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M����� ������ �� birds arose mainly in 
the Neogene Period (1.8–23.8 mya), and mod-
ern species mainly in the Plio-Pleistocene 
(0.08–5.3 mya). Neogene fossil birds generally 
resemble modern taxa, and those that cannot 
be a	 ributed to a modern genus or species 
can usually be placed in a modern family with 
a fair degree of confi dence (e.g. Becker 1987, 
Olson and Rasmussen 2001). Fossil birds from 
earlier in the Cenozoic can be more challeng-
ing to classify. The fossil birds of the Paleogene 
(23.8–65.5 mya) are clearly a	 ributable to the 
Neornithes (modern birds), and the earliest 
well-established records of most traditional 
orders and families of modern birds occur then. 
But the fossils tend to be primitive and more 
diffi  cult to seat phylogenetically within the 
Neornithes (Dyke and van Tuinen 2004). 

Not a few early Paleogene fossils have been 
said to exhibit a mosaic of characters associ-
ated with two or more traditional families or 
orders (e.g. Peters 1992, Feduccia 1999, Mayr 
2003a). An excellent example is an Eocene 
bird referred to the Psi	 aciformes that lacks 
the specialized skull of parrots (Mayr 2005a). 
Paleontologists sometimes resort to describing 
primitive fossils as “petrel-like” or “hoopoe-
like” (for instance) without referring them to 
the corresponding modern families (e.g. Houde 
and Olson 1992; Feduccia and McPherson 1993; 
Mayr 2000a, 2003b). Nevertheless, the primitive 
fossils of the Paleogene provide the earliest fi rm 
records of such diverse modern radiations as 
ratites (Houde 1988), owls (Mourer-Chauviré 
1987, Peters 1992), waterfowl (Ericson 1997, 
Olson 1999, Dyke 2001), ibises (Peters 1983), 
penguins (see Clarke et al. 2003), galliforms 
(Mourer-Chauviré 1992, Mayr 2000b, Dyke and 
Gulas 2002), passerines (Mourer-Chauviré et al. 

1989, Mayr and Manegold 2004), and others. 
Paleogene fossils also document diverse extinct 
branches of the neornithine tree, ranging from 
large pseudotoothed seabirds to giant fl ightless 
land birds to small zygodactyl perching birds 
(Ballmann 1969, Harrison and Walker 1976, 
Andors 1992). 

Before the Paleogene, fossils of putative neor-
nithine birds are sparse and fragmentary (Hope 
2002), and their phylogenetic placement is all 
the more equivocal. The Paleogene is thus a cru-
cial time period for understanding the history of 
diversifi cation of birds, particularly with respect 
to the deeper branches of the  neornithine tree. 

E���� N�������� �� E����� 

One ornithologist who has energetically 
taken up the challenge of Paleogene birds 
is Gerald Mayr of the Forschungsinstitut 
Senckenberg in Frankfurt, Germany. Mayr has 
published more than 70 papers on Paleogene 
birds and related topics since 1998 (for a recent 
summary, see Mayr 2005a). Notably, last year 
he described a hummingbird, Eurotrochilus 
inexpectatus, from the early Oligocene of 
Europe (Mayr 2004). Fossils with humming-
bird-like characters had been known from 
the Oligocene of Eurasia, but only from wing 
bones that appeared to be very primitive and 
perhaps transitional between hummingbirds 
and other apodiform birds (Karhu 1999, Mayr 
2003a). Eurotrochilus inexpectatus is based on 
a well-preserved fossil skeleton with striking 
similarities to modern hummingbirds, includ-
ing tiny size; long, thin bill; short humerus; and 
deep carina of the sternum. This was a bird that 
hovered to sip nectar from fl owers, and it did 
so approximately 30–35 mya in Germany. 

On page 1055 of this issue of The Auk, Mayr 
(2005b) introduces a genus and species of tiny 
barbet-like bird from the near-shore marine 
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deposits of Frauenwiler, Germany, the same lo-
cality where the fossil hummingbird was found. 
The new taxon is known from a single associ-
ated skeleton lacking the skull. The fossil is not 
suffi  ciently well preserved to support a detailed 
cladistic analysis of its evolutionary relation-
ships, though it shows a specialized morphol-
ogy of the distal end of the tarsometatarsus and 
other characters diagnostic of the Pici (wood-
peckers, Picidae; honeyguides, Indicatoridae; 
and barbets and toucans, Rhamphastidae). In 
other characters, it appears to be plesiomorphic 
with respect to all modern members of the Pici, 
and Mayr concludes that it is probably outside 
the crown group defi ned as the common ances-
tor of all modern species and its descendants. 
The fossil is thus the oldest substantial record of 
the Pici, if the defi nition of Pici is expanded to 
accommodate a stem group. Postcranial bones 
from the Miocene of Europe have also been re-
ferred to the barbets (Ballmann 1969). The fossil 
record thus supports a deep history for the Pici 
in the Old World, in consonance with recent 
molecular evidence (Johansson and Ericson 
2003, Moyle 2004). 

