Open Access
How to translate text using browser tools
18 October 2016 Development of Microsatellite Markers for the Clonal Shrub Orixa japonica (Rutaceae) Using 454 Sequencing
Ichiro Tamaki, Suzuki Setsuko, Kyoko Sugai, Nao Yanagisawa
Author Affiliations +

Orixa japonica Thunb. (Rutaceae) is a deciduous dioecious shrub known from China, Korea, and Japan; it is the only known species within the genus Orixa Thunb. The species propagates asexually by sprouting, layering, and root suckering and forms a large genet. Although O. japonica can also reproduce sexually via entomophilous flowers, its seedlings are scarce in the wild. The balance between sexual and asexual reproduction is an interesting theme related to the evolution of sexual reproduction (Obeso, 2002). In dioecious clonal plants, there are sexual differences in clonal growth, and these differences contribute to the sex ratio of the population (Escarre and Houssard, 1991). Orixa japonica is also an important plant for medicinal use (Kang et al., 2011). Identification and management of individual plants that are of medical benefit are important and require accurate clone identification. In this study, we developed 16 microsatellite markers to provide a useful tool for clone identification of O. japonica, to examine the species' clonal structure and true sex ratio in the wild, and to manage lineages within breeding programs examining the medicinal use of O. japonica.

METHODS AND RESULTS

Total genomic DNA of O. japonica was extracted from a fresh leaf collected from Yoro, Gifu, Japan, using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), and a voucher specimen of this sample was deposited in the Forestry and Forest Products Research Institute herbarium, Japan (accession no. TF-K11-0215) (Appendix 1). Multiplex identifier (MID) tags were used to multiplex the extracted DNA of O. japonica and other species. These samples were then pooled and pyrosequenced using a 454 GS Junior System (Roche, Basel, Switzerland). The raw data were demultiplexed and MID tags were removed from the reads. The de novo sequencing produced 73,267 reads with an average length of 427 bp. The identification of microsatellite regions and design of primer pairs from the sequence data were performed with the program QDD 2.1 (Meglécz et al., 2010). Microsatellite regions bordering sequences with more than five repeats of di- to hexanucleotide motifs and a minimum sequence length of 80 bp were selected. According to these criteria, 2846 reads contained microsatellite loci. To eliminate redundancy, the similarity of sequences containing microsatellite regions was detected by all-against-all BLAST searching. Subsequently, 1168 reads were selected from the whole set of sequences containing microsatellites. PCR primer pairs were designed using Primer3 (Rozen and Skaletsky, 1999) implemented in QDD 2.1 (Meglécz et al., 2010). Finally, 803 microsatellite primer pairs were designed.

Amplification and polymorphism tests were performed for 30 selected primer pairs; we selected these primer pairs on the basis of their having single repeat motifs of di- and trinucleotides, with 10–14 repeats. All forward primers were fluorescently labeled at the 5′-end with one of four different tail sequences (A to D) shown in Table 1, according to the method by Blacket et al. (2012). All reverse primers were attached to a 5′-GTT-3′ sequence at the 5′-end of the sequence to reduce stuttering due to the addition of nontemplated adenine base pairs by Taq DNA polymerase (Brownstein et al., 1996).

To evaluate polymorphisms in these markers using population samples, leaves were sampled from 106 individuals from four populations (Appendix 1). Because Orixa is a monotypic genus, to evaluate the cross-amplification potential of these markers, 16 individuals of Skimmia japonica Thunb., which is a consubfamilial species, were also sampled (Appendix 1). Although Skimmia has previously been classified into subfamily Toddalioideae, Toddalioideae is now merged into subfamily Rutoideae (Thorne, 2000), into which O. japonica is classified, and Skimmia forms a sister group to O. japonica on the phylogenetic trees constructed by internal transcribed spacer and/or chloroplast sequences (Poon et al., 2007; Salvo et al., 2008). Sampled leaves were dried with silica gel and stored at room temperature until DNA extraction. Leaves were pulverized using a mortar and pestle. Pulverized leaves were washed more than twice using HEPES buffer (Setoguchi and Ohba, 1995), and then the cetyltrimethylammonium bromide (CTAB) method was used to extract total DNA (Murray and Thompson, 1980). PCR was performed in a final volume of 5 µL, containing 2.5 µL of 2× Type-it Multiplex PCR Master Mix (QIAGEN), 0.1 µM forward primers, 0.2 µM reverse primers, 0.1 µM fluorescently tagged universal primers, and 10 ng DNA template. Reactions were performed with an initial denaturation at 95°C for 5 min; followed by 35 cycles of 95°C for 30 s, 57°C or 60°C for 90 s, and 72°C for 30 s; and finally 60°C for 30 min using a P × 2 Thermal Cycler (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The PCR products were electrophoresed using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Carlsbad, California, USA), and fragment sizes were determined using GeneMapper version 4.0 (Applied Biosystems).

Table 1.

Characteristics of 16 nuclear microsatellite loci isolated from Orixa japonica.

t01_01.gif

Sixteen loci out of 30 showed clear amplification, with a single band for each allele. For each of these 16 loci, the number of alleles (A), observed heterozygosity (Ho), expected heterozygosity (He), fixation index (FIS), and null allele frequency were calculated using INEst 1.1 (Chybicki and Burczyk, 2009). Deviation from Hardy–Weinberg equilibrium (HWE) was tested at each locus by a randomization test implemented in FSTAT 2.9.3 (Goudet, 1995). The HWE significance level was evaluated after Bonferroni correction for each population.

