

Development, Characterization, and Cross-Amplification of Microsatellite Markers in the Understudied African Genus Anthonotha (Fabaceae)

Authors: Demenou, Boris B., and Hardy, Olivier J.

Source: Applications in Plant Sciences, 5(1)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1600120

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

DEVELOPMENT, CHARACTERIZATION, AND CROSS-AMPLIFICATION OF MICROSATELLITE MARKERS IN THE UNDERSTUDIED AFRICAN GENUS ANTHONOTHA (FABACEAE)¹

BORIS B. DEMENOU^{2,3} AND OLIVIER J. HARDY²

²Evolutionary Biology and Ecology Unit, CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium

- *Premise of the study: Anthonotha macrophylla* (Fabaceae) is a common tree species throughout the Guineo-Congolian forest that is sometimes confounded with other congeneric species; it is expected to be an interesting phylogeographical model to infer the history of the African dense forests. We developed 18 microsatellite markers from this species and tested their transferability in 15 congeneric species.
- *Methods and Results:* A genomic library was obtained using the Illumina platform, and 18 polymorphic microsatellite loci were developed. The polymorphic microsatellites displayed two to 24 alleles (average: 11.9 alleles per locus, expected heterozygosity range: 0.18–0.91, mean: 0.64) in three populations of *A. macrophylla* from Benin, Liberia, and Cameroon. Cross-amplification in one to nine individuals of 15 congeneric *Anthonotha* species (*A. acuminata, A. brieyi, A. cladantha, A. crassifolia, A. ferruginea, A. fragrans, A. gilletii, A. lamprophylla, A. mouandzae, A. noldeae, A. pellegrinii, A. pynaertii, A. stipulacea, A. wijmacampensis, and <i>A. xanderi*) showed successful amplification in six to 17 loci, making most of these markers useful at the generic level.
- Conclusions: This set of markers will be useful to study species delimitation and the genetic structure of Anthonotha species, and thus to better understand the history of tropical African rainforests.

Key words: Anthonotha macrophylla; Fabaceae; microsatellites; next-generation sequencing; rainforest history.

Anthonotha P. Beauv. (Fabaceae) is an African native genus belonging to the monophyletic tribe Detarieae. Anthonotha species are found in evergreen to deciduous tropical African forests. Breteler (2010) recognizes 17 species almost completely confined to the Guineo-Congolian region, but species distinction is not always easy without flowers. Among these 17 species, A. macrophylla P. Beauv. is the most common and frequently collected species of the genus. It is a shrub or tree that usually grows 4-20 m tall and is one of the forest tree species found in the Holocene Climate Optimum forest relics in the Dahomey Gap. Its wide and nearly continuous distribution from Guinea to the Democratic Republic of the Congo (west and central African rainforest) should be useful to study the impact of past climate change on tropical African forest from genetic diversity pattern and phylogeographic and demographic inferences. To date, no microsatellite resources have been developed for Anthonotha species.

In this paper, we isolated and characterized a set of 18 polymorphic microsatellite markers for *Anthonotha*. These markers

¹Manuscript received 2 October 2016; revision accepted 9 November 2016.

The authors thank the Fonds pour la Formation à la Recherche dans l'Industrie et l'Agriculture (FRIA, Belgium), the Fonds de la Recherche Scientifique (F.R.S.-FNRS, grant T.0163.13), and Belgian Science Policy (project AFRIFORD) for financial support. The authors also thank Esra Kaymak for help in the laboratory, Ebenezer Ewedje and Armel Donkpegan for technical assistance, and Jan Wieringa for allowing herbarium sampling in Leiden (Naturalis Biodiversity Center).

³Author for correspondence: bdemenou@ulb.ac.be

doi:10.3732/apps.1600120

will complement the ones developed for *Terminalia superba* Engl. & Diels (Demenou et al., 2015) to study the history of fragmentation of the tropical African rainforest in the Dahomey Gap. We also attempted cross-amplification in 15 congeneric *Anthonotha* species.

