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Exploring the limits of morphospace: Ontogeny and ecology 
of late Viséan ammonoids from the Tafilalt, Morocco

CHRISTIAN KLUG, KENNETH DE BAETS, and DIETER KORN

Klug, C., De Baets, K., and Korn, D. 2016. Exploring the limits of morphospace: Ontogeny and ecology of late Viséan 
ammonoids from the Tafilalt, Morocco. Acta Palaeontologica Polonica 61 (1): 1–14.

Early late Viséan ammonoid assemblages in Morocco are composed of diverse and well-preserved specimens. The mate-
rial was found in a plain in the Tafilalt (eastern Anti-Atlas). Here, we describe mass-occurrences of juvenile specimens, 
in which subadult and adult specimens occur in low numbers. The juveniles of some species display a conch morphology 
that differs fundamentally from the adult stages. Accordingly, we emend the species diagnoses of Goniatites lazarus as 
well as Calygirtyoceras darkaouaense, introduce the species Entogonites bucheri sp. nov., and discuss possible eco-
logical implications of the morphologic changes throughout ontogeny. In particular, we compare the changes in conch 
morphology through ontogeny in the light of Pareto Optimiality according to which the morphology of organisms would 
fill a polygon or polyhedron in morphospace. Data points in one of the vorteces of the polyhedron indicate optimisation 
for the corresponding task. Although shape is not a proof of function, it appears plausible that juvenile conchs were 
selected rather for compactness while adult conchs were positively selected for conchs with improved hydrodynamic 
properties. This appears plausible because at small conch diameters, swimming movements will not suffice for effective 
translocation and a planktonic mode of life is likely.

Key words:  Ammonoidea, morphospace, palaeoecology, Viséan, Morocco.

Christian Klug [chklug@pim.uzh.ch], Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Str. 
4, CH-8006 Zürich, Switzerland.
Kenneth DeBaets [kenneth.debaets@fau.de], GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 
Nürnberg, Loewenichstraße 28, D-91054 Erlangen, Germany.
Dieter Korn [dieter.korn@mfn-berlin.de], Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodi-
versitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany.

Received 22 October 2015, accepted 7 December 2015, available online 18 January 2016.

Copyright © 2016 C. Klug et al. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction
The evolution of life has never been a straight line, particu-
larly not for ammonoids. As documented by many authors, the 
ammonite conch underwent several morphological changes 
during ontogeny, possibly reflecting changes in habitat and 
habit (e.g., Drushchits et al. 1977; House 1996; Westermann 
1996; Klug 2001; Lukeneder et al. 2010; Ritterbush et al. 
2014; Robin et al. 2014; Lukeneder 2015; Mironenko and 
Rogov 2015; Naglik et al. 2015a). These ontogenetic changes 
can be profound to subtle. Examining conchs of adult am-
monoids bears the advantages for the studying researchers 
that they commonly formed distinct adult modifications such 
as constrictions or changes in coiling (e.g., Davis et al. 1996; 
Klug et al. 2015b) and that intraspecific variability appears 
to be lower (De Baets et al. 2015), thus facilitating species 
determination. By contrast, determination of juvenile forms, 
which are often more common, is sometimes difficult due to 

the lack of adult characters and because they display a dif-
ferent kind of variability (e.g., higher degree of interspecific 
overlap, dimorphism is not or poorly expressed; e.g., Davis 
et al. 1996; De Baets et al. 2013, 2015; Klug et al. 2015a). In 
any case, knowledge of the whole ontogeny is important to 
understand ammonoid systematics, phylogeny, and ecology 
(see De Baets et al. 2013; Klug et al. 2015a).

Ammonoid palaeoecology is difficult to assess, because 
direct observation of ammonoid behaviour is impossible 
and we have to rely on inferences that can be drawn from 
conch and jaw morphology. In this context, Tendler et al. 
(2015) have recently explored the distribution of shell shapes 
in morphospace. Based on the topography of this morpho-
space, they evaluated possible links between conch mor-
phology and the optimisation for certain tasks. These tasks 
are (i) economy of shell material (see also Raup 1967), (ii) 
optimal hydrodynamics (Chamberlain 1976; Jacobs 1992; 
Naglik et al. 2015b), and (iii) rapid shell growth (= high 
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2 ACTA PALAEONTOLOGICA POLONICA 61 (1), 2016

whorl expansion; compare Bucher et al. 1996). However, 
Tendler et al. (2015) found that the morphospace of adult 
ammonoid conchs filled a pyramid with five vertices. 
Accordingly, they interpreted the remaining two vertices as 
being occupied by shell morphologies optimized for combi-
nations of two tasks, namely compactness with economy of 
shell material (iv) and compactness with hydrodynamics (v).

