we included nonlandscape factors such
as annual precipitation, daily timing, and seasonal timing
to explain additional variation in the data, thus improving
our ability to make inferences about landscape-level
habitat selection. Because of repeated observations along
routes across multiple years and differences in the skills of
observers, some of whom ran multiple routes over
multiple years, we treated route, observer, and year as
random effects to address changes in variance associated
with these variables (Crawley 2007). All other variables
were treated as fixed effects. We did not include a first-year
observer effect (Kendall et al. 1996) because we assumed
that this effect would be less problematic for detecting
presence than estimating population trends, and not doing
so resulted in a simpler model.

Because many bird species are influenced by the
landscape beyond the area included in the point-count
circle (Bakker et al. 2002, Cunningham and Johnson 2006,
Greer et al. 2016), we sampled the habitat around each BBS
stop at 7 scales using circular moving window analysis,
which summarizes data within a ‘window’ of a selected size
around each cell in a GIS data layer. Landscape data were
in raster format, and the area within each moving window
was ~50, 200, 450, 800, 1,250, 1,800, and 3,200 ha,
respectively, for circles with radii of ~400, 800, 1,200,
1,600, 2,000, 2,400, and 3,200 m. We chose these scales as
they were multiples of the maximum survey distance used
in the BBS and also coincided with distances commonly
used in land acquisition and management in the region.
We chose not to use finer scales for 2 reasons. First, even
though many species have detection distances much less
than the nominal 400-m sampling window of the BBS
(Thogmartin et al. 2006b), the locations of recorded
individuals within the window were unknown and may
have been outside a circle with a smaller radius. Second,
the locations of some BBS stops were imperfectly known,
and maintaining a broad sampling window helped to
ensure that stop locations at which bird data were
collected coincided with sampled environmental predic-
tors. We standardized all continuous variables to a mean of
0 and standard deviation of 1 to improve convergence of
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the model-fitting algorithm. We analyzed spatial data using
ArcMap (Environmental Systems Research Institute, Red-
lands, California, USA).

Model Development

Because most of the species that we evaluated were not
detected or were detected in low numbers at BBS stops, we
used logistic regression to model apparent occurrence.
Even though our models were biologically justified and
well supported by past research, we used model selection
to develop a parsimonious model that suitably balanced
bias and variance (Burnham and Anderson 2002), as well
as to evaluate models developed with different combina-
tions of correlated variables. Prior to developing models,
we assessed collinearity among predictor variables to
ensure that highly correlated (Pearson’s r > 0.7) variables
were not considered simultaneously. We began by
developing a null model that included only the intercept
and random effects (Crawley 2007), which served as a
baseline for assessing improvements in model fit based on
changes in Akaike’s Information Criterion (AIC), followed
by a full model containing all predictor variables. The full
model was run at each of the candidate spatial scales, and
we selected the scale with the lowest AIC value. We
discriminated among reduced versions of the full model,
holding out one parameter or set of parameters at a time
and assessing improvements in AIC values to select a best
approximating model (Burnham and Anderson 2002,
Crawley 2007). When the full model would not converge,
we used different subsets of the full model to evaluate
predictors and identify the model best supported by the
data. We calculated Akaike weights (w;) for each model
within 4 AIC units of the model with the lowest AIC value,
which is a useful rule of thumb for identifying the set of
models plausibly supported by the data (Burnham and
Anderson 1998). Akaike weights provide an indication of
the relative likelihood of competing models best fitting the
data, and thus enable evaluation of the relative strength of
evidence for models relating bird observations to predictor
variables.

In an attempt to develop a parsimonious model and
avoid spurious correlations, we only evaluated main effects
of linear relationships, except for quadratic relationships
that characterized climatic envelopes and nonlinear
relationships with the amount of cropland in the landscape
or seasonal changes in detection (Table 1). We conducted
statistical analyses in the R environment (R Core Team
2013), specifically the generalized linear mixed models
capacity of the Ime4 package (Bates et al. 2015), using a
binomial distribution. We used the bound optimization by
quadratic approximation option to improve convergence
of the maximum likelihood estimator.

Because geographic distributions varied among species,
we did not use the same analysis extent for all species. For
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species that were not distributed across our entire study
area, we selected analysis areas by states, as that is the level
at which many conservation programs in the region are
implemented. By excluding large areas where species did
not occur, we were able to reduce the preponderance of
zeroes and resulting overestimation of model performance
metrics (Lobo et al. 2008, Barve et al. 2011, Zuur et al.
2012) while retaining sufficient observations where birds
were not detected to model biologically important climatic
factors influencing species distributions (Guisan and
Thuiller 2005).