METHODS AND RESULTS

Microsatellite development-Total genomic DNA of A. macrophylla was extracted (ca. 5 µg) from 30 mg of silica gel-dried leaf collected from a sample coded OH3840 (2.30018°N, 25.02499°E; Appendix 1) from the Democratic Republic of the Congo using a cetyltrimethylammonium bromide (CTAB) method (Fu et al., 2005). The extracted DNA was used to prepare a DNA genomic library without enrichment, following the protocol of Mariac et al. (2014), and sequenced using the Illumina (San Diego, California, USA) MiSeq platform (sequencing performed at CIRAD, Montpellier, France) as described in Demenou et al. (2015), which generated 28,902 150-bp-long paired-end reads. After assembling the paired reads with PANDAseq (Masella et al., 2012), the identification of simple sequence repeats (SSRs) and design of primers were performed with the bioinformatics pipeline QDD (Meglécz et al., 2014) following three steps: (1) selection of sequences containing SSRs, (2) elimination of redundant sequences, and (3) primer design. We detected 1109 loci (≥7 repeats) between 3246 reads containing microsatellite motifs. From these, we selected 48 primer pairs representing the longest dinucleotide repeats with PCR product length ≥100 bp and flanking region length of at least 15 bp from the microsatellite. Finally, using an M13-like protocol of Micheneau et al. (2011), we attached one of the four possible linkers (Q1-Q4) to the 5' end of the forward primer of each locus to label PCR products with the distinct fluorochromes FAM, NED, VIC, and PET.

Amplification for each pair of designed primers was evaluated in three individuals of *A. macrophylla* from Benin (EE271; 6.96013°N, 2.67641°E), Cameroon (BS102; 5.10500°N, 11.40056°E), and Côte d'Ivoire (GK1034; 6.42321°N, 7.48098°W) (Appendix 1). PCR reactions (13 µL) were performed using 1 µL

Applications in Plant Sciences 2017 5(1): 1600120; http://www.bioone.org/loi/apps © 2017 Demenou and Hardy. Published by the Botanical Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original.

Demenou and Hardy-Anthonotha microsatellites

of DNA (ca. 50 ng/µL), 1.5 µL PCR buffer (10×), 0.6 µL MgCl₂ (25 mM), 0.45 µL dNTP (10 mM each), 0.3 µL of each primer (0.25 µM), 0.08 µL TopTaq DNA polymerase (5 U/µL; QIAGEN, Venlo, The Netherlands), and 8.77 µL H₂O using the following conditions: an initial step at 94°C for 4 min; followed by 30 cycles of 30 s at 94°C, 45 s at a primer annealing temperature of 55°C, and 1 min at 72°C; and a final extension of 10 min at 72°C. PCR products were visualized on a 1% agarose gel and stained with SYBR Safe (Invitrogen, Merelbeke, Belgium).

All but two of the 48 primer pairs amplified consistently. Polymorphism was assessed on the same three previously amplified individuals (Appendix 1). For this step, PCR amplification was performed for each of 46 loci with fluorescent labeling in a total volume of 15 μ L, combining: 0.3 μ L of the reverse (0.2 μ M) and 0.1 µL of the forward (0.07 µM) microsatellite primers with a Q1-Q4 universal sequence at the 5' end, 0.3 µL of Q1–Q4 labeled primer (0.2 µM each), 3 µL of Type-it Microsatellite PCR Kit (QIAGEN), H₂O, and 1.5 µL of DNA. Cycling conditions were as described above with 30 cycles and primer annealing temperature of 55°C. A mix of 1 µL of each PCR product with 12 µL of Hi-Di Formamide (Life Technologies, Carlsbad, California, USA) and 0.3 µL of Map-Marker 500 labeled with DY-632 (Eurogentec, Seraing, Belgium) was run on an ABI3730 Capillary Sequencer (Applied Biosystems, Lennik, The Netherlands). Electropherograms were analyzed with GeneMapper version 3.7 (Applied Biosystems). Twenty-eight loci were discarded because of lack of amplification, genotyping difficulties, or unreadable electropherograms. The remaining 18 selected polymorphic loci were combined into three multiplexed reactions (Table 1) using Multiplex Manager 1.0 software (Holleley and Geerts, 2009).