In this paper, we want to explore these links using the 
well preserved Carboniferous materials from Morocco. After 
some quiescence following the pioneering works on Early 
Carboniferous (Mississippian) ammonoids from northern 
Africa (e.g., Delépine 1941; Pareyn 1961; Hollard 1958), re-
search on these fossils is currently experiencing a renaissance 
(Korn et al. 1999; 2002, 2003a, b, 2005, 2007, 2010, 2014; 
Ebbighausen et al. 2004, 2010; Bockwinkel and Ebbighausen 
2006; Klug et al. 2006; Bockwinkel et al. 2010). Possibly due 
to the quality of the outcrop (large plains covered in loose 
gravel with fossils aligned according to their source rock), 
several Carboniferous ammonoid assemblages (including 
the Entogonites-bearing assemblage described by Korn et al. 
2005; see map in Fig. 1) had been overlooked in the eastern 
Anti-Atlas (Morocco) although they are often well preserved, 
sometimes rather highly diverse and the contained forms dis-
play an impressive disparity. These assemblages yielded both 
juvenile and adult conchs of several, morphologically quite 
disparate species. This morphological disparity includes not 
only differences between different taxa but also within taxa 
between different growth stages (see also Klug 2001).

In the case of the nodules with Entogonites, the fossil-bear-
ing rocks are scarce and not so easy to find. The nodules con-
taining the Entogonites assemblage are usually flat, brownish 
and contain fossils in nearly rock forming numbers. Some of 
the rocks may actually represent gutter casts, which is sup-
ported by the fact that some of the nodules contain only juve-
nile specimens and that the nodules have a flat cross section 
and appear to be elongate. It is well visible that the contained 
ammonoids are reasonably diverse because their morphology 
differs strongly. The Entogonites assemblage contains all of 
the main types of “monomorphic” (planispirally coiled, bi-
laterally symmetric) ammonoids including oxyconic (adult 
Calygirtyoceras), serpenticonic (Nomismoceras), cadiconic 
(juvenile Calygirtyoceras), quadrate (juvenile Entogonites), 
and globose (adult Goniatites) to extremely spindle-shaped 
forms (juvenile Goniatites). A closer look revealed that cer-
tain morphologies are absent in the juveniles and others in 
the adults of this assemblage. This, in turn, led us to question 
whether this absence of certain conch shapes could be caused 
by sorting or other taphonomic processes or whether this is a 
primary signal, where juveniles or adults, respectively, sim-
ply did not produce conchs with such shapes.

Accordingly, the aims of our study are to: (i) describe 
the morphology of the members of the Entogonites assem-
blage, (ii) document, which morphologies are adult-only or 
juvenile-only, and (iii) discuss potential explanations for the 
patterns.

Institutional abbreviations.—GPIT, Institut für Geowissen-
schaften, Eberhard Karls Universität Tübingen, Germany; 
MB.C, Museum für Naturkunde, Berlin, Germany; PIMUZ, 
Paläontologisches Institut und Museum, Zürich University, 
Switzerland.

Other abbreviations.—ah, apertural height; dm, diameter; 
uw, umbilical width; WER, whorl expansion rate; ww, whorl 
width (measured between ribs). Conch parameters after Raup 
(1966: 1294; see below for the equations to determine these 
values): D, the distance between the generating curve and 
the coiling axis; S, the shape of the generating curve (“equiv-
alent to the cross-sectional shape of the tube”); W, whorl 
expansion rate (“the rate of increase in the size of the gener-
ating curve per revolution”).

Material and methods
The recently collected, well preserved specimens were all 
found in the pebble-covered reg-like desert (reg: gravel-cov-
ered flat area) about 12 km south of the oasis of Dar Kaoua. 
This assemblage described herein was partially presented 
by Korn et al. (1999, 2005, 2007) including one of the strati-
graphically oldest occurrences of a member of the genus 
Goniatites (G. lazarus) and a new species of Entogonites (E. 
saharensis). All material was collected in a plain, about 10 
to 12 km south of the Kasbah (fortified Moroccan building) 

Fig. 1. Geological map of the eastern Anti-Atlas (modified after Korn et 
al. 2005).
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of Dar Kaoua (Tafilalt, SE of Erfoud, Morocco; Fig. 1). The 
reg-like plain is largely flat with shallow hills covered by 
scree and very little true exposure. Nevertheless, some fos-
siliferous layers locally yield well-preserved ammonoids, 
orthocerids, nautilids, gastropods, trilobites, bryozoans, 
brachiopods, and crinoids. These layers can be vaguely 
traced by following the fossil occurrences. The relative 
abundances of ammonoids are listed in Table 1.

As far as measurements and ratios are concerned, we fol-
lowed the suggestions published by Korn (2010) as well as 
Klug et al. (2015a). Also, we use technical terms in the sense 
used in these two papers. To calculate the classical Raupian 
parameters W, S, and D, we used the original equations by 
Raup (1966, 1967). Tendler et al. (2015) repeated the equa-
tions needed to determine the values:

W = a/b
D = x/a
S = y/z

where a is the radius from the coiling axis to the venter, b 
is the same value of the preceding whorl, x is the umbilical 
width measured as a ratio from the coiling axis, y is the 
whorl width and z is the whorl height.

Systematic palaeontology
Ammonoidea Zittel, 1884
Family Goniatitidae Haan, 1825
Genus Goniatites Haan, 1825
Type species: Conchiliolithus Nautilites (sphaericus) Martin, 1809 (no-
men nudum) = Ammonites sphaericus Sowerby, 1814 (Opinion 420 
ICZN, 1956).

Goniatites lazarus Korn, Klug, and Mapes, 2005
Fig. 2−4.

Type material: Holotype GPIT 1851–97 (Korn et al. 2005: figs. 8.1, 
8.2); paratypes MB.C. 5307 and MB.C. 5308.