Analyzing BBS data at the stop level allows inferences to
be made at a much finer spatial resolution than using BBS
data at the route level, but increases the potential for
positive spatial autocorrelation, which, if ignored, can lead
to overestimation of the precision of parameter estimates,
obscure ecological patterns, and reduce model performance
(Legendre 1993, Carroll and Pearson 2000, Lennon 2000,
Lichstein et al. 2002). We included climatic and land cover
variables to account for broad-scale gradients that may
influence bird distribution, as well as observer and time-of-
day variables to account for local spatial autocorrelation.
When spline correlograms (Bjornstad 2015) indicated that
positive spatial autocorrelation remained in model residuals,
we reran the best-supported model with an autologistic
term that indicated the presence of the target species at
adjacent stops to improve model fit and reduce local
autocorrelation (Augustin et al. 1996, Klute et al. 2002).
When creating correlograms, some of which used correla-
tion matrices resulting from 83,500 observations, comput-
ing limitations required that we thinned residuals from 4 of
the models by year. We evaluated models by calculating the
area under the curve (AUC) of receiver operating charac-
teristics (ROC; Hosmer and Lemeshow 2000) using 10-fold
cross validation (Stone 1974).

We created maps showing the relative predicted occur-
rence of each species throughout the study region by
incorporating corresponding GIS data into the logistic
regression equation, using coefficients estimated from all
folds of the data used to develop the model. We used the
mean value of nonlandscape variables (i.e. those related to
detection or annual weather conditions) when applying
models to landscape data. Because of the difficulty of
applying the autologistic term across the landscape,
particularly in an environment as variable as our study
region, we used the autologistic term to improve statistical
inference but did not apply it to create predictive surfaces
(Boyce 2006, Dormann et al. 2007). We also created plots, by
species, of bird response to the amount of perennial cover
(i.e., pasture and hay, grassland and herbaceous, CRP, and
alfalfa cover classes) and forest in the sampling window,
again holding other variables at their mean value. These
plots were used to compare species’ responses to these
factors and to identify thresholds in responses to landscape
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TABLE 2. Means and standard deviations (SD) for continuous
predictor variables at 83,500 Breeding Bird Survey (BBS) counts
conducted at 16,250 stops (individual survey points). Values for
land cover and digital elevation model data were derived from a
sampling window with 800-m radius. Land cover data were
static, but climatic and temporal data varied among years. See
Table 1 for variable definitions.

Variable Mean SD

Grassland&Herbaceous (%) 36.2 32.7
Pasture&Hay (%) 6.4 14.8
CRP (%) 2.3 7.8
Alfalfa (%) 24 7.0
Cropland (%) 31.2 331
Open water (%) 0.5 2.1
Emergent herbaceous wetlands (%) 1.0 3.7
Forest (%) 9.1 211
Shrub (%) 54 13.0
Developed (%) 44 6.8
Patches (n) 133 8.3
Minimum temperature (°C) 1.6 4.5
Maximum temperature (°C) 29.5 2.3
Long-term precipitation (mm) 543.6 191.2
Current-year precipitation anomaly (mm) 3283 169.4
Previous-year precipitation anomaly (mm) —18.6 99.2
Topographic variation 11.3 17.2
Elevation (m) 934.0 497.0
Stop number 255 14.4
Ordinal date 167.3 9.7

characteristics that could be addressed at local scales
through conservation treatments such as tree removal and
grassland restoration. Finally, we assessed simple correla-
tions between predicted occurrence and number of birds
observed at each stop, by species, to determine whether
occurrence models were useful predictors of density.

RESULTS

Landscapes surrounding BBS stops throughout our study
region varied considerably in type and distribution of land
cover (Table 2). High correlations between forest cover and

Using BBS data to target bird conservation 513

topographic roughness (r = 0.72) and long-term January
(minimum) and August (maximum) temperatures (r =
0.70) precluded simultaneous consideration of these
variables in models using the complete dataset. In the
subset of data from Kansas and Nebraska, cropland and
the grassland and herbaceous cover class were strongly
correlated (r = —0.70), precluding their simultaneous
consideration in the Eastern Meadowlark model, which
was constrained to those 2 states. Data were dominated by
zeroes for all species, although prevalence varied among
species (Table 3). Given the complexity of our models and
the number of variables considered, some models that we
considered did not successfully converge, even when the
number of maximum likelihood iterations was increased to
500,000.

Habitat and observed bird numbers showed strong
positive spatial autocorrelation, but spatial autocorrelation
was eliminated in model residuals (Figure 2) for 4 of the 7
species that we assessed. Climatic and land cover variables
accounted for much spatial autocorrelation (Figure 2C),
but observer and time variables were necessary to remove
remnant spatial autocorrelation (Figure 2D). Models for
the Upland Sandpiper, Lark Bunting, and Grasshopper
Sparrow also required the addition of an autologistic term
to remove remnant positive spatial autocorrelation from
model residuals.