Microsatellite marker data analysis—We evaluated the quality of these 18 microsatellite markers in three populations of *A. macrophylla* from southern Benin (N = 19), southern Liberia (N = 35), and eastern Cameroon (N = 28) (Appendix 1). Multiplex PCR reactions were carried out as described above to check polymorphism except that we added 3 µL of 5× Q-solution and readjusted the quantity of H₂O for a total volume of 15 µL. Multiplex PCR programs consisted of 94°C (5 min); followed by 22 cycles of 95°C (30 s), 56°C (90 s), and 72°C (1 min); followed by 10 cycles of 94°C. (30 s), 53°C (90 s), and 72°C (1 min); and a final extension of 10 min at 72°C.

We computed the parameters of allele size range, observed number of alleles (A) per locus, observed (H_0) and expected (H_0) heterozygosities, inbreeding coefficient (F), and null allele frequencies (r) with INEst 1.0 (Chybicki and Burczyk, 2009) for each locus and population. We also tested deviation from Hardy–Weinberg equilibrium (HWE) for each locus with SPAGeDi (Hardy and Vekemans, 2002).

The number of alleles per locus ranged from two to 24 (average of 11.9 alleles per locus; Table 2). H_o and H_e ranged from 0 to 0.74 (average: 0.38) and from 0.05 to 0.89 (average: 0.48) for the Benin population, from 0 to 0.86 (average: 0.41) and from 0 to 0.93 (average: 0.58) for the Liberia population, and from 0 to 0.75 (average: 0.43) and from 0.04 to 0.89 (average: 0.63) for the Cameroon population (Table 2), repectively. Significant deviation from HWE (Table 2) was observed for four loci (AntM-ssr08, AntM-ssr09, AntM-ssr27, and AntM-ssr09, AntM-ssr04, AntM-ssr04, AntM-ssr33,

TABLE 1. Characteristics of 18 polymorphic microsatellite loci for Anthonotha macrophylla.

