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ABSTRACT
Obtaining unbiased survey data for vocal bird species is inherently challenging due to observer biases, habitat
coverage biases, and logistical constraints. We propose that combining bioacoustic monitoring with unmanned aerial
vehicle (UAV) technology could reduce some of these biases and allow bird surveys to be conducted in less accessible
areas. We tested the feasibility of the UAV approach to songbird surveys using a low-cost quadcopter with a simple,
lightweight recorder suspended 8 m below the vehicle. In a field experiment using playback of bird recordings, we
found that small variations in UAV altitude (it hovered at 28, 48, and 68 m) didn’t have a significant effect on detections
by the recorder attached to the UAV, and we found that the detection radius of our equipment was comparable with
detection radii of standard point counts. We then field tested our equipment, comparing songbird detections from our
UAV-mounted recorder with standard point-count data from 51 count stations. We found that the number of birds per
point on UAV counts was comparable with standard counts for most species, but there were significant
underestimates for some—specifically, issues of song masking for a species with a low-frequency song, the Mourning
Dove (Zenaida macroura); and underestimation of the abundance of a species that was found in very high densities,
the Gray Catbird (Dumetella carolinensis). Species richness was lower on UAV counts (mean¼ 5.6 species point�1) than
on standard counts (8.3 species point�1), but only slightly lower than on standard counts if nonaudible detections are
omitted (6.5 species point�1). Excessive UAV noise is a major hurdle to using UAVs for bioacoustic monitoring, but we
are optimistic that technological innovations to reduce motor and rotor noise will significantly reduce this issue. We
conclude that UAV-based bioacoustic monitoring holds great promise, and we urge other researchers to consider
further experimentation to refine techniques.

Keywords: bioacoustics, drone, methodology, songbird, UAV

La factibilidad de contar aves canoras usando vehı́culos aéreos no tripulados

RESUMEN
La obtención de datos no sesgados de especies de aves que vocalizan es intrı́nsecamente difı́cil debido a sesgos del
observador, sesgos de la cobertura del hábitat y restricciones logı́sticas. Proponemos que la combinación de un
monitoreo bio-acústico usando la tecnologı́a de Vehı́culos Aéreos No Tripulados (VANT) podrı́a reducir algunos de
estos sesgos y permitir que los muestreos de aves se realicen en áreas menos accesibles. Evaluamos la factibilidad del
enfoque de VANT para muestreos de aves canoras usando un cuadricóptero de bajo costo con un grabador simple de
bajo peso suspendido 8 m por debajo del vehı́culo. En un experimento de campo en el que reprodujimos sonidos
previamente grabados de aves, encontramos que pequeñas variaciones en la altitud del VANT (28 m, 48 m, 68 m) no
tuvieron un efecto significativo en las detecciones y que el radio de detección de nuestro equipamiento fue
comparable con los radios de detección de los puntos de conteo estándar. Luego evaluamos nuestro equipamiento a
campo, comparando las detecciones de las aves canoras con nuestro grabador colocado en el VANT con datos de
puntos de conteo estándar en 51 estaciones de conteo. Encontramos que el número de aves por punto de conteo
detectado con el VANT fue comparable con los conteos estándar para la mayorı́a de las especies, pero hubieron
subestimaciones significativas para algunas—especı́ficamente, temas de enmascaramientos del canto para una
especie con un canto de baja frecuencia (Zenaida macroura) y subestimación de la abundancia de una especie que fue
encontrada en densidades muy altas (Dumetella carolinensis). La riqueza de especies en los conteos con VANT (media
de 5.6 especies/punto) fue más baja que en los conteos estándar (8.3 especies/punto), pero solo ligeramente más baja
que en los conteos estándar si se omiten las detecciones no audibles (6.5 especies/punto). El ruido excesivo de los
VANT representa un obstáculo importante para su uso en monitoreos bio-acústicos, pero somos optimistas de que las
innovaciones tecnológicas para reducir el ruido del motor y del rotor disminuirán significativamente esta limitación. El
monitoreo bio-acústico usando VANT es muy prometedor e instamos a otros investigadores a que consideren nuevos
experimentos para refinar estas técnicas.
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INTRODUCTION

Bird surveys provide crucial data for monitoring bird

populations, conducting ecological studies, and determining

effective environmental management strategies (Canterbury

et al. 2000, Gregory and Strien 2010, Tulloch et al. 2013). A

wide array of bird survey techniques is available, among

which point-count and line-transect sampling are the most

commonly deployed (Gregory et al. 2004). However, all bird

survey techniques are known to be subject to biases, among

which coverage biases (Betts et al. 2007, Leitão et al. 2011,

McCarthy et al. 2012, Bird et al. 2014) and observer biases

(Alldredge et al. 2007, Simons et al. 2009, Campbell and

Francis 2011) are especially prevalent.

Many bird survey protocols are designed to maximize the

number of bird detections, which is often achieved by

minimizing travel time between survey locations. Road-

based counts, such as the U.S. Geological Survey’s Breeding

Bird Survey (BBS), are commonly used to assess bird

abundance and trends (Sauer et al. 2013). While roadside

sampling allows for highly efficient surveys, it results in
underrepresentation of core habitats, areas of steep terrain,

wetlands, or others areas that are dangerous, time-

consuming, or difficult to access. As a result, roadside

surveys lack sufficient representation of some habitat types,

and temporal changes in habitat at roadsides may not reflect

changes in the wider landscape, thereby introducing bias in

both abundance estimates and population trends (Keller

and Scallan 1999, Betts et al. 2007).