Type locality: 12 km southeast of Dar Kaoua, southeast of Erfoud, 
eastern Anti–Atlas, Morocco.
Type horizon: Early late Viséan (Entogonites assemblage).

Material.—25 juveniles: 6 in PIMUZ 31508, 1 in PIMUZ 
31509, 6 in PIMUZ 31510, 2 in PIMUZ 31512, 1 in PIMUZ 
31520, 2 in PIMUZ 31518, 7 in PIMUZ 31519. 4; adults: 
MB.C. 25130, PIMUZ 31514–16.
Emended diagnosis (modified after Korn et al. 2005).—
Goniatites with an extremely broad spindle-shaped juve-
nile conch (dm 1.1–6 mm; ww/dm up to 1.76), later with 
a pachyconic conch up to 40 mm dm (ww/dm 0.70) and 
thickly discoidal conch at 70–100 mm diameter (ww/dm 
0.6–1.00). Umbilicus almost closed (uw/dm 0.01–0.03) in 
all growth stages. Low aperture, moderate whorl expansion 
rate (1.7 in juvenile whorls, and nearly 2 near adulthood). 
The spindle-shaped juvenile whorls carry an umbilical ridge 
that vanishes at a diameter of about 7 mm. Suture line with 
V-shaped external lobe with slightly sinuous flanks, mod-
erately high median saddle (one-third of the symmetric, 
narrowly rounded ventrolateral saddle). Shell ornament with 
crenulated growth lines with convex course in juvenile to 
adult whorls.

Table 1. Quantity of specimens of different taxa in the new material 
from the early late Viséan, 12 km south of the oasis of Dar Kaoua.

Taxon Juveniles (Sub-) 
Adults Total % of ammonoids

in the assemblage
Nomismoceras sp. 169 5 174 52
Entogonites saharensis 68 3 71 21
Goniatites lazarus 25 5 30 9
Prolecanites sp. 23 0 23 7
Goniatitidae indet. 16 0 16 5
Entogonites bucheri 6 1 7 2
Calygirtyoceras 
darkaouaense 5 1 6 2

Beyrichoceras sp. 0 1 1 1
Bollandites sp. 4 0 4 1

Table 2. Measurements (in mm) and ratios of Goniatites lazarus. Abbreviations: ah, apertural height; D, the distance between the generating curve 
and the coiling axis; dm, diameter; S, the shape of the generating curve; uw, umbilical width; W, whorl expansion rate; WER, whorl expansion 
rate; ww, whorl width (measured between ribs).

Specimen dm ww uw ah WER ww/dm ah/dm uw/dm W D S
PIMUZ 31514 97 61 1.2 17 1.47 0.63 0.17 0.01 1.40 0.08 1.20

PIMUZ 31510, section 1
6.04 8.5 0.4 1.26 1.56 1.41 0.21 0.07 1.53 0.08 2.67
4.82 7.38 0.32 1.14 1.61 1.53 0.24 0.07 0.08 3.13
3.8 6.23 0.28 0.75 1.74 1.64 0.20 0.07 0.05 2.84

PIMUZ 31510, section 2

5.31 7.1 0.35 0.99 1.56 1.34 0.19 0.07 1.57 0.14 3.06
4.25 6.69 0.2 0.78 1.55 1.57 0.18 0.05 0.10 3.04
3.41 4.7 0.7 1.60 1.38 0.21
2.3 3.37 0.4 1.09 1.47 0.17
1.8 2.8 3.8 1.68 1.56 2.11

PIMUZ 31510, section 3

5.58 7.8 0.31 0.92 1.43 1.40 0.16 1.45 0.06 2.63
4.88 7 0.85 1.60 1.43 0.17
3.86 5 0.8 1.58 1.30 0.21 0.60 2.43
2.43 3.7 0.66 1.03 1.52 0.27
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Description.—At diameters of 2–7 mm, the whorl width/di-
ameter ratio ranges between 1.4 and almost 1.8 (e.g., PIMUZ 
31512; Figs. 2–4; Table 2). This ratio lies between 1.4 and 
1 in later ontogeny (dm < 70 mm) and further decreases 
to 0.6 in the still pachyconic adults (PIMUZ 31514, dm 
97 mm; Table 2). The umbilicus is very narrow through-
out the post-hatching ontogeny. Until a diameter of about 

7 mm, the spindle-shaped shell carries an umbilical ridge 
(PIMUZ 31512; Fig. 2A3). Adult conchs are globose with 
rounded venter and very involute (PIMUZ 31514; Fig. 3). 
Ornamentation is limited to fine growth lines, which are 
rather straight in small juveniles (e.g., PIMUZ 31520; Fig. 
2C2) and can be slightly crenulated in adults (PIMUZ 31514). 
In PIMUZ 31515, the crenulation consists of 2 minute waves 