Locus ^a		Primer sequences (5'–3') ^b	Fluorescent label	Repeat motif	Allele size range (bp)	GenBank accession no.
Multiplex 1						
AntM-ssr22	F:	TAGGAGTGCAGCAAGCATTATGTGCTAAGAAGAGCCTTAGCTT	Q2-NED	(AG) ₉	149–160	KX865149
AntM-ssr26	F: R:	CACTGCTTAGAGCGATGC CACTGCTTAGAGCGATGCGCCCATAAAGAAGATGAGGACAA AGGCAGAGCGTGATATCGTC	Q3-VIC	(GA) ₈	176–182	KX865151
AntM-ssr08	F: R:	TGTAAAACGACGGCCAGTGTGCGAAAGGATAGCAGCGTG TGCTCATTTCAGAGATGGTGTT	Q1-6-FAM	(CT) ₈	179–201	KX865144
AntM-ssr42	F: R:	CTAGTTATTGCTCAGCGGTTTGCAGGCAAACATGAGC AAACAGAGTTGTCCTTCTCCG	Q4-PET	(TC) ₇	166–203	KX865157
AntM-ssr15	F: R:	TAGGAGTGCAGCAAGCATGAGACTCAAAGTCCCTACGAAA AGATATGGAAGCCATGGACG	Q2-NED	(TC) ₉	211–235	KX865146
AntM-ssr09	F: R:	TGTAAAACGACGGCCAGTAAGGAAGGATGAGAGGGAAA GCTTAGGCATCAAATACGGG	Q1-6-FAM	(CT) ₂₅	238-331	KX865145
Multiplex 2						
AntM-ssr36	F: R:	CACTGCTTAGAGCGATGCAAAGGCAGAAACACAATGGC CGCTTTCATCATTCACTCAGA	Q3-VIC	(GA) ₁₁	117–135	KX865154
AntM-ssr27	F: R:	CACTGCTTAGAGCGATGCAAGGGAAATCGTAAAGCTCG	Q3-VIC	(TC) ₇	166–192	KX865152
AntM-ssr41	F: R·	CTAGTTATTGCTCAGCGGTGGGTAGTAATCCGCAAGAAGG CTCTCGCGCTAGAGCCTAGGA	Q4-PET	(GA) ₇	176–194	KX865156
AntM-ssr24	F: R·	TAGGAGTGCAGCAAGCATTTTACCAACCCAGAAAGCAA	Q2-NED	(GA) ₈	177–222	KX865150
AntM-ssr39	F: R·	CTAGTTATTGCTCAGCGGTTCCCAACAGCTTCCTACTAACTA	Q4-PET	(GA) ₁₄	201-227	KX865155
AntM-ssr04	F: R·	TGTAAAACGACGGCCAGTGAGGAAACGAGCTCTCCATC	Q1-6-FAM	(GA) ₇	222-230	KX865142
AntM-ssr02	F: R:	TGTAAAACGACGGCCAGTTACTCAGAGGTGAGCTAAGCCG	Q1-6-FAM	(AG) ₁₀	349–387	KX865141
Multipley 3	1					
AntM-ssr33	F: R:	CACTGCTTAGAGCGATGCTGGAAGTCCTCTGGCAGATT	Q3-VIC	(GA) ₁₂	146–166	KX865153
AntM-ssr21	F: R·	TAGGAGTGCAGCAAGCATTATGGGTGCAGATTCCAGTG	Q2-NED	(TC) ₇	158–160	KX865148
AntM-ssr43	F: R·	CTAGTTATTGCTCAGCGGTTAAAGTACCAGCACGCAGCA GACCGCCAAGATTCCT	Q4-PET	(CT) ₈	170–216	KX865158
AntM-ssr16	F: R·	TAGGAGTGCAGCAAGCATATGCAGGTTCCCAAGGTATG	Q2-NED	(GA) ₉	307–363	KX865147
AntM-ssr06	F: R:	TGTAAAACGACGGCCAGT AACCTGTTTACTCGAGTTGGG	Q1-6-FAM	(CT) ₈	345–377	KX865143

^aOptimal annealing temperature was 55°C and 53°C for Phase 1 and 2.

^bThe linkers (Q1, Q2, Q3, Q4) attached to the forward primers are underlined.

http://www.bioone.org/loi/apps

TABLE 2.

Genetic properties of the 18 polymorphic microsatellite loci for three populations of Anthonotha macrophylla.^a