In addition to inherent habitat biases, roadside bird

surveys are subject to road noise interference, which can

affect an observer’s ability to detect certain species (Ralph

et al. 1995). Further, several recent studies have shown that

birds are sensitive to road noise pollution, with resulting

behavioral changes (Brumm 2004), reductions in bird

species richness, and changes in bird communities (Francis

et al. 2009, 2011, McClure et al. 2013). Even in the vicinity

of low traffic roads, birds are affected by visual distur-

bances and increases in predation, due to edge effects or

increased urbanization (Keller and Scallan 1999, Forman

and Alexander 2003).

There are several types of observer biases inherent in

bird surveys. Field methods that are noisy or disruptive

may disturb target species, making it difficult to obtain

accurate population counts (Bibby et al. 2000). Variation in

the observer’s skills or other sources of human error can

introduce temporal, spatial, and species-specific biases

(Alldredge et al. 2007, Campbell and Francis 2011,

Diefenbach et al. 2015). Ornithologists have developed

numerous analytical techniques that allow observer biases

in bird survey data to be accounted for, including distance-

sampling (Buckland et al. 2005), double-observer (Nichols

et al. 2000), and removal or time-to-detection methods

(Farnsworth et al. 2002, Alldredge et al. 2007). A potential

solution to observer biases for surveys of vocal bird species

is to obtain audio recordings, which can reduce bias by

allowing (1) multiple analysts to analyze recordings, (2) the

archiving of recordings for future use or consultation

(Celis-Murillo et al. 2009, Frommolt and Tauchert 2014),

and (3) automated species identification (Aide et al. 2013).

Because audio bird recordings are generally from

ground-based or close-to-ground recorders, they may still

be limited by site accessibility and the logistical constraints

of traversing difficult terrain. However, aerial recordings

have greater range and mobility and can be used to access

sites normally not surveyed by terrestrial methods (Jones

et al. 2006). Aerial ecological surveys offer a solution to

coverage biases and have already proved a valuable tool in

wildlife monitoring (Anderson and Gaston 2013). Previous

studies have used low-altitude imagery gathered from

cameras mounted on unmanned aerial vehicles (UAVs) to

document species occurrences (Jones et al. 2006, Watts et

al. 2010, Chabot et al. 2015, Ratcliffe et al. 2015,

McClelland et al. 2016) or to monitor nests (Weissen-

steiner et al. 2015, Hodgson et al. 2016). The use of UAVs

has increased, in part, because they are safer and less

expensive than aerial surveys using manned aircraft (Jones

et al. 2006, Evans Ogden 2013) or result in efficiency gains
when compared with traditional field techniques (McClel-

land et al. 2016).

We propose that bioacoustic monitoring via UAV-

mounted recorders could be a significant new technique
for monitoring songbird populations. To our knowledge,

there are no published studies of bioacoustic monitoring of

birds using motorized UAVs. Fristrup and Clark (2009)

demonstrated that inexpensive, lightweight, retrievable bal-

loons equipped with a microphone and GPS locator could be

used to determine songbird abundance, and they recom-

mended the development of a powered aerial system that

could offer advantages in navigational control, as opposed to

a drifting balloon system (Fristrup and Clark 2009).

The aims of our study were to test the initial feasibility

of collecting data on songbird abundance using a UAV and,

importantly, to highlight potential problems and pitfalls

associated with aerial monitoring. We hope that our initial

foray into this field will spur interest in the technology

among other researchers and result in a rapid advance-

ment of techniques. Our approach was to build a low-cost

and relatively low-tech aerial system, which we consider

important if UAV-based bioacoustic monitoring is to

become accessible to ornithologists with limited funding

opportunities.

METHODS

Protocol Development: Equipment and Methods
Protocols were developed on the athletic fields of

Gettysburg College in Adams County, Pennsylvania, USA
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(39.84088N, 77.24088W). In keeping with our aim to test

the feasibility of using low-cost and accessible technology,

we chose to conduct our study using the DJI Phantom 2—

the market leader among low-cost ‘‘consumer’’ drones.

Autonomous UAV flight was achieved using the Ground

Station app on an iPad, connected to the UAV via a 2.4G

bluetooth datalink. To record bird vocalization, we used a

ZOOM H1 Handy Recorder suspended below the UAV.

We chose a recording device that was lightweight (89.9 g

including battery) and inexpensive (less than $100), but

with an in-built cardioid microphone, ensuring an audio

pickup pattern that minimized drone noise (to rear of

microphone) while maximizing audio pickup from the

ground below the drone. The recorder was protected by a

MOVO windscreen. The recorder was attached to the

UAV using fishing line (30 pound rating). Our aim was to

suspend the recorder sufficiently far away from the UAV to

minimize pickup of the UAV noise in our recordings.

During test flights, we determined that a distance of 8 m

between the recorder and UAV was optimal—we observed
that a line length .8 m sometimes resulted in unwanted

motion of the recorder when the UAV was hovering.

During protocol development, we conducted field

experiments with 2 aims: (1) preliminary testing of
feasibility and (2) determining optimal altitude of flight.

We used our UAV and recorder (henceforth ‘‘aerial

system’’) to obtain recordings of broadcasts of songs of 5

songbird species, chosen to encompass the necessary

breadth of songs present in vivo, in terms of loudness,

modulation, pattern, and duration (source of recordings:

Cornell Lab of Ornithology, Ithaca, New York, USA). The

species were Wood Thrush (n ¼ 3 different recordings),

Eastern Towhee (n ¼ 4), Chipping Sparrow (Spizella

passerina; n ¼ 5), Song Sparrow (n ¼ 4), and Eastern

Meadowlark (Sturnella magna; n ¼ 5), for a total of 21

different song recordings. (Scientific names of species not

given in the text are listed in Appendix Table 5.)