Fig. 2. Juvenile (neanic) specimens of Goniatites lazarus Korn, Klug, and Mapes, 2005, Entogonites saharensis Korn, Klug, and Mapes, 2005, and 
Entogonites bucheri sp. nov. All from the early late Viséan, 12 km SE of Dar Kaoua (Tafilalt, Morocco). A. PIMUZ 31512, two neanic G. lazarus 
specimens (white arrows) in ventral views (A1), note the associated E. saharensis and orthocones. Enlarged G. lazarus in lateral view (A2); the narrow 
umbilicus and the umbilical ridge (A3). B. PIMUZ 31512, a juvenile G. lazarus, a small juvenile and a subadult E. saharensis; G. lazarus in ventral (B1) 
and lateral (B2) views. C. PIMUZ 31520, detail of a fully grown Maxigoniatites saourensis (Pareyn, 1961) with G. lazarus, 3 juvenile E. saharensis, 
and a subadult E. saharensis and a hatchling of E. bucheri sp. nov. (arrowed); C2, detail of C1, showing G. lazarus and E. bucheri sp. nov. All specimens 
whitened with NH4Cl-sublimate. Scale bars 10 mm.
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Fig. 3. Adult specimen of Goniatites lazarus Korn, Klug, and Mapes, 2005 (PIMUZ 31514) from the early late Viséan, 12 km SE of Dar Kaoua (Tafilalt, 
Morocco), in dorsal (A), lateral (B), and ventral (C) views. All specimens whitened with NH4Cl-sublimate

Fig. 4. Comparison of cross sections, measurements, and ratios of Goniatites lazarus and other ammonoids. A. Goniatites lazarus, subadult (MB.C. 
25130, A1) and juvenile (PIMUZ 31510, A2) from early late Viséan, 12 km SE of Dar Kaoua (Tafilalt, Morocco). B. Goniatites fimbriatus, MB.C.13299 
(after Korn et al. 2008: fig. 23A) from Nehden, Viséan, Rhenish Mountains, Germany. C. Juvenile Kornia citrus, MB.C.10202.1 (after Ebbighausen and 
Bockwinkel 2007: fig. 30B) from early Tournaisian, Aguelmous (Tafilalt, Morocco); note the conch shape and umbilical ridge, which is similar to juvenile 
G. lazarus. Whorl width (ww) and umbilical width (uw) indexes (D) and whorl expansion rate (WER) (E) of G. lazarus, G. fimbriatus, and K. citrus.
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on the growth lines or lirae, which are spaced at 0.5–0.8 mm 
at a diameter of 85 mm. The juvenile suture is poorly visible 
in PIMUZ 31512; its overall course corresponds to the adult 
suture, but details are not visible in all juvenile specimens. 
The adult suture (PIMUZ 31514; Fig. 3) was examined at ca. 
77 mm diameter. At this size, the V-shaped external lobe is 
almost twice as high as wide at the mid of its height. The 
median saddle measures 0.36 of the E-lobe height. The ven-
trolateral saddle has a nearly isosceles triangle-shape with 
shallow bulges near the bases and tops of both flanks and 
gentle concavity in the middle. Its adapertural tip is slightly 
asymmetrical and narrowly rounded. The adventive lobe is 
similar in size and shape, except that it is somewhat lower 
and broader.
Remarks.—The inner whorls of G. lazarus strongly resemble 
those of Kornia citrus Bockwinkel and Ebbighausen, 2006. 
We cut and polished two subadult G. lazarus from the same 
locality (Fig. 4A), which confirmed that the spindle-shaped 
juveniles indeed belong to this species and not to Kornia. 
With a conch width index (ww/dm) of up to 1.8, juveniles of 
this species belong to the ammonoids with the most extreme 
whorl width/diameter ratio. Similar changes in conch ontog-
eny have been documented from several goniatitids includ-
ing, e.g., G. fimbriatus (Fig. 4B) and K. citrus (Fig. 4C).
Stratigraphic and geographic range.—Early late Viséan, so 
far only known from the Tafilalt (Morocco).

Family Girtyoceratidae Wedekind, 1918
Genus Calygirtyoceras Korn, Klug, and Mapes, 1999
Type species: Calygirtyoceras darkaouaense Korn, Klug, and Mapes, 
1999, see below.

Calygirtyoceras darkaouaense Korn, Klug, and 
Mapes, 1999
Fig. 5.

Holotype: GPIT 1851-87; Korn et al. 1999: pl. 1: 7.
Type locality: 12 km southeast of Dar Kaoua, southeast of Erfoud, 
eastern Anti-Atlas, Morocco.
Type horizon: Early late Viséan (Entogonites assemblage).

Material.—6 specimens: three juvenile conchs in PIMUZ 
31509, PIMUZ 31516, PIMUZ 31519; two additional juve-
niles in PIMUZ 31508; an incomplete adult specimen with 
septal crowding in PIMUZ 31513.