The new hummingbird and piciform bird 
are just two recent additions to the very rich 
Paleogene fossil record of Europe (Mlíkovský 
2002, Mayr 2005a). Mayr’s work has empha-
sized the Middle Eocene oil shales of Messel, 
where complete but o� en crushed skeletons 
represent diverse land and water birds (Peters 
1988, Mayr 2005a). Other important Paleogene 
sites of Europe include the Upper Eocene to 
Lower Oligocene fi ssure fi lls of Quercy in 
France (Mourer-Chauviré 1982); the Lower 
Eocene London Clay, especially the exposures 
at Walton-on-the-Naze, United Kingdom 
(Feduccia 1999); and the Upper Paleocene 
to Lower Eocene marine deposits of the Fur 
Formation in Denmark (see Kristoff ersen 2002). 

All told, Europe boasts a richer Paleogene 
avifauna in terms of number and taphonomic 
variety of fossil localities and diversity of avian 
taxa compared with other continents. One as-
sessment estimated that 55 families of birds 
are represented in the major localities of the 
European Paleogene (Feduccia 1999). Second to 
Europe is North America, where the Green River 
and Willwood formations provide important 
early Eocene records of approximately 25 fami-
lies of birds. The dearth of similarly productive 
Paleogene localities in Asia and on southern 

landmasses, particularly for the Eocene and 
Paleocene, is a longstanding obstacle to interpre-
tation of the biogeographic history of birds. 

S��������� ��� F����� 

Phylogenetic analysis.—Revisionary work in 
systematics of fossil birds is now commonly 
based on cladistic character analysis, and taxo-
nomic descriptions of new taxa are sometimes 
accompanied by such analyses (e.g. Bourdon 
et al. 2005). Paleontologists prefer to work with 
complete associated skeletons and multiple 
individuals of each terminal taxon, but o� en 
make do with isolated or fragmentary speci-
mens. To the extent that confi dence is judged by 
the quantity of supporting character evidence, 
it follows that confi dence in the phylogenetic 
placement is more variable for fossils than for 
modern birds. Interpretations of the fossil re-
cord need to take that variability into account. 

Considerable eff ort is being devoted to re-
solving the deeper branches of phylogeny for 
the Neornithes through DNA sequencing and 
coding of morphological characters in modern 
birds (Livezey and Zusi 2001, Cracra�  et al. 
2004). Paleogene fossils appear to represent 
diverse early stages in the development of 
those very clades. Consequently, there is great 
potential for reciprocal illumination between 
modern and fossil phylogenetic evidence. On 
the other hand, the current lack of consensus on 
the higher-level relationships of modern birds 
is a hindrance to interpretation of the fossil re-
cord. The polarity and frequency of homoplasy 
for osteological characters of Paleogene fossils 
could be be	 er understood in the context of a 
robust phylogenetic hypothesis. 

Phylogenetic analyses at lower taxonomic 
levels (within orders and families) have gener-
ally been more successful for birds. Phylogenetic 
results are always richer when cast in the light of 
the fossil record, as in the examples of the bar-
bets, hummingbirds, and rollers discussed here.

Stem versus crown groups.—Use of fossils to 
calibrate molecular rates has brought to promi-
nence the distinction between crown  and stem 
group fossils. Crown group fossils can provide 
minimum ages of diversifi cation within modern 
clades, but stem group fossils may be older than 
those clades. In the past, stem group fossils that 
are classifi ed in modern orders and families 
of birds may have been used unwi	 ingly as 
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calibration points for the corresponding crown 
groups, providing age estimates that are errone-
ously too old. Simple misidentifi cation of fossils 
can also invalidate calibrations. Therefore, it is 
important to begin taking the potential for error 
in phylogenetic placement of fossils into ac-
count when performing rate calibrations (Graur 
and Martin 2004, van Tuinen and Dyke 2004). 

An example of reconciliation between 
fossil and molecular evidence is that of the 
Madagascan ground rollers, Brachypteraciidae. 
Eocene fossils from the Messel oil shales had 
been classifi ed as members of the family. 
Kirchman et al. (2001), however, found levels of 
molecular divergence between ground rollers 
and true rollers (Coraciidae) that are too low 
to support an Eocene origin of ground rollers. 
Independently, Mayr and Mourer-Chauviré 
(2000, 2003) performed a cladistic character 
analysis that supported removing the fossils 
from the Brachypteraciidae and placing them 
basal to Brachypteraciidae + Coraciidae. 

A������� D������ 

Tertiary radiation.—The weak molecular 
genetic signal found so far for relationships 
among many higher-level taxa of birds could be 
explained if there was an early, explosive radia-
tion of birds into diverse ecological niches. Just 
such an explosion has been hypothesized based 
on the early Paleogene fossil record of Europe 
and North America (Feduccia 1995, 2003). In 
Europe, where the record is best, there were 
more family-level taxa of birds in the Eocene 
than at present (Blondel and Mourer-Chauviré 
1998). By contrast, the global fossil record for 
Cretaceous Neornithes is surprisingly slim—49 
bones that are for the most part too fragmen-
tary for confi dent identifi cation (Hope 2002). 
Fountaine et al. (2005) studied the quality of the 
Mesozoic fossil record of birds and found that, 
when extinct non-neornithine taxa are included, 
it has grown to be quite respectable. It is thus 
uncontroversial that the Neornithes became 
much more diverse and ecologically dominant 
a� er the Cretaceous–Tertiary extinction event, 
but there is still lively debate over just how 
many lineages originated in the Cretaceous and 
survived that event (Cracra�  2001). 