The best-supported models characterizing bird—environ-
ment relationships indicated that the occurrence of all
species was influenced by climate, weather, or topography,
as well as landscape composition and configuration (Table
4). Improvements in AIC values over the null model
indicated substantial support for the best-supported model
for all species, and AUC values ranged from 0.80 to 0.95
(Table 3), indicating excellent to outstanding discrimination
(Hosmer and Lemeshow 2000). Model uncertainty varied
among species, but competing models were nested and
often differed from the best-supported model due to the
inclusion or exclusion of only one variable (Appendix Table

TABLE 3. Species, scale of model, model performance (area under curve [AUC] of receiver operator characteristics), difference in
Akaike’s Information Criterion (AIC) from null model (A, AIC), correlation between predicted occurrence and individuals actually
observed (Cor), U.S. states included in analysis, number of Breeding Bird Survey (BBS) stop (survey point) counts included in analysis
(n), and number of counts during which each species was detected (Detections) for best-supported models predicting the
occurrence of 7 grassland bird species in the U.S. Northern Great Plains, 2005-2011. Variables are defined in Table 1.

Species Scale (m) AUC A, AIC Cor States @ n Detections
Upland Sandpiper 800 0.87 3,004.8 0.52 All 83,500 6,961
Sprague’s Pipit 1,200 0.88 336.6 0.50 MT, ND, SD 36,350 349
Lark Bunting 3,200 0.95 6,542.6 0.61 All 83,500 10,152
Savannah Sparrow 800 0.80 1,425.3 0.52 MT, ND, SD 36,650 5,380
Grasshopper Sparrow 400 0.82 5,498.6 0.53 All 83,500 12,883
Bobolink 400 0.87 1,018.5 0.41 MT, ND, SD, NE 46,400 4,412
Eastern Meadowlark 800 0.88 1,661.8 0.56 KS, NE 27,300 5,603

@KS =Kansas, MT = Montana, ND = North Dakota, NE = Nebraska, and SD = South Dakota. ‘All" additionally includes parts of Colorado

and Wyoming.

The Condor: Ornithological Applications 119:506-525, © 2017 American Ornithological Society

Downloaded From: https://bioone.org/journals/The-Condor on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



514 Using BBS data to target bird conservation

N. D. Niemuth, M. E. Estey, S. P. Fields, et al.

1.0 1.0
0.5 0.5
c c
kel kel
® ®
© 0.0 © 0.0
= =
<} <}
(@) (@]
-0.5 -0.5
-1.0 -1.0
0 5 10 15 20 0 10 15 20
Distance (km) Distance (km)
1.0 C 1.0 D
0.5 0.5
c c
kel Ko}
= =
© © ;s
© 0.0 D 0.0 —smsRasim A Amiaiiias
= =
<} s}
O (&)
-0.5 -0.5
-1.0 -1.0

10
Distance (km)

15 20

FIGURE 2. Positive spatial autocorrelation was evident in (A) the
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amount of grassland in the landscape surrounding Breeding Bird

Survey (BBS) stops (individual survey points) and (B) the number of Eastern Meadowlarks recorded at BBS stops in Kansas and
Nebraska, USA. Positive spatial autocorrelation was (C) substantially reduced in residuals of a model predicting the occurrence of
Eastern Meadowlarks in Kansas and Nebraska that included only habitat, climatic, and topographic variables, and (D) eliminated
from residuals of a model predicting Eastern Meadowlark occurrence that also included observer, BBS stop, and date. The heavy

solid line represents estimated autocorrelation, and the thin dash
for other species and geographic extents showed similar pattern

5). The focal species showed similar responses to landscape
characteristics, with consistent negative associations with
trees, positive and varying associations with grassland cover
classes, and negative, weak positive, or curvilinear responses
to cropland (Table 4, Figures 3 and 4).

Precipitation strongly influenced the occurrence of all 7
species, with 5 of the 7 species influenced by short-term
(either current-year or previous-year) precipitation and 6
influenced by long-term (30-yr mean) precipitation. The
occurrence of Upland Sandpipers, Lark Buntings, and
Eastern Meadowlarks was more strongly associated with
mean long-term January (minimum) temperature than
mean long-term August (maximum) temperature (Table
4). The detection of all species but Sprague’s Pipit was
influenced by the daily and/or seasonal timing of surveys,
as well as survey structure, including observer, year, and
route effects (Table 4).

Spatial patterns in the predicted occurrence and
numbers of grassland birds reflected regional climatic
patterns, land forms, and cover classes, with Sprague’s

ed line indicates the 95% confidence envelope. Data and models
s.