Emended diagnosis (modified after Korn et al. 1999).—
Calygirtyoceras with a juvenile cadiconic conch (dm 5–10 
mm; ww/dm 0.60–0.71), a transitional discoidal, platyconic 
preadult conch shape and a large, thinly discoidal, oxy-
conic adult conch (dm 100–150 cm; ww/dm 0.30–0.40). 
Umbilicus very wide in juvenile growth stages (uw/dm 
0.08; dm 5–10 mm) and very narrow near adulthood (uw/
dm 0.10–0.15; dm > 50 mm). Whorl expansion rate very low 
in juvenile whorls (dm < 10 mm) and increasing to almost 3 
at > 50 mm diameter. Adult ornamentation with fine, cren-
ulated growth lines with biconvex and slightly rursiradiate 
course. Suture line with low median saddle (median saddle 
width/height ratio 0.30), broadly rounded ventrolateral sad-
dle, and narrow external lobe (external lobe width/height 
ratio 0.55).
Description.—PIMUZ 31516 (Fig. 5B) is a cadiconic juve-
nile with a thinly to thickly globular, very evolute conch. 
The whorl cross section is strongly depressed with a hardly 
vaulted venter; at the thickest part of the flanks, 12–15 
small nodes are developed at a diameter below 10 mm per 
half whorl. In the subsequent ontogenetic stage, the venter 
becomes more and more vaulted and rounded. At a whorl 
height of about 30 mm (PIMUZ 31513), the cross section 
becomes subtriangular with gently rounded flanks. PIMUZ 
31513 is a fragment of an adult conch (septal crowding 
at dm ca. 110 mm). At this stage, the conch is extremely 
discoidal and involute (Table 3). In this specimen, the ex-
ternal lobe is incompletely visible but V-shaped with a high 
ventrolateral saddle as present in the type-material. The 
V-shaped adventive lobe is inclined dorsally with a convex 
ventral flank.
Remarks.—In the original species diagnosis by Korn et al. 
(1999), the ontogenetic changes were described in a some-
what misleading way: in the same article, we (Korn et al. 
1999: p. 354) had stated that the “Umbilicus [is] very narrow 
in early growth stages (uw/dm = 0.08 at 20–30 mm dm) and 
slightly opening during ontogeny (stages (uw/dm = 0.10 to 
0.12 at 40–60 mm dm).” When measuring the umbilical 
width throughout the entire post-hatching ontogeny, a rather 
constant reduction of the uw/dm ratio from 0.62 to 0.14 was 
measured. Also, the latest growth stage was unknown pre-
viously.
Stratigraphic and geographic range.—Early late Viséan, so 
far only known from the Tafilalt (Morocco).

Table 3. Measurements (in mm) and ratios of Calygirtyoceras darkaouaense. Abbreviations: ah, apertural height; D, the distance between the 
generating curve and the coiling axis; dm, diameter; S, the shape of the generating curve; uw, umbilical width; W, whorl expansion rate; WER, 
whorl expansion rate; ww, whorl width (measured between ribs).

Specimen dm ww uw ah WER ww/dm ah/dm uw/dm W D S
PIMUZ 31513 83 26 12 35 2.99 0.31 0.42 0.14 2.48 0.10 0.43
PIMUZ 31516 6.5 4.6 4 0.75 1.28 0.71 0.12 0.62 1.26 0.42 4.60

GPIT 1851-88, paratype 
(from Korn et al. 1999)

21.3 15.1 6.3 5.8 1.89 0.71 0.27 0.30
15.5 12.6 6.5 3.5 1.67 0.81 0.23 0.42
12 11.2 6.1 2.5 1.60 0.93 0.21 0.51
9.5 9 5.1 1.95 1.58 0.95 0.21 0.54
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Entogonitidae Ruzhencev and Bogoslovskaya, 1971
Genus Entogonites Kittl, 1904
Type species: Tetragonites grimmeri Kittl, 1904; by monotypy; Bos-
nia-Herzegovina, Praca Dolnja, E of Sarajewo, early late Viséan.
Included species: Entogonites acus Korn and Titus, 2011: 134, Utah; 
Ento gonites borealis Gordon, 1957: 53, Alaska; Entogonites bucheri 
sp. nov., herein, Anti-Atlas; Entogonites burbankensis Korn and Titus, 
2011: 131, Utah; Tetragonites grimmeri Kittl, 1904: 677, Bosnia and 
Herzegovina; Pericyclus nasutus Schmidt, 1941: 151, Harz; Entogonites 

saharensis Korn, Klug, and Mapes, 2005: 363, Anti-Atlas; Gastrioceras 
(Branneroceratoides) tetragonum Kullmann, 1962: 88, NW Serbia.

Diagnosis.—Entogonitidae with simple ontogeny. Adult 
whorls slightly narrower umbilicate; inner whorls tetrangu-
larly coiled (from Korn et al. 2010).

Stratigraphic and geographic range.—Mississippian (Late 
Viséan) of Alaska, Bosnia, Germany, Morocco, Poland, 
Serbia, United Kingdom, and Utah.

Fig. 5. Ammonoids from the early late Viséan, 12 km SE of Dar Kaoua (Tafilalt, Morocco). A, C. Calygirtyoceras darkaouaense Korn, Klug, and Mapes, 
1999. A. PIMUZ 31516 (A1), Goniatites lazarus with a juvenile specimen in oblique-ventral (A2), lateral (A3), and ventral (A4) views. C. PIMUZ 31513, 
fragmentary adult in lateral view (C1), cross section (C2). B. Entogonites bucheri sp. nov., PIMUZ 31509, holotype in lateral (B1) and ventral (B2) views. 
All specimens whitened with NH4Cl-sublimate.
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Fig. 6. Mass occurrence of juvenile ammonoids from the early late Viséan, 12 km SE of Dar Kaoua (Tafilalt, Morocco). A. PIMUZ 31518 with 4 
specimens of Nomismoceras sp., 3 Prolecanites sp., 4 Entogonites saharensis Korn, Klug, and Mapes, 2005, 1 Calygirtyoceras darkaouaense Korn, 
Klug, and Mapes, 1999, and 2 Bollandites sp. B. PIMUZ 31508, overview; many taxa are indicated in the figure. All specimens whitened with NH4Cl-
sublimate.
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Entogonites saharensis Korn, Klug, and Mapes, 2005
Figs. 6, 7.