				Benin (P	obe, N = 19)				Liberia (Ni	mba, $N = 35$)			Ca	meroon (So	utheast, $N = 2$	8
Locus	A_{Γ}	A	$H_{_{0}}$	$H_{\rm e}$	F^{b}	r	A	$H_{ m o}$	$H_{\rm e}$	F^{b}	r	Α	$H_{ m o}$	$H_{ m e}$	F^{b}	r
Multiplex 1																
AntM-ssr22	9	4	0.26	0.33	0.21	0.08 ± 0.08	б	0.31	0.34	0.09	0.03 ± 0.03	5	0.50	0.58	0.14	0.06 ± 0.06
AntM-ssr26	9	С	0.21	0.29	0.27	0.00 ± 0.00	4	0.29	0.63	0.55^{**}	0.26 ± 0.06	4	0.07	0.30	0.75^{***}	0.32 ± 0.08
AntM-ssr08	17	4	0.11	0.20	0.48*	0.12 ± 0.12	8	0.37	0.42	0.12	0.00 ± 0.00	13	0.54	0.73	0.27^{**}	0.07 ± 0.05
AntM-ssr42	20	6	0.63	0.86	0.27	0.10 ± 0.08	19	0.40	0.93	0.57^{***}	0.33 ± 0.07	6	0.46	0.85	0.46^{***}	0.28 ± 0.07
AntM-ssr15	12	4	0.32	0.29	-0.10	0.00 ± 0.00	4	0.31	0.28	-0.11	0.00 ± 0.00	6	0.61	0.65	0.06	0.01 ± 0.03
AntM-ssr09	24	6	0.53	0.74	0.29*	0.11 ± 0.07	10	0.26	0.79	0.67^{***}	0.33 ± 0.12	16	0.68	0.82	0.17	0.01 ± 0.04
Multiplex 2																
AntM-ssr36	11	9	0.53	0.54	0.03	0.00 ± 0.00	6	0.66	0.67	0.01	0.00 ± 0.00	10	0.64	0.79	0.19	0.06 ± 0.04
AntM-ssr27	Г	0	0.00	0.47	1.00^{***}		9	0.29	0.35	0.19	0.08 ± 0.06	4	0.15	0.31	0.53^{**}	0.35 ± 0.27
AntM-ssr41	Г	0	0.05	0.05	0.00	0.00 ± 0.00	ŝ	0.26	0.23	-0.11	0.00 ± 0.00	4	0.61	0.45	-0.35	0.00 ± 0.00
AntM-ssr24	13	4	0.68	0.61	-0.12	0.00 ± 0.00	11	0.57	0.84	0.32	0.17 ± 0.06	9	0.63	0.74	0.15	0.06 ± 0.07
AntM-ssr39	13	7	0.53	0.49	-0.08	0.00 ± 0.00	9	0.46	0.50	0.08	0.01 ± 0.04	6	0.75	0.84	0.19^{*}	0.08 ± 0.05
AntM-ssr04	4	e	0.21	0.29	0.27	0.00 ± 0.00	ŝ	0.14	0.37	0.61^{**}	0.25 ± 0.08	0	0.04	0.04	0.00	0.00 ± 0.00
AntM-ssr02	17	8	0.74	0.89	0.17	0.04 ± 0.06	11	0.74	0.83	0.11	0.05 ± 0.04	13	0.68	0.89	0.23^{**}	0.11 ± 0.05
Multiplex 3																
AntM-ssr33	10	5	0.58	0.54	-0.08	0.00 ± 0.00	9	0.31	0.60	0.47^{**}	0.22 ± 0.12	Г	0.57	0.70	0.18	0.10 ± 0.07
AntM-ssr21	0	0	0.26	0.31	0.15	0.04 ± 0.06	1	0.00	0.00	1.00^{***}		0	0.25	0.31	0.14	0.06 ± 0.10
AntM-ssr43	18	б	0.11	0.10	-0.01	0.00 ± 0.00	13	0.86	0.89	0.04	0.00 ± 0.00	L	0.43	0.70	0.37^{***}	0.21 ± 0.07
AntM-ssr16	13	8	0.63	0.76	0.17	0.03 ± 0.04	8	0.80	0.82	0.02	0.02 ± 0.02	9	0.69	0.75	0.32^{**}	0.13 ± 0.12
AntM-ssr06	14	8	0.47	0.78	0.39^{**}	0.17 ± 0.12	11	0.26	0.86	0.70^{***}	0.43 ± 0.06	4	0.00	0.53	1.00^{***}	
Note: $A = nun$	aber of ;	illeles; ,	$A_{\rm T} = total$	numbers c	of alleles obse	rved among all t	hree por	vulations;	F = fixatio	on index; $H_a =$	expected hetero	zygosity	$H_{o} = ob$	served hete	crozygosity; /	I = number of
individuals samp	r = r	null all	ele freque	ency.)	•	`			-	,))	, ,)	
^a Voucher and	locality	inform	ation are j	provided in	Appendix 1.											
^b Significant d	eviation	from H	Hardy-We	inberg equ	ilibrium: $*P <$	< 0.05, **P < 0.0)1, *** <i>P</i>	` < 0.001.								