Pipits and Savannah Sparrows selecting dry and moist
portions, respectively, of northern states; Upland Sandpip-
ers, Lark Buntings, and Grasshopper Sparrows found
throughout much of the study area; and Eastern Mead-
owlarks occurring most frequently in the moister, eastern
portion of Nebraska and Kansas (Figure 5). Consistent
with these patterns, the best-supported models showed a
negative relationship between the occurrence of Lark
Buntings and the area of emergent herbaceous wetlands,
and a positive relationship between the area of emergent
herbaceous wetlands and occurrence of Upland Sandpip-
ers, Savannah Sparrows, Bobolinks, and Eastern Meadow-
larks (Table 4). Predicted occurrence at each BBS stop was
strongly correlated with observed numbers for all species
(Table 3).

DISCUSSION

Our results demonstrate that analyses using stop-level BBS
data and environmental data with high thematic resolution
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TABLE 4. Variables and estimated coefficients (and standard errors) for landscape models predicting the occurrence of 7 grassland
bird species in the U.S. Northern Great Plains, 2005-2011. Variables are defined in Table 1, except Autologistic = a binary term
indicating the presence or absence of the target species at one or both adjacent survey points, added to improve model fit and
reduce local spatial autocorrelation.

Coefficient (SE)

Upland Sprague’s Lark Savannah  Grasshopper Eastern
Variable Sandpiper Pipit Bunting Sparrow Sparrow Bobolink Meadowlark
Intercept —5.03 (0.15) —13.33(0.88) —7.68 (0.36) —4.57 (0.25) —3.46 (0.11) —5.85(0.25) —6.96 (0.70)
Grassland&Herbaceous 0.55 (0.06) 0.90 (0.14) 0.66 (0.11) 1.22 (0.08) 0.17 (0.03) 0.96 (0.04)
Pasture&Hay 0.04 (0.03) 0.35(0.02)  0.55 (0.04) 0.29 (0.02) 0.44 (0.03)
CRP 0.03 (0.02) 0.22 (0.02)  0.35(0.02) 0.22 (0.01) 0.33 (0.02)
Alfalfa 0.28 (0.02)  0.15 (0.03) 0.16 (0.02)
Cropland 0.20 (0.06) 0.09 (0.35) 0.86 (0.13)  0.54 (0.09)  0.78 (0.09)
Cropland? —0.96 (0.35) —0.13 (0.08) —0.27 (0.08) —0.10 (0.05)
Open water —0.07 (0.02) —1.85(0.38) —0.12(0.06) —0.05 (0.02) —0.13 (0.02)
Emergent herbaceous 0.02 (0.01) —0.13 (0.06) 0.12 (0.01) 0.09 (0.01) 0.25 (0.03)
wetlands
Forest —1.54 (0.12) —1.40 (0.19) —0.86 (0.07) —0.33 (0.08) —0.70 (0.08) —0.72 (0.07)
Shrub 0.20 (0.05) 0.21 (0.05) —0.06 (0.03)  0.24 (0.04) —0.55 (0.09) 4.59 (1.19)
Developed —0.17 (0.04) —0.21 (0.07) —0.09 (0.03) —0.06 (0.03) —0.25(0.03) —0.11 (0.02)
Patches —0.12 (0.05) —0.19 (0.03)
Minimum temperature 1.72 (0.36) 4.05 (0.48) 1.94 (0.33)
Minimum temperature*>  —2.25 (0.38) —3.30 (0.44)
Maximum temperature 29.10 (6.04) —1.59 (0.14) 5.35 (0.93) 22.57 (2.31)
Maximum temperature? —32.90 (6.33) —4.84 (0.90) —24.07 (2.39)
Long-term precipitation 2.00 (0.42) —2.36 (0.68) 6.80 (1.10) —0.80 (0.14) 4.60 (1.05) 15.09 (1.63)
Long-term precipitation® —1.82 (0.43) —12.50 (1.70) —5.42 (1.31) —10.05 (1.23)
Current-year 0.38 (0.18)  —0.64 (0.07) —0.08 (0.03) —0.39 (0.07) 0.10 (0.03)
precipitation anomaly
Previous-year 0.44 (0.14) —0.05 (0.01) 0.06 (0.02)
precipitation anomaly
Topographic variation —0.37 (0.08) —1.41(0.31)
Elevation —0.83 (0.11) 0.00 (0.13) —0.83 (0.19) —0.42 (0.09) 1.86 (0.52)
Stop number —0.02 (0.01) —0.20 (0.02) —0.17 (0.01) 0.10 (0.02) —0.21 (0.02)
Ordinal date 2.24 (0.68) —1.10 (0.70) —0.09 (0.03) —2.73 (0.88)
Ordinal date? —2.02 (0.67) 1.05 (0.70) 2.60 (0.89)
Autologistic 1.32 (0.03) 2.32 (0.03) 1.18 (0.02)