Type material: Holotype MB.C.5301; paratypes MB.C.5302–06.
Type locality: 12 km southeast of Dar Kaoua, southeast of Erfoud, 
eastern Anti–Atlas, Morocco.
Type horizon: Early late Viséan (Entogonites assemblage).

Material.—68 specimens displaying several ontogenetic 
stages 2 specimens in PIMUZ 31509; 2 specimens in 
PIMUZ 31509; 4 specimens in PIMUZ 31510; 5 specimens 
in PIMUZ 31511; 16 specimens in PIMUZ 31512; 2 spec-
imens in PIMUZ 31517; 4 specimens in PIMUZ 31518; 
9 specimens in PIMUZ 31519; 5 specimens in PIMUZ 
31520).
Remarks.—In terms of ontogenetic morphologic data, not 
much can be appended to the original descriptions (Korn et 
al. 2005). We add that the number or primary ribs varies on 
the quadratic whorls between 15 and 22 per half whorl. Not 
all ribs are dichotomous.
Stratigraphic and geographic range.—Early late Viséan, so 
far only known from the Tafilalt (Morocco).

Entogonites bucheri sp. nov.
Figs. 2C, 5A, 6C.

Etymology: Honoring Hugo Bucher (Zürich) for his numerous, thor-
ough and profound contributions to ammonoid paleobiology and stra-
tigraphy.
Type material: Holotype, subadult specimen, PIMUZ 31509, paratype, 
juvenile specimen, PIMUZ 31508.
Type locality: 12 km southeast of Dar Kaoua, southeast of Erfoud, 
eastern Anti–Atlas, Morocco.
Type horizon: Early late Viséan (Entogonites assemblage).

Material.—6 individuals: 2 specimens in PIMUZ 31509 
(the subadult holotype and a smaller individual); 3 juvenile 
to subadult specimens in PIMUZ 31512 (associated with 
about 100 other juvenile ammonoid conchs); a very small 
juvenile conch in PIMUZ 31520 (in the body chamber of a 
mature conch of Maxigoniatites).
Diagnosis.—Entogonites with largely regularly coiled 
whorls. Only the third whorl displays faint tetragonal coil-
ing. Expansion rate of juvenile and adult whorls exceeds 
2.0. The uw/dm ratio is below 0.4. Ornamentation begins 
after the nepionic constriction with simple ribs, followed by 
bifurcating and intercalatory ribs (>30 per whorl).

Description.—The small subevolute specimen PIMUZ 
31520 measures about 1.8 mm in diameter. It comprises 
the initial chamber and the initial 2.5 whorls (Fig. 2C). The 
embryonic shell measures less than 1 mm and has a smooth 
surface. Only one side is exposed and thus, the thickness 
cannot be measured. At the presumed position of the nepi-
onic constriction, the fine ornament commences. At 1.8 mm 
diameter, there are 25 simple and rectiradiate ribs per half 
whorl.

The ontogenetically slightly older specimen PIMUZ 
31508 measures 5 mm in diameter. Its conch is subinvolute 
with a high whorl expansion rate (Table 4). As in the other 
specimen, the conch is only partially exposed and hence, 
conch thickness is unknown. The tetragonal coiling is only 

Table 4. Measurements (in mm) and ratios of Entogonites saharensis and E. bucheri sp. nov. Abbreviations: ah, apertural height; D, the distance 
between the generating curve and the coiling axis; dm, diameter; S, the shape of the generating curve; uw, umbilical width; W, whorl expansion 
rate; WER, whorl expansion rate; ww, whorl width (measured between ribs).

Species Specimen dm ww uw ah WER ww/dm ah/dm uw/dm W D S

Entogonites 
saharaensis

PIMUZ 31520 7.67 3.60 1.63 1.61 0.21 0.47
MB.C.5301, holotype 9.35 3.05 4.55 2.05 1.64 0.33 0.49 1.67 0.49 1.13
MB.C.5304, paratype 11.2 5.4 0.48
MB.C.5305, paratype 2.2 1.15 1.05 1.58 0.52 0.48 1.53 0.43 1.67

Entogonites 
bucheri

PIMUZ 31509, holotype 8.93 3.1 2.86 2.68 2.04 0.35 0.3 0.32
PIMUZ 31512 5.0 1.84 2.37 2.13 0.47 0.37

Fig. 7. Morphospace (UWI, umbilical width index; WER, whorl expansion 
rate; CWI, conch width index) with data of 3015 species of Palaeozoic 
ammonoids with additional points of the ammonoids from the early late 
Viséan of the Tafilalt (Morocco). Note that data points of juveniles (empty 
symbols) of Calygirtyoceras darkaouaense and Goniatites lazarus lie at 
the edge or outside of the cloud of 3015 species. Graph produced using 
JMP 11.
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very faintly developed in early whorls and the last of the pre-
served (preadult) whorls is completely regularly coiled. At 5 
mm diameter, there are 20 primary ribs per half whorl. Most 
of these ribs bifurcate near the midflank, but there are a few 
trifurcating ribs as well (or bifurcating with an associated 
intercalatory rib).