Demenou and Hardy-Anthonotha microsatellites

TABLE 3. Resi	ults of cross-	-amplifica	ation (allele s	size ranges) c	of microsatel	lite loci iso	lated from	Anthonotha n	nacrophylla	tested in 15	other Antho	<i>motha</i> taxa.	a		
Locus	A. acuminata $(N = 8)$	A. brieyi $(N = 8)$	A. cladantha . $(N = 2)$	A. crassifolia $(N = 9)$	A. ferruginea . (N = 3)	A. fragrans $(N = 7)$	A. gilletii A. $(N = 1)$. lamprophylla $_{i}$ $(N = 4)$	4. mouandzae (N = 3)	A. noldeae / (N = 3)	A. pellegrinii (N = 1)	A. pynaertii (N = 4)	A. stipulacea / (N = 9)	$\begin{array}{l} \text{A. wijmac ampensis} \\ (N=1) \end{array}$	A. xanderi $(N=3)$
Multiplex 1 AntM-ssr22	149–153	149–152	151	153-158	151-153	151	152	149–154	155-162	151-152		151–153	151-155	151	149–151
AntM-ssr26		I	189		180				184			178-189			
AntM-ssr08	177-178	181-195	188-202	179-183	179–190	179-183	200-204	184-216	183-186	175-189	184-191	177 - 188	171-195	184-193	177-199
AntM-ssr42		172		164-193	171	171-193						174-185	172-193		166
AntM-ssr15	213-222	213-220	220-228	211-233	213-215	213-224	213	215-233	213-215	215-220	220-224	213-218	215-220	215-222	222-228
AntM-ssr09	250		250	I	250	248-252		250	250	I	I	248-262	250		250
Multiplex 2															
AntM-ssr36	117-125	115-117	117-123	123-135	121-127	121	140 - 144	123-146	127–144	131-135	123-125	117-129	123-138	115	125-131
AntM-ssr27	172	172-194	180	170-174				172	212	172 - 186		172			182 - 220
AntM-ssr41	176	176	176	176-183	176	176	176	176	176	176	176	176	176	176	176
AntM-ssr24	185-187	212-214		183-199	185	183 - 209	189			187 - 191		183-216			
AntM-ssr39	199–221	205-219	207-215	203-217	203-229	203-221	211	205-213	207	203-215		205-221	205-215	207	203-205
AntM-ssr04	217-228	226-228	228	222–228	228	228	230	228	228-230	228-230		228	228	228	226-230
AntM-ssr02	359	351-359	357-392	348–371	351-355	346–371	I	351-363	359-361	Ι		355-382	351-355	Ι	353-359
Multiplex 3															
AntM-ssr33	146-154	151-157	147 - 149	144–146	146-150	146-158	151-152	150-151	151	147-159	173-196	143-152	150-168	152	146-152
AntM-ssr21	158-172	160-190	146-158	158-164	158-160	158 - 160	162	158-168	160	158-174	178–194	158-162	158-174	160 - 188	160 - 182
AntM-ssr43	164	160-164	164	172-200	164–184	177-204	164	164	164	164		164-194	160-177	164	164
AntM-ssr16		I			311	309-325									
AntM-ssr06		I	353-355		355	357						355	355-361		
Private allelic	0.10	0.09	0.17	0.11	0.03	0.05	0.18	0.13	0.03	0.17	0.28	0.03	0.06	0.13	0.08
over loci)															

Applications in Plant Sciences 2017 5(1): 1600120 doi:10.3732/apps.1600120

http://www.bioone.org/loi/apps

Note: N = number of individuals used. ^aVoucher and locality information are provided in Appendix 1. AntM-ssr21, and AntM-ssr06) in the Liberia population, and for nine loci (AntM-ssr26, AntM-ssr08, AntM-ssr42, AntM-ssr27, AntM-ssr39, AntM-ssr02, AntM-ssr43, AntM-ssr16, and AntM-ssr06) in the Cameroon population due to the presence of null alleles. After accounting for the effect of null alleles, INEst inferred no inbreeding across populations ($F = 0.00 \pm 0.00$), indicating an outcrossing mating system. The sequences of the developed microsatellite loci have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (Bioproject ID PRJNA352928).

