Open Access
How to translate text using browser tools
1 August 2017 Laterality is Universal Among Fishes but Increasingly Cryptic Among Derived Groups
Michio Hori, Mifuyu Nakajima, Hiroki Hata, Masaki Yasugi, Satoshi Takahashi, Masanori Nakae, Kosaku Yamaoka, Masanori Kohda, Jyun-ichi Kitamura, Masayoshi Maehata, Hirokazu Tanaka, Norihiro Okada, Yuichi Takeuchi
Author Affiliations +
Abstract

Laterality has been studied in several vertebrates, mainly in terms of brain lateralization and behavioral laterality, but morphological asymmetry has not been extensively investigated. Asymmetry in fishes was first described in scale-eating cichlids from Lake Tanganyika, in the form of bilateral dimorphism in which some individuals, when opening their mouths, twist them to the right and others to the left. This asymmetry has a genetic basis, and is correlated with lateralized attack behaviors. This has subsequently been found in fishes from numerous taxa with various feeding habits. The generality of such morphological laterality should thus be investigated in as wide a range of fishes as possible. Using specific indicators of lateral differences in mandibles and head inclination, we find that representative species from all 60 orders of extant gnathostome fishes (both bony and cartilaginous) possess morphological laterality. Furthermore, we identify the same laterality in agnathans (hagfish and lamprey), suggesting that this trait appeared early in fish evolution and has been maintained across fish lineages. However, a comparison of asymmetry among groups of bony fishes reveals, unexpectedly, that phylogenetically more recent-groups possess less asymmetry in body structures. The universality of laterality in fishes indicates a monophyletic origin, and may have been present in the ancestors of vertebrates. Ecological factors, predator—prey interactions in particular, may be key drivers in the evolution and maintenance of dimorphism, and may also be responsible for the cryptic trend of asymmetry in derived groups. Because lungfish and coelacanths share this trait, it is likely that tetrapods also inherited it. We believe that study of this morphological laterality will provide insights into the behavioral and sensory lateralization of vertebrates.

© 2017 Zoological Society of Japan
Michio Hori, Mifuyu Nakajima, Hiroki Hata, Masaki Yasugi, Satoshi Takahashi, Masanori Nakae, Kosaku Yamaoka, Masanori Kohda, Jyun-ichi Kitamura, Masayoshi Maehata, Hirokazu Tanaka, Norihiro Okada, and Yuichi Takeuchi "Laterality is Universal Among Fishes but Increasingly Cryptic Among Derived Groups," Zoological Science 34(4), 267-274, (1 August 2017). https://doi.org/10.2108/zs160196
Received: 16 November 2016; Accepted: 1 April 2017; Published: 1 August 2017
KEYWORDS
anti-symmetry
dimorphism
fish evolution
frequency-dependent selection
morphological asymmetry
Back to Top