The holotype PIMUZ 31509 has a diameter of almost 9 
mm. At this size, the subevolute conch is thinly discoidal 
with a high whorl expansion rate. The initial chamber mea-
sures approximately 0.4 mm across. The first two whorls 
are regularly coiled followed by one vaguely tetragonally 
coiled whorl. The last two whorls are again normally coiled. 
The ornamentation consists of 34 primary ribs on the last 
half whorl. Most of these ribs bifurcate in the middle of 
the flank, some are simple but then often associated with 
intercalatory ribs. The rib course begins with a deep ventral 
sinus, which is nearly twice as wide as it is deep measured 
from the tips of the adjacent ventrolateral projections, which 
are rounded and asymmetric. The ribs are the most strongly 
developed in the ventrolateral projections. Most of the flank 
is covered by a broad and shallow sinus. None of the speci-
mens displays the suture line.
Remarks.—Although the suture is not visible, the combina-
tion of coiling, ornamentation and stratigraphic origin con-
firms the genus assignment. The new species differs from 
all other species in the extremely reduced tetragonal coiling 
of the inner whorls. Additionally, it has a clearly higher 
whorl expansion rate (values partially from the online data-
base GONIAT (http://www.goniat.org, accessed September 
7th 2015) and Korn et al. 2010) than all other species (E. 
bucheri, 2.0–2.15; E. grimmeri, 1.5–1.7; E. saharaensis, 
1.5–1.65; E. tetragonus, 1.8–1.9) and, as can be expected 
from the covariation of these characters, the umbilicus is 
narrower (E. bucheri, <0.4; E. borealis, 0.41; E. grimmeri, 
0.45; E. saharaensis, >0.48; E. tetragonus, 0.5).
Stratigraphic and geographic range.—Early late Viséan, so 
far only known from the Tafilalt (Morocco).

Discussion
As far as the early late Viséan ammonoid fauna from the 
Tafilalt is concerned, the extreme morphology of some ju-
venile shells in combination with the often fundamentally 
different adult morphology is striking. One might suggest 
that these differences are rooted in the widely documented 
juvenile (post-hatching) morphological intraspecific vari-
ability of mollusk shells (e.g., Jacobs 1992; Jacobs et al. 
1994; Jacobs and Chamberlain 1996; Urdy et al. 2010a, b; 
De Baets et al. 2013, 2015; Naglik et al. 2015a). This is in 
contrast with the fact that the conch morphology of some 
of the juveniles of early late Viséan ammonoids lies at the 
edge or even outside of the morphospace of adult Palaeozoic 
ammonoids (Figs. 7, 8). To put it differently: some juvenile 
morphologies are inexistent in adult ammonoids (at least 

in the Entogonites assemblage; we are not aware of adult 
ammonoids with a conch morphology remotely similar to 
juvenile Goniatites lazarus). The morphologies (see also 
the illustrations in Fig. 8; the terminology of Korn 2010 is 
given in brackets where it differs from the classical terms) 
we found in the major growth stages of the Entogonites as-
semblage are:

 − conch shapes occurring only in juveniles: cadiconic (spin-
dle-shaped, very evolute), spindle-shaped involute, evo-
lute with quadrate coiling;

 − conch shapes occurring only in subadults and adults: oxy-
conic (extremely discoidal, involute);

 − conch shapes occurring in juvenile to adult stages: platy-
conic (discoidal), serpenticonic (discoidal, very evolute), 
sphaeroconic (pachyconic, involute).
This leads to the question of whether this ontogenetic 

distribution of shell morphologies roots purely in morpho-
genetic constraints or whether there are also some aspects 
that can explain shell morphology, which root in the selec-
tion for distinct shapes. There are limits as to how to test 
these hypotheses since direct observation of these extinct 
animals is impossible. We can still discuss this issue a bit 
further by, for example, employing the set of hypotheses 
published recently by Tendler et al. (2015). In their paper, 
they explored possible adaptations and trade-offs through-
out ammonoid evolution. They followed other authors (e.g., 

Fig. 8. Ammonoid morphospace after Tendler et al. (2015) using the Raupian 
parameters W (whorl expansion rate), S (shape of the generating curve), and 
D (distance between the generating curve and the coiling axis). Note that the 
juveniles (empty symbols) of Calygirtyoceras darkaouaense and Goniatites 
lazarus (in contrast to the respective adults) lie outside of the five-sided 
pyramid. Juvenile Nomismoceras sp. plots near vertex 1, Entogonites spp. 
between 1 and 4, and juvenile Bollandites sp. near 4. A Devonian pinacitid is 
depicted near vertex 3 to illustrate the conch morphology.
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Arnold 1983; Farnsworth and Niklas 1995; Alexander 1996) 
in the assumption that organisms have to be capable to 
deal with differing “tasks” that often lead to trade-offs in 
constructional morphology. Tendler et al. (2015) employed 
the theory of Pareto Optimality (named after the economist 
Vilfredo Pareto), which is based on the fields of economy 
and engineering (Sen 1993; Shoval et al. 2012; Tomoiagă et 
al. 2013). Accordingly, the morphology of most organism 
groups would fill a polygon or polyhedron in the morpho-
space. Data points of specimens that are positioned in a cor-
ner of the polygon or polyhedron would represent forms op-

timized to fulfil one task predominantly. Such forms were 
dubbed archetypes by Tendler et al. (2015). Consequently, 
if the shape of a body part of an animal lies between two or 
more archetype positions, we can assume a limited optimi-
zation for several tasks, linked with trade-offs with regard 
to the others.