are able to describe habitat relationships often associated
with fine-grained, local studies but across broad spatial
extents and at scales relevant to local conservation actions.
For example, our models indicated that the Savannah
Sparrow was positively associated with pasture and hay,
which was found primarily in the northeastern, or tallgrass
prairie, portion of our study region, CRP grasslands, and
emergent wetlands, all of which are consistent with
previous findings of selection for mesic sites, tall, dense
cover, and exotic grasses (Davis and Duncan 1999, Madden
et al. 2000, Davis et al. 2016). Bobolinks showed a similar
response, but were also associated with alfalfa, again
consistent with previous findings showing selection for
exotic grasses and legumes (Renken and Dinsmore 1987,
Delisle and Savidge 1997). Conversely, the strong associ-
ation of Sprague’s Pipits, Grasshopper Sparrows, Lark
Buntings, and Upland Sandpipers with the grassland and
herbaceous cover class, which was found primarily in the
central and western portion of our study region, is

consistent with previous findings that these species
generally select drier sites with short or sparse vegetation
(Davis et al. 1999, Madden et al. 2000, Lueders et al. 2006).

The association between the area of land enrolled in
CRP grasslands and the occurrence of the Lark Bunting,
Savannah Sparrow, Grasshopper Sparrow, Bobolink, and
Eastern Meadowlark reinforces previous findings as well as
the importance of the CRP program to grassland bird
populations in the Great Plains (Johnson and Igl 1995,
Delisle and Savidge 1997, Johnson 2005). A lack of
association between CRP grassland and the occurrence
of Sprague’s Pipits and Upland Sandpipers reflects the
Sprague’s Pipit’s selection for native grasslands of short to
intermediate stature (Davis and Duncan 1999, Davis et al.
1999, Madden et al. 2000, Davis et al. 2016) and the
Upland Sandpiper’s frequent selection of sites with short,
sparse vegetation (Renken and Dinsmore 1987, Sander-
cock et al. 2015). As expected, some of the species that we
assessed showed quadratic or weak positive associations
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FIGURE 3. Response to the area of forest in the sampling window varied among species, with Lark Bunting and Upland Sandpiper
showing the strongest avoidance of trees, and Grasshopper Sparrow showing the lowest avoidance of trees. Response curves were
scaled to a common unit for all species. The order of species in the legend follows the order of species in the figure: GRSP =
Grasshopper Sparrow, BOBO = Bobolink, EAME = Eastern Meadowlark, SAVS = Savannah Sparrow, LARB = Lark Bunting, and UPSA =

Upland Sandpiper.

with cropland, which is consistent with previous findings
of lower density or likelihood of occurrence in cropland
than in grasslands (Johnson and Igl 1995).

Responses to climate varied among species but, similarly
to other studies (i.e. Thogmartin et al. 2006a, Ahlering et
al. 2009, Albright et al. 2010, Lipsey et al. 2015),
precipitation and/or temperature were strong predictors
of occurrence for all species. The biological significance of
climatic variables is unclear, as they may be correlates of
other factors (e.g., plant community composition, primary
and secondary productivity) that more directly influence
species occurrence, likely in concert with other factors
such as soils and landform (Guisan and Zimmerman 2000,
Niemuth et al. 2008). The occurrence of 4 of the species
that we assessed was more strongly associated with long-
term mean August temperatures, while the occurrence of
the remaining 3 species was more strongly associated with
long-term mean January temperatures, but the mechanism
responsible for that difference, and whether the difference
was real and not an artifact of correlation between the 2
variables, is unknown. Regardless of mechanism, weather
and climate in our study region are highly variable and
strongly affect bird occurrence, whether directly or
indirectly.

We did not find support for an association between the
occurrence of Sprague’s Pipits and the number of patches
in the landscape, even though previous analyses have
found Sprague’s Pipits to be sensitive to landscape

fragmentation (Davis 2004, Lipsey et al. 2015), nor did
we find associations between Sprague’s Pipit occurrence
and stop number or ordinal date, which were present for
all other species that we considered. Lack of support for
these relationships may be a function of the small number
of observations of Sprague’s Pipits, which had <10% of the
detections of the other species that we considered. The
Sprague’s Pipit is simply an uncommon species throughout
much of its range, but the problem of the small number of
detections was addressed in part by the 2015 addition of 42
BBS routes in Montana, which had the lowest BBS route
density (1 route per degree block) and highest Sprague’s
Pipit density in the United States.

The BBS only provides an index to bird presence and
numbers, as existing protocols provide no mechanism for
assessing and correcting for detectability, and some
unknown fraction of the birds present at each stop is not
recorded (Sauer et al. 2013). Nevertheless, uncorrected
data can still provide useful estimates of relative density or
probability of occurrence (Johnson 2008, Etterson et al.
2009, Leston et al. 2015), and spatial models developed
from BBS data have been useful for providing ecological
insights, guiding conservation, and providing spatially
explicit minimum estimates of population size and
distribution (e.g., Newbold and Eadie 2004, Thogmartin
et al. 2006a, Hudson et al. 2017, Rosenberg et al. 2017).
Predicted occurrence was positively and significantly
correlated with observed counts for all of the species that
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High |