The song recordings were amplified to ensure that the

peak sound pressure level (SPL) output from speakers

(SonaVERSE BXL, 12 W peak) was approximately consis-

tent with the SPL of wild bird song. This assessment was

based on measured SPL (at 1 m) for 2 of our 5 species:

Song Sparrow (Anderson et al. 2008) and Eastern Towhee

(Nelson 2000). Based on effective detection radii from

.33,000 point counts in Pennsylvania (Wilson 2012), we

assumed that the Eastern Meadowlark and Wood Thrush

would be the loudest of our 5 species, and we amplified the

recording by 6 dB. For Song Sparrow and Eastern Towhee,

species with intermediate detection radii, we amplified by

3 dB. Assuming that the SPL of Chipping Sparrow song

was the lowest of the 5 species, based on that species

having smaller detection radii, we did not amplify

recordings of that species. All speakers were confirmed

to perform homogeneously by measuring SPL of a known

tone (Audacity: sine wave tone, 440 Hz, 0.6 amplitude)

from a distance of 1 m. Tones were played 3 times from

each speaker at full volume with no significant difference

in peak SPL as determined through one-way analysis of

variance using Vassar Stats (F(2) ¼ 1.11, P ¼ 0.346).

To determine the detection range of our aerial system at

different UAV altitudes, we played each song sequence at

11 speaker stations placed along a horizontal transect

radiating from the location of the hovering UAV (0 m) in

10 m increments up to 100 m. We hovered the UAV at 3

experimental altitudes (28, 48, and 68 m); hence, the

recorder was positioned at the altitudes 20, 40, and 60 m

(Figure 1). This resulted in between 99 and 165

experimental units (distance 3 altitude 3 song combina-

tions) per ‘‘species.’’

Speaker stations consisted of a tripod supporting an

mp3 player, and a skyward-facing speaker placed 1 m off

the ground. While the UAV hovered at a constant height,

song sequences were played at random from the 11

speaker stations. A referee’s whistle was blown before each

song sequence to aid interpretation of the recordings.

Trials were conducted when wind speed was ,10 km hr�1,

in an open space, and at a time of year (January–April

2015) or time of day (afternoons in June 2015) when

ambient bird vocalizations were not present.

Protocol Development: Data Analysis
The audio files generated from our experiment were

randomly numbered (by J.B.) so that the analyst (A.M.W.)

did not know the experimental unit (species, distance, and

FIGURE 1. Experimental setup for protocol development. We
attached an audio recorder to an unmanned aerial vehicle (UAV),
which was flown at 3 altitudes while songs were played at
random from 11 speaker stations located at regular intervals
within 100 m radial distance from where the UAV hovered.

The Auk: Ornithological Advances 134:350–362, Q 2017 American Ornithological Society

352 Songbird surveys using UAV A. M. Wilson, J. Barr, and M. Zagorski

Downloaded From: https://bioone.org/journals/The-Auk on 05 May 2024
Terms of Use: https://bioone.org/terms-of-use



altitude) of each recording. Each song sequence was

subjectively classified by the analyst using the following

code: 3 ¼ loud and clear, 2 ¼ audible, 1 ¼ barely audible,

and 0 ¼ not audible. Song sequences coded 2 and 3 were

considered clear enough to be identifiable to species; code

1 was assigned to songs that the analyst considered would

be difficult to identify to species, if candidate species were

not known. We tested the hypothesis that detectability

varied with UAV altitude (within our narrow experimental

range) using chi-square tests, where audibility codes 2 and

3 were combined into ‘‘detected’’ and 0 and 1 were

combined into ‘‘not detected.’’ On the basis of those

detections at the various radial distances, effective strip

width (ESW) was calculated in the program Distance

(Buckland et al. 2005), with the best of 4 candidate models

of detection curves (Half-normal, Hazard Rate, Negative

Exponential, and Uniform) selected using Akaike’s Infor-

mation Criterion (AIC). An effective strip width is the

distance from a transect at which the number of detections

beyond that distance is equal the number of detections

missed within that distance (Buckland et al. 2005). The

effective detection radius (EDR) is a circular equivalent of

ESW, used to estimate detection ranges in a circular plot

around point-count stations.

Field Validation: Equipment and Methods

Our field validation study was conducted on a 140 ha

portion of the 793 ha Pennsylvania State Game Lands 249,

Heidlersburg, Adams County, south-central Pennsylvania

(39.93468N, 77.17778W; Figure 2). The study area is a

mosaic of woodlots, hedges, wetlands, grasslands, and

feedlots. The surrounding landscape is largely agricultural,

with small human settlements and woodland. Although

the study site is within 1 km of a major highway (U.S.

Route 15), it is buffered by several hundred meters of

woodland and, hence, background anthropogenic noise

levels are low.

We compared UAV-based counts with standard point

counts at 51 count stations, evenly spaced on a 200 m grid

(Figure 2). A.M.W. conducted 5 min point counts between

0620 and 0940 hours on 5 days during June 3–17, 2015.

Point counts were conducted only in optimal weather

(wind ,3 on Beaufort scale, no precipitation). All bird

detections were assigned to five 1 min time bands, and

noted as visual or audial. Where possible, the distance (m)

to each individual bird was measured using a Bushnell

Yardage Pro laser range finder. The remaining distances

were estimated to the nearest meter, based on relative

distances to landmarks or other birds. Birds .100 m from

FIGURE 2. Study area at State Game Lands 249, Adams County, Pennsylvania, USA.
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the count station were not included, to reduce the risk of

double-counting individuals at adjacent stations.