In their study, Tendler et al. (2015) applied these ideas 
to a dataset of mostly adult ammonoids from all major 
groups. They discovered that ammonoids filled a space 
in the Raupian W-S-D morphospace (Raup 1966, 1967) 
that has a shape of a pyramid with five vertices (Fig. 8). 

Fig. 9. Reconstruction of the ammonoid fauna from the early late Viséan,12 km SE of Dar Kaoua (Tafilalt, Morocco). A. Illustration of the habitat. B. The 
main components of the ammonoid assemblage.
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These vertices correspond with morphologies representing 
optimization for shell growth, hydrodynamics, economy 
of shell material, compactness + economy of shell mate-
rial, and compactness + hydrodynamics (i.e., the last two 
represent combinations of two optimizations each). When 
applied to the early late Viséan ammonoids from Morocco, 
this would imply differing optimizations depending on on-
togenetic stages:

 − optimization only in juveniles: compactness + economy 
of shell material, compactness + hydrodynamics;

 − optimization only in subadults and adults: shell growth, 
hydrodynamics;

 − optimization in juvenile to adult stages: economy of shell 
material, compactness and hydrodynamics.
The absence of certain optimizations (independent 

of their functional interpretations) in certain ontogenetic 
stages might imply that juvenile conch morphologies 
had to be optimised partially to other tasks than adults. 
Interestingly, no juvenile of the Entogonites assemblage 
lies close to the vertices representing optimization for hy-
drodynamics and shell growth. These results coincide with 
findings of Jacobs (1992), Jacobs et al. (1994), and Jacobs 
and Chamberlain (1996), according to which the maximum 
sustainable swimming velocity depends strongly on size 
and shell morphology (reviewed in Naglik et al. 2015b). 
Additionally, large ammonoids with compressed shells 
(e.g., oxycones) could have reached the highest swimming 
velocities, while at small conch sizes, ammonoids with 
depressed shells (cadicones and spherocones) could swim 
faster (although still not fast).

Possibly, the congruence of this conclusion of Jacobs 
(1992) and Jacobs and Chamberlain (1996) with the distri-
bution of juvenile morphologies versus adult morphologies 
is a coincidence. Also, Tendler et al. (2015) interpreted the 
conch morphologies with depressed shells as being opti-
mised for compactness in combination with economy of 
shell material or hydrodynamics. It thus appears that such a 
compact conch morphology was advantageous for juvenile 
ammonoids of the Viséan. Compactness of the conch mor-
phology has effects on swimming velocities and endurance 
by reducing drag, it has effects on reproduction through 
the reduction of embryonic shell size (De Baets et al. 2012) 
and on predation as individuals with similar width have a 
smaller diameter and thus might be harder to detect and 
catch. The hypothesis that juvenile conchs were optimized 
for tasks different from those of adults (or for similar tasks 
accomplished by different morphological means) finds a 
further, however weak, support in the fact that some of 
the slabs from the early late Viséan of the Tafilalt are cov-
ered by hundreds of juveniles of various ammonoid spe-
cies (Figs. 6, 9): on the one hand, these associations could 
represent taphocoenosis of juveniles that shared habitats 
different from those of adults, but on the other hand, these 
assemblages might also have formed by size-sorting due to 
currents.

Conclusions
Early late Viséan sedimentary rocks of the Tafilalt (Morocco) 
contain well-preserved and diverse ammonoid assemblages, 
which enabled us to emend the diagnoses of the two am-
monoid species Goniatites lazarus and Calygirtyoceras 
darkaouaense. Additionally, we describe the new species 
Entogonites bucheri sp. nov., which shares the tetragonal 
juvenile whorls with other representatives of the genus (al-
though the tetragonal shape is only weakly developed in the 
new species).

The locality SE of Dar Kaoua in the Tafilalt occasion-
ally yields blocks full of small, mostly juvenile specimens. 
These juveniles commonly exhibit shapes that never occur 
in adult ammonoids. Also, the morphologic change in the 
corresponding adults is often profound. We discuss this 
finding in the light of Pareto Optimality, which was ap-
plied to ammonoids by Tendler et al. (2015). In accordance 
with the results of studies by Jacobs (1992) and Jacobs and 
Chamberlain (1996), we suggest that the different morpho-
space occupations of juvenile and adult ammonoids might 
represent optimisations for compactness (and secondarily 
hydrodynamics) in the juveniles and for hydrodynamics 
(and secondarily shell growth) in adults. In future studies, 
it might be interesting to further compare juvenile and adult 
morphospace occupations and optima, their degree of over-
lap and separation as well as changes in overlap through 
time and phylogeny.
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