Relative probability of occurrence

Low

Grassland in sampling window (%)

FIGURE 4. Response to the amount of grassland in the sampling
window varied among species, with Grasshopper Sparrow and
Savannah Sparrow showing the greatest and Lark Bunting and
Sprague’s Pipit showing the smallest increases in occurrence as
the amount of grassland in the landscape increased. The
amount of each grassland type (grassland and herbaceous,
pasture and hay, Conservation Reserve Program [CRP] grassland,
and alfalfa cover classes) was equally divided among the cover
classes included in the best-supported model for each species.
The order of species in the legend follows the order of species in
the figure: GRSP = Grasshopper Sparrow, SAVS = Savannah
Sparrow, UPSA = Upland Sandpiper, BOBO = Bobolink, EAME =
Eastern Meadowlark, LARB = Lark Bunting, and SPPI = Sprague’s
Pipit.

we considered, suggesting that the occurrence models that
we present are also useful for identifying areas of high
density.

Our models included several variables (i.e. stop number,
ordinal date, current-year precipitation, previous-year
precipitation, and autologistic) that weren’t applied to
spatial data to create maps showing relative probability of
occurrence. These variables explained spatiotemporal or
fine-grained spatial variation in bird occurrence that
improved estimates of variables that were in line with
our goal of developing landscape-scale predictive models
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over broad spatial and temporal extents. Models that
include variables to accommodate observer and route
effects as well as daily and seasonal timing can have AIC
values >100 points lower than models without such
variables (data not shown), indicating that models that do
not accommodate sampling and design issues have
essentially zero support for adequately describing the data
relative to models that contain these variables (Burnham
and Anderson 1998). In addition, the elimination of spatial
autocorrelation of residuals when timing and observer
variables were included suggests that our modeling process
accounted for spatiotemporal patterns in detection caused
by observer and timing effects.

Interestingly, of the 3 species that required an autolo-
gistic term to reduce spatial autocorrelation in model
residuals, 2 species, the Lark Bunting and Upland
Sandpiper, are thought to be colonial or semicolonial
nesters (Shane 2000, Casey et al. 2011). This suggests that
some of the spatial autocorrelation that we observed may
have been rooted in bird behavior rather than habitat or
sampling, which reinforces the appropriateness of an
autologistic term to capture such dynamics. However,
autologistic regression contains a degree of circularity and
reduces the size of coefficient estimates for habitat
variables (Dormann 2007), which complicates the appli-
cation of the models to conservation. In our analyses,
confidence intervals for some environmental variables
included zero due to a reduced size of coefficient estimates
and/or increased standard errors after the autologistic
term was added. We chose to retain these variables, given
their biological importance and selection in the non-
autologistic models; alternatively, one could simply use
models without the autologistic term, treating remaining
autocorrelation as a behavioral artifact beyond the scope of
management actions.

The radius of the sampling window at which landscape
data best described bird occurrence was <800 m for 5 of
the 7 species that we evaluated, but extended to 1,200 m
for the Sprague’s Pipit and 3,200 m for the Lark Bunting.
Our findings are consistent with other studies which have
shown that landscape characteristics influence the occur-
rence or density of grassland birds and that the scale of the
landscape influence varies among species (Ribic and
Sample 2001, Cunningham and Johnson 2006, Thogmartin
et al. 2006a). Birds likely respond to different landscape
features (e.g., trees vs. wetlands) at different scales, but we
did not assess landscape characteristics at multiple scales
within individual species’ models due to the absence of a
priori information about selection preferences of each
species.

Management Implications
Spatially explicit models provide a biological foundation
for identifying landscapes suitable for protection or
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Predicted
occurrence