The UAV-based counts at each station occurred on the

same morning as the standard point count with a

randomized starting order; hence, all paired UAV and

standard counts were within 2 hr of each other, but never

within 20 min. The UAV ascended to an altitude of 58 m

(hence, the recorder was at 50 m), from a starting location

well outside the point-count circle (i.e. .100 m), and was

then flown horizontally to hover over the count station.

We used this approach to minimize noise disturbance

within the count circle, while maximizing survey efficiency.

Other researchers have suggested that flying the UAV to a

greater height and slowly descending to the required

position could minimize disturbance (Pomeroy et al. 2015,

Vas et al. 2015), but the extra time required to ascend and

descend would likely have limited our point counts per

battery pack to 2, rather than 3. We also note that

behavioral responses to UAVs were negligible in waterbirds

when the vehicle was flown at heights of 30–40 m (Sardà-

Palomera et al. 2012, Vas et al. 2015, McEvoy et al. 2016),

lower than in our study.

The UAV count duration was 3 min, which allowed 3

point counts per UAV battery. Standard point-count

durations are typically between 3 and 10 min (Sutherland

2006), with 5 min considered adequate in temperate

regions (Bibby et al. 2000, Bonthoux and Balent 2012).

However, 3 min point-count durations are used in some of

the largest bird-monitoring programs, notably the North

American BBS. Following our experimental finding that

there was little difference in detection between UAV

altitudes of 48 and 68 m, we chose to hover our UAV at 58

m above the count station (hence, the recorder was at 50 m

altitude). This altitude was also informed by the fact that

trees .50 m tall are very rare in Pennsylvania (http://www.

pabigtrees.com/tall_tree.aspx), where forest canopy

heights are generally ,30 m (Wasser et al. 2013), and

confirmed by visual inspection of our study area.

Field Validation: Data Analysis
Audio files. We reduced the UAV noise on the

recordings by applying 3 high-pass filters (575 Hz, 6 dB

attenuation; 550 Hz, 6 dB attenuation; 370 Hz, 12 dB

attenuation) in Audacity 2.0.6 (http://www.audacityteam.

org/). Filters were chosen through a process of trial and

error, with the aim of reducing the possibility of causing

hearing damage from listening to recordings with exces-

sive drone noise, while maximizing the audibility of bird

vocalizations. A.M.W. then listened to all recordings 3

times to document audible bird vocalizations that were

identifiable to species. Aerial point-count audio file names

were randomized to ensure that the analyst did not know

which point-count station the recording was from.

Data analysis. We used Distance (Buckland et al. 2005)

to estimate abundances and effective detection radii of the

most numerous species within our study area, based on

standard point-count data. We right-truncated data at 100

m to avoid potential double-counting between adjacent

point-count stations. For each species with sufficient

detections (.20), we tested 4 candidate detection models:

Half-normal, Hazard Rate, Negative Exponential, and

Uniform. The best model was selected using AIC.

We compared species richness and bird detections (per

point) of the 3 min UAV recordings both with the first 3

min and with all 5 min of standard point counts, using

paired t-tests. For the most common songbirds (.20

detections), we compared the number of audial detections

on 3 min standard and UAV counts to provide a like-with-

like comparison.

RESULTS

Protocol Development
The overall rates of detection of broadcast song recordings

reflected variation in their sound pressure, ranging from

41.2% for the quietest ‘‘species’’ (Chipping Sparrow) to 70.8%

and 75.8% for the loudest (Eastern Meadowlark and Wood

Thrush, respectively; Table 1 and Appendix Table 4). We

found no significant difference in overall detectability

between the 3 experimental UAV altitudes (chi-square tests,

P . 0.05; Table 1). Because there was no significant

difference in detection between UAV altitudes, we combined

data for the 3 altitudes to estimate effective strip widths of

our aerial system for each ‘‘species.’’ The ESW values ranged

TABLE 1. Audio recordings used in experimental trials to test rates of detection by a recorder mounted on an unmanned aerial
vehicle (UAV), with overall detection rates for each species (i.e. number of audible vocalizations detected during playback of
recordings, with percentage of the total played in parentheses), effective strip width (ESW, with 95% confidence interval), and chi-
square test result (P) for difference in detection between three UAV altitudes (28, 48, and 68 m).

Species recording
Number of
recordings

Range of peak power
at 1 m (db)

Audible vocalizations
detected (n) ESW (m) P

Wood Thrush 3 82.7–103.6 75 (75.8%) 69.8 (57–86) 0.138
Eastern Towhee 5 83.7–86.0 88 (53.3%) 54.2 (46–64) 0.791
Chipping Sparrow 5 69.0–86.0 68 (41.2%) 40.7 (34–49) 0.088
Song Sparrow 4 79.3–86.6 80 (60.6%) 55.5 (46–66) 0.309
Eastern Meadowlark 5 87.0–101.8 116 (70.3%) 68.1 (58–90) 0.816
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from 40.7 m for the quietest species (Chipping Sparrow) to

69.8 m for the loudest (Wood Thrush).

Field Validation

Fifty-four bird species were detected on standard 5 min

point counts (Appendix Table 5). Gray Catbird was easily

the most numerous species, with detections on 50 of the

51 standard point counts, a mean of 2.43 individuals per

point, and an estimated density of 146 singing males km�2

(Appendix Table 5). Estimated densities of Willow

Flycatcher and Yellow Warbler were also high within the

study area (Appendix Table 5), comparable with the

highest densities noted in other studies (Lowther et al.