Biogeography.—Many Paleogene fossil birds 
of Europe have their closest modern relatives 
on southern landmasses today (e.g. species 

with affi  nities to the African mousebirds, 
South American serieamas, and Australian 
frogmouths). Avian taxa were probably more 
widely distributed during the Eocene, when 
global climate was equable. Certainly, there 
was greater faunal similarity between Europe 
and North America, which were connected by 
land in the early Eocene (Blondel and Mourer-
Chauviré 1998, Mayr and Weidig 2004). The 
retreat of some taxa to the tropics and sub-
tropics is partly explained by climatic cooling 
beginning in the Oligocene. Diff erentiation of 
the Eurasian and North American avifaunas 
took place in the Oligocene through Miocene 
as the continents became isolated (Blondel and 
Mourer-Chauviré 1998). 

Debate continues over the biogeographic con-
text of diversifi cation of the Neornithes. The high 
number of early Paleogene birds that appear to 
be basal to modern radiations suggests that the 
diversifi cation of many crown groups came 
a� er those epochs (Mayr 2005a). Biogeographic 
analysis of the same crown groups supports the 
alternative hypothesis that they arose earlier in 
the Cretaceous in Gondwana and were initially 
dispersed by continental dri�  (Cracra�  2001). 
Questionable molecular-rate calibrations favor 
the la	 er hypothesis, which is otherwise in 
confl ict with the fossil evidence (Feduccia 2003, 
Mayr 2005a). 

Grande Coupure.—The Grande Coupure mark-
ing the Eocene–Oligocene transition (33.7 mya) 
was a time of great faunal turnover in European 
mammals, and apparently in birds as well. 
Mayr’s (2005a) intensive study of Paleogene birds 
has lead him to conclude that there were no neor-
nithines in family-level crown groups in Europe 
before the Grande Coupure. Fossils that belong 
within family-level crown groups begin to appear 
in the Oligocene. The implication is that most or 
all of the diversity within modern families of 
birds has evolved since the Grande Coupure. 

Paleontologists concur that the Passeriformes 
originated in the south and invaded the North-
ern Hemisphere in the late Eocene or early 
Oligocene (Olson 1988, Mourer Chauvire 1995). 
The earliest fossils in Europe are from the Lower 
Oligocene of Frauenwiler and nearby France 
(Mayr and Manegold 2004). Fossil passerines 
do not become prevalent until the Miocene. 
Food competition with passerines is believed to 
have been a factor in the extinction of diverse 
small nonpasserine birds that had been present 
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in the Paleogene of the Northern Hemisphere 
(Mayr 2005b, c). 

S������ 

We have a picture of the Paleogene of Europe 
in which fl owers are pollinated by humming-
birds, mosaic psi	 aciform birds that lack the spe-
cialized heads of parrots fl y about, and what is 
now the most species-rich order of birds arrives 
on the scene quite late. The geographic distribu-
tions and phenotypes of some Paleogene birds 
would be beyond our capacity to imagine or to 
reconstruct without the solid evidence of fossils. 

Careful study of the fossils has lead to the 
hypothesis that the diversity within traditional 
modern families of birds arose a� er the Eocene. 
Although the record is strongest for Europe, 
the hypothesis also applies to North America, 
where the Eocene avifauna is very similar. 
Indeed, Mayr indicates that his hypothesis may 
apply globally. This is a signifi cant insight that 
can be further tested with morphological, mo-
lecular, and fossil data. 

Perhaps the greatest unsolved problem in 
avian systematics is the evolutionary relation-
ships among modern higher-level taxa. Thanks 
to collaboration among systematists to resolve 
the avian tree of life, large morphological and 
molecular character matrices for neornithine 
birds are nearing completion (Livezey and Zusi 
2001, Cracra�  et al. 2004). Smaller molecular 
data sets for subclades of Neornithes are appear-
ing regularly. The resulting trees become much 
more interesting if they can be correlated with a 
time scale and a fossil history. Adding osteologi-
cal characters as a data partition in molecular 
phylogenetic databases would permit interac-
tive analyses of genetic, morphological, and 
fossil evidence. Some of the odd phenotypes of 
the Paleogene might then be placed on the new 
phylogenetic trees that are emerging. The rich 
Paleogene fossil record provides a perspective 
on the evolutionary history of birds that cannot 
be reconstructed from studies of modern taxa 
alone. I urge greater eff ort to fully integrate that 
record in our modern reassessment of avian 
evolutionary history. 

A��������������

I thank G. Mayr and S. L. Olson for comments 
on the manuscript. 
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