High

Low

FIGURE 5. Predicted occurrence of (A) Upland Sandpiper, (B) Sprague’s Pipit, (C) Lark Bunting, (D) Savannah Sparrow, (E)
Grasshopper Sparrow, (F) Bobolink, and (G) Eastern Meadowlark in the U.S. Northern Great Plains. Gray indicates areas outside the
region of analysis.
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management, as well as for assessing the effects of
conservation programs and investigating the potential
effects of changes in climate and land use. The relative
scarcity and limited distribution of some species reinforce
the importance of using spatial models to direct conser-
vation efforts, as conservation treatments in areas without
the appropriate climatic envelope or landscape character-
istics will provide little benefit for target species. The
models presented in this paper are of sufficiently fine
spatial and thematic resolution to assess individual land
parcels, unlike models developed using coarse-grained
response data (i.e. entire BBS routes) or predictor
variables. However, even with relatively fine resolution,
management may be necessary to ensure that appropriate
fine-grained habitat features (i.e, absence of trees, appro-
priate vegetation structure and composition) are present
(Grant et al. 2004, Derner et al. 2009, Greer et al. 2016).
In our study region, spatial models and decision support
tools derived from those models are widely used to guide
conservation efforts (Niemuth et al. 2009, RWBJV 2013).
Paper and digital copies of occurrence or density models
are distributed to conservation practitioners, who use
them to evaluate landscapes for conservation treatments.
For example, value to grassland birds is one of the criteria
for assessing candidate land parcels for acquisition of
perpetual grassland easements in the Prairie Pothole
Region (USFWS 2010), where tens of millions of dollars
are spent annually to conserve habitat for upland-nesting
waterfowl. As a result of these efforts, ~2 million ha of
wetlands and grasslands have been protected in the Prairie
Pothole Region through the acquisition of perpetual
easements for waterfowl conservation (Niemuth et al.
2014). In the Flint Hills of Kansas, the responses of
grassland birds to tree and grassland cover depicted in
Figures 3 and 4 were used to develop spatially explicit
decision support tools showing areas where tree removal
and grassland restoration would provide the greatest
benefits to grassland birds (M. Estey personal observation).
In the absence of direct access to applied models, the
varying responses that we have documented for response
to the amount of grassland or forest cover in the
surrounding landscape may provide a framework for
providing benefits for multiple species. Whereas many
species richness models focus on areas of distributional
overlap without considering species requirements and
conservation treatments, the relationships that we have
identified allow practitioners to identify portions of the
landscape needing treatment (e.g., tree removal or
grassland restoration) and, by meeting the needs of the
most restrictive species, to provide habitat for multiple
species. The occurrence of 4 species was positively
associated with wetlands in the landscape, which provides
justification for the restoration of grassland and wetland
complexes for migratory bird conservation in the U.S.
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Northern Great Plains. Finally, negative responses by
grassland birds to urban areas and grassland fragmentation
provide justification for conservation easements and
grassland restoration that prevent development and reduce
fragmentation, respectively.

Climatic conditions in the Northern Great Plains are
highly variable, with the result that the distributions and
numbers of birds can change greatly from one year to the
next (Cody 1985, George et al. 1992, Niemuth et al. 2008).
Variability in distributions reinforces the importance of
broad spatial extents and long timeframes in conservation
planning and action; the BBS is well suited for providing
data to help guide conservation actions for many species
across much of North America.
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APPENDIX TABLE 5. Constituent variables (preceded by a sign indicating the direction of the relationship), differences in Akaike’s
Information Criterion (AAIC), and Akaike weights (w;) for candidate models with AIC differences <4 relating the apparent occurrence
of 7 grassland bird species to environmental and survey predictors in the U.S. Northern Great Plains. All models contain random
effects for observer, Breeding Bird Survey (BBS) route, and year. Variables are defined in Table 1.

Species Model AAIC w;
Upland Sandpiper +Grassland&Herbaceous, +Pasture&Hay, +Shrub, +Cropland, —Open water, 0.0 0.66
+Emergent herbaceous wetlands, —Forest, —Developed, +Minimum temperature,
—Minimum temperature?, +Long-term precipitation, —Long-term precipitation?,
—Elevation, —Topographic variation, —Stop number, +Ordinal date, —Ordinal date?
+Grassland&Herbaceous, +Pasture&Hay, +Shrub, +Cropland, —Open water, 1.3 0.34
+Emergent herbaceous wetlands, —Forest, —Developed, +Minimum temperature,
—Minimum temperature?, +Long-term precipitation, —Long-term precipitation?,
—Elevation, —Topographic variation, +Ordinal date, —Ordinal date?
Sprague’s Pipit +Grassland&Herbaceous, +Cropland, —Cropland?, —Open water, +Maximum 0.0 0.45
temperature, —Maximum temperature®, —Long-term precipitation, +Current-year
precipitation anomaly, +Previous-year precipitation anomaly, —Topographic
variation
+Grassland&Herbaceous, +Cropland, —Cropland?, —Open water, +Maximum 0.9 0.28
temperature, —Maximum temperature?, —Long-term precipitation, +Previous-year
precipitation anomaly, —Topographic variation
+Grassland&Herbaceous, —Alfalfa, +Cropland, —Cropland?, —Open water, +Maximum 1.7 0.19

temperature, —Maximum temperature®, —Long-term precipitation, +Current-year
precipitation anomaly, +Previous-year precipitation anomaly, —Topographic

variation
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APPENDIX TABLE 5. Continued.