1999, Sedgewick 2000). Of the 54 species detected on

standard point counts, several were detected only as fly-

overs, or only as visual cues (i.e. not heard singing or

calling). Effective detection radii on standard counts for

the most common species ranged from 46 to 100 m, with a

mean of 74.86 m for songbird vocalizations (Appendix

Table 6). Taking only count data for the first 3 min of each

count, and only audial cues (hence, data comparable to

UAV points count), 37 species were detected on standard

point counts, with a mean of 6.6 species, and 8.9 individual

birds count�1 (Table 2).

Thirty-two species were audible on the 51 UAV point-

count recordings, with a mean of 7.7 individuals birds

(range: 2–10) and a mean of 5.6 species count�1 (range: 4–

12). Both species richness (t50¼ 3.22, P¼ 0.002) and total

count (t50¼3.21, P¼0.002) were lower on the UAVcounts

than on comparable standard counts (i.e. 3 min duration,

only audial detections). Among the 9 most abundant

songbird species, there were no significant differences in

overall number of detections on 3 min standard counts

(audial cues only) and UAV counts for 7 species (Table 3),

exceptions being Willow Flycatcher and Gray Catbird,

which were both undercounted on UAV counts.

Both species richness and total detections were consid-

erably lower on the UAV counts than on counts that

included nonvocal cues (Table 2). However, detection rates

(birds point�1) were similar on UAV and standard point

counts for most species (Figure 3), especially if only audial

detections are compared, but there were some notable

exceptions, including Mourning Dove and Gray Catbird.

Almost 73% of new detections occurred within the first

minute of the UAV point counts, declining to ,10% during

the third minute (Figure 4).

DISCUSSION

To our knowledge, the present study is the first to

successfully pair bioacoustic monitoring and UAV tech-

nology. Our results demonstrate that conducting surveys

of vocal bird species using recorders attached to UAVs is

feasible with relatively low-cost equipment. Although we

found that detection rates for some species were similar to

those from standard point counts, some species were

substantially underdetected by aerial monitoring. With

these findings in mind, we will discuss the important

methodological and analytical questions that need to be

addressed through future research.

First, we must emphasize that our results may be valid

only for our aerial system and study area. Different UAVs

and recording devices could produce substantially differ-

ent recordings, depending on the balance between UAV

noise and recorder/microphone sensitivity to low-frequen-

cy sound. We suggest that future development of UAV-

based bird surveying should focus initially on testing a

TABLE 3. Comparison of audial detections on standard and UAV
(unmanned aerial vehicle) point counts for 9 songbird species
that were detected .20 times on standard counts. Duration of
each point count was 3 min. Scientific names of species are
given in the text or in Appendix Table 5.

Species

All audial
detections

Paired t-test
for difference

between means

Standard UAV t P

Willow Flycatcher 26 11 3.64 ,0.001
House Wren 23 14 1.77 0.08
American Robin 24 20 0.89 0.38
Gray Catbird 88 37 6.87 ,0.001
Yellow Warbler 38 35 0.52 0.61
Field Sparrow 22 27 �0.96 0.34
Song Sparrow 66 66 0 1
Northern Cardinal 33 27 0.88 0.38
Red-winged Blackbird 48 52 �0.49 0.63

TABLE 2. Comparison of total numbers of species and individual birds detected on UAV (unmanned aerial vehicle) point counts and
standard point counts.

Count method Duration (min) Cues included

Number of species detected Number of individuals detected

Mean SE Mean SE

UAV 3 Vocal 5.6 0.28 7.7 0.28
Standard 3 Vocal 6.6 0.24 8.9 0.31

3 All 8.3 0.26 11.2 0.27
5 All 10.8 0.32 15.7 0.40
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wide array of potentially suitable equipment. We also

recommend that the methods be trialed in a variety of

habitats and geographic areas, so that more information is

gathered on potential pitfalls related to bird responses and

detectability.

Our protocol development focused on a relatively

narrow range of UAV altitudes, and while we rejected

our hypothesis that detections varied with UAV altitude,

this result is unlikely to hold for other systems. Ideal UAV

altitude could vary depending on target species and

habitat, and minimum altitudes would also be dictated

by tree canopy height and the presence of other

obstructions, such as powerlines. In single-species studies,

or where a species is found in low densities, a higher UAV

altitude (potentially providing a larger ESW) would be

desirable to ensure that sufficient detections are obtained.

Also, our experimental approach to ascertain ESW was

based on recordings, rather than in situ wild birds, and the

playback volume of our recordings was informed by rather

sparse information on the volume of wild bird song.

Despite this, our field trials suggest that for most species,

the rate of detection, and hence the effective EDR, was

broadly similar to those derived from standard point

counts conducted by an experienced observer. If UAV

point counts are to be used to estimate absolute rather

than relative densities, establishing the EDR of the aerial

system is crucial. However, even in situations where EDR is

unknown, aerial sampling could still be very useful for

assessing relative abundance, species richness, and ap-

proximate locations of target species.

Our field trials demonstrate that 3 min UAV point

counts are sufficiently long to ensure multiple bird

detections per point, while allowing for �3 point counts

battery�1. This compromise between short counts to

maximize overall survey efficiency and long counts to

maximize bird detection also affects standard point

counts (Bibby et al. 2000). Analysis of data from 10 min

point counts in Shenandoah National Park showed that

65% of species were detected within the first 3 min, with

diminishing returns for the remaining 7 min (Keller and

Fuller 1995). Increased sampling efficiency could be

achieved through a lengthened battery life and, hence,

longer flight times. Some commercially available quad-

copters have potential flight times in excess of 1 hr (e.g.,

Araar et al. 2016), which would allow for longer counts,

for more point counts (or longer transects) per battery, or

for surveys conducted farther into inaccessible habitat

(provided that legal restrictions, such as the need to keep

the vehicle in line of sight, are followed).