Among those 16 loci across the four populations, 132 alleles were detected. Excluding the Oj661 locus from the Mugi population, all other loci in each of the four populations showed polymorphism (Table 2). For these polymorphic loci, A ranged from two to 10, Ho from 0.000 to 0.767, He from 0.140 to 0.875, FIS from −0.260 to 1.000, and the null allele frequency from 0.029 to 0.637. Five loci (Oj125, Oj437, Oj509, Oj549, and Oj598) did not significantly deviate from HWE over all the populations. Seven out of 16 loci did not amplify in S. japonica (Table 2). Among the remaining nine loci, eight loci were monomorphic and thus only one locus, Oj598, showed polymorphism.

CONCLUSIONS

We developed the first set of microsatellite markers for O. japonica. These 16 microsatellite markers showed a high level of polymorphism and can be used to identify clones. Moreover, because five of 16 markers (Oj125, Oj437, Oj509, Oj549, and Oj598) did not significantly deviate from HWE and their null allele frequencies were relatively low, these markers can also be used for estimating mating systems or performing parentage analysis. These markers will help examine the clonal structure and true sex ratio in the wild and manage lineages in the breeding program for medicinal use of O. japonica.

Table 2.

Genetic properties of 16 polymorphic nuclear microsatellite loci in four populations of Orixa japonica and one population of Skimmia japonica.

t02_01.gif

ACKNOWLEDGMENTS

The authors thank Seiko Matsuhisa for assistance with the sampling.

LITERATURE CITED

1.

Blacket, M. J., C. Robin, R. T. Good, S. F. Lee, and A. D. Miller. 2012. Universal primers for fluorescent labelling of PCR fragments—An efficient cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources 12: 456–463. Google Scholar

2.

Brownstein, M. J., J. D. Carpten, and J. R. Smith. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques 20: 1004–1006, 1008–1010. Google Scholar

3.

Chybicki, I. J., and J. Burczyk. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106–113. Google Scholar

4.

Escarre, J., and C. Houssard. 1991. Changes in sex ratio in experimental populations of Rumex acetosella. Journal of Ecology 79: 379–387.  Google Scholar

5.

Goudet, J. 1995. FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485–486. Google Scholar

6.

Kang, C.-H., Y. H. Choi, I.-W. Choi, J.-D. Lee, and G.-Y. Kim. 2011. Inhibition of lipopolysaccharide-induced iNOS, COX-2, and TNF-α expression by aqueous extract of Orixa japonica in RAW 264.7 cells via suppression of NF-kB activity. Tropical Journal of Pharmaceutical Research 10: 161–168. Google Scholar

7.

Meglécz, E., C. Costedoat, V. Dubut, A. Gilles, T. Malausa, N. Pech, and J.-F. Martin. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics (Oxford, England) 26: 403–404. Google Scholar

8.

Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4326. Google Scholar

9.

Obeso, J. R. 2002. The costs of reproduction in plants. New Phytologist 155: 321–348. Google Scholar

10.

Poon, W.-S., P.-C. Shaw, M. P. Simmons, and P. P.-H. But. 2007. Congruence of molecular, morphological, and biochemical profiles in Rutaceae: A cladistic analysis of the subfamilies Rutoideae and Toddalioideae. Systematic Botany 32: 837–846. Google Scholar

11.

Rozen, S., and H. J. Skaletsky. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols. 365–386. Humana Press, Totowa, New Jersey, USA. Google Scholar

12.

Salvo, G., G. Bacchetta, F. Ghahremaninejad, and E. Conti. 2008. Phylogenetic relationships of Ruteae (Rutaceae): New evidence from the chloroplast genome and comparisons with non-molecular data. Molecular Phylogenetics and Evolution 49: 736–748. Google Scholar

13.

Setoguchi, H., and H. Ohba. 1995. Phylogenetic relationships in Crossostylis (Rhizoporaceae) inferred from restriction site variation of chloroplast DNA. Journal of Plant Research 108: 87–92. Google Scholar

14.

Thorne, R. F. 2000. The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae (Subclasses Magnoliidae, Ranunculidae, Caryophyllidae, Dilleniidae, Rosidae, Asteridae, and Lamiidae). Botanical Review 66: 441–647. Google Scholar

Appendix 1.

Voucher and location information for the Orixa japonica and Skimmia japonica populations used in this study. All vouchers were deposited in the herbarium of the Forestry and Forest Products Research Institute, Japan.

tA01_01.gif
Ichiro Tamaki, Suzuki Setsuko, Kyoko Sugai, and Nao Yanagisawa "Development of Microsatellite Markers for the Clonal Shrub Orixa japonica (Rutaceae) Using 454 Sequencing," Applications in Plant Sciences 4(10), (18 October 2016). https://doi.org/10.3732/apps.1600066
Received: 30 May 2016; Accepted: 1 August 2016; Published: 18 October 2016
KEYWORDS
Clonal structure
dioecious plant
next-generation sequencing
Orixa
Rutaceae
sex ratio
Back to Top