Species Model AAIC

Wi

+Grassland&Herbaceous, +Pasture&Hay, —Alfalfa, +Cropland, —Croplandz, —Open 34
water, +Maximum temperature, —Maximum temperature?, —Long-term
precipitation, +Current-year precipitation anomaly, —Previous-year precipitation
anomaly, —Topographic variation
Lark Bunting +Grassland&Herbaceous, +Shrub, +Cropland, —Cropland?, —Open water, —Emergent 0.0
herbaceous wetlands, —Forest, —Developed, —Patches, +Minimum temperature,
—Minimum temperature?, +Long-term precipitation, —Long-term precipitation?,
+Current-year precipitation anomaly, +Elevation, —Ordinal date, +Ordinal date?
+Grassland&Herbaceous, —Pasture&Hay, -+Shrub, 4-Cropland, —Cropland?, —Open 0.6
water, —Emergent herbaceous wetlands, —Forest, —Developed, —Patches,
+Minimum temperature, —Minimum temperature?, +Long-term precipitation,
—Long-term precipitation?, +Current-year precipitation anomaly, +Elevation,
—Ordinal date, +Ordinal date?
+Grassland&Herbaceous, —Pasture&Hay, +Shrub, +Cropland, —Cropland?, —Open 14
water, —Emergent herbaceous wetlands, —Forest, —Developed, —Patches,
+Minimum temperature, —Minimum temperature?, +Long-term precipitation,
—Long-term precipitation?, +Current-year precipitation anomaly, —Ordinal date,
+Ordinal date?
Savannah Sparrow +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, —Open water, +Emergent 0.0
wetland, —Forest, —Shrub, —Developed, —Patches, —Maximum temperature,
—Long-term precipitation, —Topographic variation, —Stop number
+Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, —Open water, +Emergent 0.3
wetland, —Forest, —Developed, —Patches, —Maximum temperature, —Long-term
precipitation, —Topographic variation, —Stop number
+Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland? —Open water, +Emergent 03
wetland, —Forest, —Shrub, —Developed, —Patches, —Maximum temperature,
—Long-term precipitation, —Elevation, —Stop number, +Ordinal date
—Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 0.9
—Open water, +Emergent wetland, —Forest, —Shrub, —Developed, —Patches,
—Maximum temperature, —Long-term precipitation, —Elevation, —Stop number
—Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 2.1
—Open water, +Emergent wetland, —Forest, —Shrub, —Developed, —Patches,
—Maximum temperature, —Long-term precipitation, +Long-term precipitation?,
—Topographic variation, —Stop number
Grasshopper Sparrow  +Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 0.0
—Forest, +Shrub, —Developed, +Maximum temperature, —Maximum temperature?,
—Current-year precipitation anomaly, —Previous-year precipitation anomaly, —Stop
number
+Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 1.1
—Forest, 4+Shrub, —Developed, +Maximum temperature, —Maximum temperature?,
—Current-year precipitation anomaly, —Previous-year precipitation anomaly, —Stop
number, —Ordinal date
+Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 1.8
—Forest, +Shrub, —Developed, +Maximum temperature, —Maximum temperature?,
+Long-term Precipitation, —Current-year precipitation anomaly, —Previous-year
precipitation anomaly, —Stop number
+Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Cropland?, 29
—Forest, +Shrub, —Developed, +Maximum temperature, —Maximum temperature?,
—Current-year precipitation anomaly, —Previous-year precipitation anomaly, —Stop
number
Bobolink +Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, —Open water, +Emergent 0.0
herbaceous wetlands, —Forest, —Shrub, —Developed, +Maximum temperature,
—Maximum temperature?, +Long-term precipitation, —Long-term precipitation?,
—Current-year precipitation anomaly, —Elevation, +Stop number, —Ordinal date
+Grassland&Herbaceous, +Pasture&Hay, +CRP, +Alfalfa, +Cropland, —Open water, 0.5
+Emergent herbaceous wetlands, —Forest, —Shrub, —Developed, +Maximum
temperature, —Maximum temperature?, +Long-term precipitation, —Long-term
precipitation®, —Current-year precipitation anomaly, —Elevation, +Stop number,
—Ordinal date

0.08

0.45

0.33

0.22

0.27

0.23

0.23

0.18

0.09

0.45

0.26

0.18

0.1

0.56

0.44
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APPENDIX TABLE 5. Continued.
Species Model AAIC w;

Eastern Meadowlark +Grassland&Herbaceous, +Pasture&Hay, +CRP, +Emergent herbaceous wetlands, 0.0 0.59
—Forest, +Shrub, —Developed, +Minimum temperature, +Long-term precipitation,
—Long-term precipitation?, +Current-year precipitation anomaly, +Previous-year
precipitation anomaly, +Elevation, —Stop number, —Ordinal date, +Ordinal date’
+Grassland&Herbaceous, +Pasture&Hay, +CRP, +Emergent herbaceous wetlands, 0.7 0.41
—Forest, +Shrub, —Developed, —Patches, +Minimum temperature, +Long-term
precipitation, —Long-term precipitation?, +Current-year precipitation anomaly,
+Previous-year precipitation anomaly, +Elevation, —Stop number, —Ordinal date,
+Ordinal date?

The Condor: Ornithological Applications 119:506-525, © 2017 American Ornithological Society

Downloaded From: https://bioone.org/journals/The-Condor on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