FIGURE 3. Mean detections per point for each species on
standard point counts and unmanned aerial vehicle (UAV) point
counts, over 3 min, plotted against an equivalency line. (A)
Detections were lower on UAV counts for most species, but (B)
when only audial detections were included, UAV and standard
counts were very similar for most species. Species codes for the
12 most abundant species: AMRO ¼ American Robin, BHCO ¼
Brown-headed Cowbird, EATO ¼ Eastern Towhee, FISP ¼ Field
Sparrow, GRCA ¼ Gray Catbird, HOWR ¼ House Wren, MODO ¼
Mourning Dove, NOCA¼Northern Cardinal, RWBL¼Red-winged
Blackbird, SOSP ¼ Song Sparrow, WIFL ¼ Willow Flycatcher,
YWAR¼ Yellow Warbler. Scientific names of species are given in
the text or in Appendix Table 5.

FIGURE 4. Accumulation of new bird detections during the 3
min UAV point count.
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Although bioacoustics recorders have previously been

found to result in more species detections (Hobson et al.

2002, Acevedo and Villanueva-Rivera 2006) or higher

detection rates of within-species detection than field-

workers (Zwart et al. 2014), we found the reverse to be

true. We attribute our lower detection rates to a

combination of our use of less sensitive recording

equipment (necessitated by UAV payload constraints)

and masking by drone noise. This was especially apparent

for the Mourning Dove—a species that has a very low-

frequency song, typically in the 300–700 Hz range (http://

www.xeno-canto.org/species/Zenaida-macroura). Mask-

ing, in combination with our application of high-pass

filters to the recordings, resulted in vocalization of

Mourning Doves being imperceptible on our recordings.

Gray Catbird and Willow Flycatcher were also under-

counted by our aerial system, but their primary vocaliza-

tions have higher frequencies than that of the UAV (http://

www.xeno-canto.org/species/Empidonax-traillii, http://

www.xeno-canto.org/species/Dumetella-carolinensis), the

sound pressure of which was predominantly ,500 Hz. In

the case of the Gray Catbird, song volume may play a role in

UAV detection rates. In our study, the Gray Catbird had the

smallest EDR from standard point-count surveys (Appendix
Table 6), indicating that it is quiet compared to the other

species. In their balloon-based aerial surveys, Fristrup and

Clark (2009) found that species producing low-frequency

but loud vocalizations such as the American Crow (Corvus

brachyrhynchos) had higher detection rates. Therefore, both

volume and frequency play an important role in aerial

bioacoustic detections. Furthermore, the Gray Catbird has

an incessant song with few breaks between phrases, which

makes it more difficult to identify individuals through

recordings, likely leading to underestimates of the number

of birds audible. The Gray Catbird was by far the most

abundant bird species at our study site, which means that

vocalizations of multiple singing birds may have been

captured on recordings, but differentiating multiple birds

with overlapping song phrases was problematic. Hence, we

caution that UAV-based bioacoustic monitoring may be

challenging for species found in very high densities.

Another factor that might influence bird detection rates

from our aerial system is habitat use, particularly the

preferred location of song perches within vertically

structured habitat (Waide and Narins 1988). Further, it is

known that song attenuation varies with song frequency

(Morton 1975, Cosens and Falls 1984, Koper et al. 2016)

and that song frequency shows broad patterns among

species found in different habitats (Boncoraglio and Saino

2007). However, we note that potential issues related to

bird song attenuation among species and habitats are also

inherent issues for both standard count techniques and

bioacoustics recording, and hence we do not consider this

a problem specific to aerial monitoring.

One potentially crucial issue that remains to be

addressed is whether the presence of UAVs affects

songbird behavior, and song output in particular. There

is now considerable evidence that anthropogenic noise

affects bird settlement patterns and song output. McClure

et al. (2013) found that noise level was a key factor in road

avoidance; anthropogenic noise of gas wells has also been

shown to alter bird communities (Francis et al. 2009). In

addition to avoidance of anthropogenic noise, some bird

species have been shown to alter the frequency (Seger-

Fullam et al. 2011), amplitude (Brumm 2004), or timing of

song (Dominoni et al. 2016) to avoid masking by

anthropogenic noise. We are not aware of any studies of

the effects of UAVs on bird song output, but an

experimental study found very modest behavioral respons-

es to UAVs being flown to within 4 m of wetland birds (Vas

et al. 2015), whereas others have found either no effect or

very modest effects on the behavior of nesting birds (Junda

et al. 2015, Weissensteiner et al. 2015, McClelland et al.

2016). We conducted an experiment to see whether bird
song output detected by ground-based bioacoustics

recorders (Song Meter SM3; http://www.wildlifeacoustics.

com) differed in three 3 min periods: pre-, during-, and

post-UAV hover, at 58 m above the recorder, at a sample of

30 of our point-count stations. Our results suggested that

there may have been a very small dip in bird song output

during the time when the UAVwas overhead, approaching,

or departing the count station, but we could not

satisfactorily tease out changes in song output from the

effects of masking by drone noise. Despite this, we are

confident that such behavioral impacts are modest among

the species in our study area. For most species, the number

of detections on UAV counts was very similar to the

number of audial detections on standard counts (Figure 3),

which indicates that song output was not significantly

affected by the presence of the UAV.