Cross-amplification in 15 congeneric Anthonotha species—The selected loci were then tested in one to nine individuals of 15 other *Anthonotha* species (Table 3) using the PCR conditions described above to check their transferability. Among the 18 loci, six to 17 (mean: 13) successfully amplified depending on the species and displayed one to nine alleles per locus (results not shown). The allelic size varies among species for a given locus, but a few alleles are shared by up to 10 species (e.g., alleles 158 and 160 for locus AntM-ssr21, alleles 205 and 207 for locus AntM-ssr39, alleles 213 and 215 for AntM-ssr15). Private allelic richness (average over loci) computed with HP-rare 1.1 (Kalinowski, 2005) for each species indicated that *A. pellegrinii* Aubrév. shows the highest value (0.28), followed by *A. gilletii* (De Wild.) J. Léonard (0.18), *A. cladantha* (Harms) J. Léonard (0.17), and *A. noldeae* (Rossberg) Exell & Hillc. (0.17); therefore, these species are likely the most divergent with *A. macrophylla*. According to the data of this study, no allele of a given locus is shared by all species.

CONCLUSIONS

In this study, 18 polymorphic microsatellite markers were developed for *A. macrophylla*. This set of microsatellite markers showed its tranferability in most of 15 congeneric species. These microsatellite markers and those published on *T. superba* will be useful for investigating phylogeographic patterns, dispersal patterns, and demographic history of *Anthonotha* species to provide a better understanding of the fragmentation history of tropical African rainforests in the Dahomey Gap. With them, one can start to disseminate, for example, paleovegetative information for this region.

LITERATURE CITED

- BRETELER, F. J. 2010. Revision of the African genus Anthonotha (Leguminosae, Caesalpinioideae). Plant Ecology and Evolution 143: 70–99.
- CHYBICKI, I. J., AND J. BURCZYK. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. *Journal of Heredity* 100: 106–113.
- DEMENOU, B. B., J. MIGLIORE, F. TOSSO, E. KAYMAK, AND O. J. HARDY. 2015. Development and characterization of microsatellite markers in the African deciduous tree *Terminalia superba* (Combretaceae). *Applications in Plant Sciences* 3: 1500070.
- FU, X. H., Y. L. HUANG, S. L. DENG, R. C. ZHOU, G. L. YANG, X. W. NI, W. J. LI, AND S. H. SHI. 2005. Construction of a SSH library of *Aegiceras corniculatum* under salt stress and expression analysis of four transcripts. *Plant Science* 169: 147–154.
- HARDY, O. J., AND X. VEKEMANS. 2002. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2: 618–620.
- HOLLELEY, C. E., AND P. G. GEERTS. 2009. Multiplex Manager 1.0: A crossplatform computer program that plans out and optimizes multiplex PCR. *BioTechniques* 46: 511–517.
- KALINOWSKI, S. T. 2005. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. *Molecular Ecology Notes* 5: 187–189.
- MARIAC, C., N. SCARCELLI, J. POUZADOU, A. BARNAUD, C. BILLOT, A. FAYE, A. KOUGBEADJO, ET AL. 2014. Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. *Molecular Ecology Resources* 14: 1103–1113.
- MASELLA, A. P., A. K. BARTRAM, J. M. TRUSZKOWSKI, D. G. BROWN, AND J. D. NEUFELD. 2012. PANDASeq: Paired-end assembler for illumina sequences. *BMC Bioinformatics* 13: 31.
- MEGLÉCZ, E., N. PECH, A. GILLES, V. DUBUT, P. HINGAMP, A. TRILLES, R. GRENIER, AND J.-F. MARTIN. 2014. QDD version 3.1: A user friendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. *Molecular Ecology Resources* 14: 1302–1313.
- MICHENEAU, C., G. DAUBY, N. BOURLAND, J.-L. DOUCET, AND O. J. HARDY. 2011. Development and characterization of microsatellite loci in *Pericopsis elata* (Fabaceae) using a cost-efficient approach. *American Journal of Botany* 98: e268–e270.