However, even a modest behavioral response could be

significant; and, of course, behavioral response could vary

significantly among species. Hence, we suggest that

assessing the potential effects of UAVs on song output is

a research priority. Reducing rotor noise would avoid the

problem of masking low-frequency species and could

potentially reduce or eliminate behavioral responses to a

UAV’s presence, allowing for more accurate population

estimates. We are optimistic that there will be a broader

demand for quieter UAVs, and that this will lead to the

development of vehicles that are better suited for

conservation and ecology applications (Hambling 2015).

Bioacoustic monitoring with UAVs would be especially

efficient for bird surveys if combined with real-time

automated species identification (Aide et al. 2013). The

combination of these technologies would allow for real-

time plotting of individual birds based on the GPS

coordinates of the UAV; indeed, we foresee a time when
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a single UAV operator could fly �20 km of transects in a

few hours—and have all bird vocalizations identified to

species and geolocated almost instantaneously. We con-

clude that the combination of UAV and bioacoustic

technologies could provide an important new survey tool

for ornithologists and, indeed, for biologists studying other

vocal species groups.
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APPENDIX

APPENDIX TABLE 4. Proportion of audio recordings detected by a recorder suspended from an unmanned aerial vehicle (UAV), at
varying altitudes (m) and varying distances (m) from the recorder, in our feasibility experiment.

Species recording
Altitude of

recorder

Horizontal distance from UAV

0 10 20 30 40 50 60 70 80 90 100

Wood Thrush 20 1 1 1 1 1 1 1 1 1 0 0
40 1 1 1 1 0.67 1 1 1 1 0.33 0
60 1 1 1 1 0.67 0.33 1 1 0 0 0

Eastern Towhee 20 1 0.8 1 0.8 0.6 0.6 0.2 0 0 0.4 0
40 1 1 0.6 1 0.8 0.4 0.8 0 0 0.4 0
60 1 1 0.8 1 0.4 0.8 0.6 0.6 0 0 0

Chipping Sparrow 20 1 1 0.6 1 0 0 0 0 0 0 0
40 1 1 0.4 1 0.6 0 0 0 0 0.2 0
60 1 1 0.8 1 0.6 1 0 0.4 0 0 0

Song Sparrow 20 1 1 1 1 0.75 1 0.5 0 0.25 0.25 0
40 1 1 1 1 0.5 0.75 0.5 0 0 0 0
60 1 1 1 1 0.5 1 0.5 1 0.5 0 0

Eastern Meadowlark 20 1 1 1 0.8 0.4 1 0.2 1 0.8 0.4 0
40 1 1 1 1 0.6 1 0.8 1 0.2 0 0
60 1 1 1 1 1 1 1 0.6 0.2 0.2 0
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APPENDIX TABLE 5. Total detections of all species (including fly-over) on standard and UAV (unmanned aerial vehicle) point counts
in our field study.

Common name Scientific name

Standard 5 min count Standard 3 min count UAV count

Count Mean SE Count Mean SE Count Mean SE

Canada Goose Branta canadensis 1 0.02 0.02 1 0.02 0.02
Wood Duck Aix sponsa 2 0.04 0.03 1 0.02 0.02
Mallard Anas platyrhynchos 1 0.02 0.02 1 0.02 0.02
Ring-necked Pheasant Phasianus colchicus 1 0.02 0.02 1 0.02 0.02 1 0.02 0.02
Wild Turkey Meleagris gallopavo 1 0.02 0.02 1 0.02 0.02
Great Blue Heron Ardea herodias 3 0.06 0.03 1 0.02 0.02
Green Heron Butorides virescens 5 0.10 0.07 3 0.06 0.06
Black Vulture Coragyps atratus 1 0.02 0.02
Red-tailed Hawk Buteo jamaicensis 1 0.02 0.02 1 0.02 0.02
Mourning Dove Zenaida macroura 22 0.43 0.09 18 0.35 0.08 1 0.02 0.02
Chimney Swift Chaetura pelagica 1 0.02 0.02 1 0.02 0.02
Ruby-throated Hummingbird Archilochus colubris 2 0.04 0.04
Red-bellied Woodpecker Melanerpes carolinus 7 0.14 0.06 5 0.10 0.05
Downy Woodpecker Picoides pubescens 1 0.02 0.02 1 0.02 0.02
Hairy Woodpecker Picoides villosus 1 0.02 0.02 1 0.02 0.02
Northern Flicker Colaptes auratus 1 0.02 0.02 1 0.02 0.02 1 0.02 0.02
Eastern Wood-Pewee Contopus virens 5 0.10 0.04 5 0.10 0.04 5 0.10 0.04
Acadian Flycatcher Empidonax virescens 2 0.04 0.03 2 0.04 0.03 1 0.02 0.02
Willow Flycatcher Empidonax traillii 34 0.67 0.10 26 0.51 0.09 11 0.22 0.06
Great Crested Flycatcher Myiarchus crinitus 1 0.02 0.02
Eastern Kingbird Tyrannus tyrannus 7 0.14 0.05 3 0.06 0.03 1 0.02 0.02
White-eyed Vireo Vireo griseus 3 0.06 0.03 2 0.04 0.03 1 0.02 0.02
Warbling Vireo Vireo gilvus 1 0.02 0.02 1 0.02 0.02
Red-eyed Vireo Vireo olivaceus 7 0.14 0.06 5 0.10 0.04 7 0.14 0.05
Blue Jay Cyanocitta cristata 6 0.12 0.05 3 0.06 0.03 4 0.08 0.04
Tree Swallow Tachycineta bicolor 11 0.22 0.06 7 0.14 0.06
Barn Swallow Hirundo rustica 5 0.10 0.05 3 0.06 0.03
Tufted Titmouse Baeolophus bicolor 5 0.10 0.05 4 0.08 0.05 5 0.10 0.05
White-breasted Nuthatch Sitta carolinensis 3 0.06 0.04 2 0.04 0.03
Carolina Wren Thryothorus ludovicianus 1 0.02 0.02 1 0.02 0.02 1 0.02 0.02
House Wren Troglodytes aedon 26 0.51 0.10 23 0.45 0.09 14 0.27 0.06
Blue-gray Gnatcatcher Polioptila caerulea 13 0.25 0.06 10 0.20 0.06 8 0.16 0.05
Wood Thrush Hylocichla mustelina 10 0.20 0.06 7 0.14 0.06 8 0.16 0.06
American Robin Turdus migratorius 46 0.90 0.14 29 0.57 0.10 20 0.39 0.07
Gray Catbird Dumetella carolinensis 124 2.43 0.16 92 1.80 0.14 37 0.73 0.07
Northern Mockingbird Mimus polyglottos 4 0.08 0.04 4 0.08 0.04 1 0.02 0.02
Brown Thrasher Toxostoma rufum 7 0.14 0.05 6 0.12 0.05
European Starling Sturnus vulgaris 7 0.14 0.06 4 0.08 0.05
Cedar Waxwing Bombycilla cedrorum 24 0.47 0.16 5 0.10 0.06 2 0.04 0.03
Ovenbird Seiurus aurocapilla 4 0.08 0.05 3 0.06 0.04 1 0.02 0.02
Common Yellowthroat Geothlypis trichas 12 0.24 0.07 8 0.16 0.05 10 0.20 0.06
American Redstart Setophaga ruticilla 6 0.12 0.05 6 0.12 0.05 10 0.20 0.06
Yellow Warbler Setophaga petechia 53 1.04 0.11 39 0.76 0.11 35 0.69 0.08
Eastern Towhee Pipilo erythrophthalmus 20 0.39 0.08 15 0.29 0.08 14 0.27 0.06
Field Sparrow Spizella pusilla 32 0.63 0.11 24 0.47 0.09 27 0.53 0.08
Song Sparrow Melospiza melodia 88 1.73 0.17 66 1.29 0.15 66 1.29 0.09
Northern Cardinal Cardinalis cardinalis 57 1.12 0.14 34 0.67 0.11 27 0.53 0.09
Indigo Bunting Passerina cyanea 7 0.14 0.05 6 0.12 0.05 4 0.08 0.05
Red-winged Blackbird Agelaius phoeniceus 77 1.51 0.25 64 1.25 0.22 52 1.02 0.14
Common Grackle Quiscalus quiscula 30 0.59 0.13 11 0.22 0.08
Brown-headed Cowbird Molothrus ater 37 0.73 0.15 23 0.45 0.12 6 0.12 0.05
Orchard Oriole Icterus spurius 6 0.12 0.05 5 0.10 0.04
Baltimore Oriole Icterus galbula 1 0.02 0.02 1 0.02 0.02 2 0.04 0.03
American Goldfinch Spinus tristis 22 0.43 0.10 6 0.12 0.05 2 0.04 0.03
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APPENDIX TABLE 6. Estimated effective detection radius (EDR) and density (birds km�2), with 95% confidence intervals (CI), for
species with .25 detections on standard 5 min point counts. Scientific names of species are given in the text or in Appendix Table 5.

Species Cues n Detection function EDR 95% CI Density 95% CI

Willow Flycatcher Song a 33 Hazard 92.0 83.7–101.2 15.9 13.1–19.3
House Wren Song 23 Uniform 69.5 52.8–91.3 21.7 12.6–37.2

All 27 Uniform 65.7 52.6–82.1 28.0 18.0–43.8
American Robin Song 27 Uniform 64.1 53.1–77.5 28.3 19.4–41.2

All 35 Uniform 59.8 53.5–66.9 39.0 31.1–48.7
Gray Catbird Song 97 Half-normal 46.0 41.4–51.5 145.9 118.2–180

All 123 Half-normal 44.9 41.1–49.0 196.4 164.1–235
Yellow Warbler Song 52 Half-normal 73.3 59.8–89.7 35.0 23.4–52.4

All 53 Half-normal 72.0 59.2–87.5 37.0 25.1–54.6
Eastern Towhee Song a 20 Uniform 100.0 100–100 8.8 8.5–9.0
Field Sparrow Song 23 Half-normal 72.5 53.8–97.7 19.6 10.9–35.3

All 31 Negative exponential 43.0 30.5–60.5 71.3 36.5–139.5
Song Sparrow Song 85 Half-normal 79.3 67.67–93 47.8 34.7–65.7

All 88 Uniform 76.0 65.1–88.6 53.3 39.2–72.6
Northern Cardinal Song 46 Half-normal 69.9 56.8–86 37.0 24.5–55.9

All 56 Negative exponential 46.6 35.5–61.2 104.2 60.8–178.6
Red-winged Blackbird Song 55 Hazard 82.0 66.8–100.7 34.3 22.7–51.7

All 73 Uniform 70.6 61–81.8 60.1 44.5–81.2
Brown-headed Cowbird All b 19 Half-normal 48.8 37.9–62.9 56.2 32.4–97.6

a All detections were of singing birds.
b All detections were of non-song cues.
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