Appendix 1.	Voucher and collection	locality information	of the samples used in	this study.
-------------	------------------------	----------------------	------------------------	-------------

Species	п	Voucher no. ^a	Collection locality	Latitude	Longitude
Anthonotha macrophylla P. Beauv.	1	OH3840 ^b	DRC	2.30018	25.02499
r y	1	BS102 ^c	Cameroon	5,10500	11,40056
	1	GK1034°	Côte d'Ivoire	6.42321	-7.48098
	19	BoD306 BoD314 BoD315 BoD317 BoD318	Pobè-Etchéde, Benin	69	2.6
		BoD322, BoD323, BoD324, EE0271°, EE0272	1 coo Eteneae, Denin	017	2.0
		EE0273, EE0274, EE0275, MH476, MH2278,			
		MH2281, MH2282, MH2283, MH2284			
	35	Bod1724 Bod1726 Bod1745 Bod1767 Bod1783	Nimba, Liberia	7.4	-8.6
		Bod1798, Bod1896, Bod1800, Bod1809, Bod1813,			
		Bod1849, Bod1857, Bod1858, Bod1916, Bod1933,			
		Bod1946, Bod1968, Bod1996, Bod2019, Bod2039,			
		Bod2049, Bod2076, Bod2083, Bod2089, Bod2097,			
		Bod2100, Bod2105, Bod2113, Bod2115, Bod2117,			
		Bod1577, Bod1579, Bod1581, Bod1596, Bod1607			
	28	BS0077, BS0078, JFG0411, JFG0500, LD0044,	Southeastern Cameroon	3	13
		LD0045, LD0046, LD0116, LD0125, LD0153,			
		LD0179, LD0184, LD0231, MH1290, MH1360,			
		MH1407, MH1444, MH1848, MH1849, OH1009,			
		OH1020, OH1055, OH1061, RP0013, RP0015,			
		RP0192, SVO0077, SVO0155			
Anthonotha acuminata	8	WAG0355893 ^e	DRC	-2.91733	28.49783
(De Wild.) J. Léonard ^d		WAG0360982 ^e	DRC	-1.20000	28.21667
		WAG0161175 ^e	DRC	-3.50000	28.43333
		WAG0380740 ^e	DRC	-0.86667	18.13333
		WAG0161180 ^e	Cameroon	2.81667	11.13333
		WAG0160988 ^e	Cameroon	2.38333	11.28333
		TOD1242	Cameroon	4.82475	9.70107
		WAG0161181 ^e	Gabon	1.58333	11.58333
Anthonotha brieyi	8	WAG0161089 ^e	Cameroon	2.81667	10.63333
(De Wild.) J. Léonard ^d		WAG0235096 ^e	Gabon	-0.89667	13.84667
		WAG0128248 ^e	Gabon	0.58333	10.43333
		WAG0161169e	Gabon	-2.60000	10.58333
		WAG0251111 ^e	Gabon	-0.70250	12.97783
		WAG0123291e	Gabon	0.90000	10.51667
	2	GiD0318, GiD1602	Gabon	-1.79100	10.17100
Anthonotha cladantha (Harms)	2	WAG0161261°	Cameroon	3.30000	14.00000
J. Leonard ^a	0	B50004	Cameroon	2.22700	13.95950
Aninonoina crassijoua (Balli.)	9	WAG015/480 ²	Côta d'Inoire	0.00333	2.05555
J. Leonard		WAG0101150 WAG0250767¢	Gabon	0.41667	11 01667
		WAG0250767°	Gabon	-0.78400	13 78550
		WHA0052	Ghana	5 58833	-2 43976
		WAG0012833°	Guinea Bissau	12 38333	-13 78333
		WAG0060575°	Guinea Conakry	10.41667	-9.30000
		WAG0323828 ^e	Liberia	5.65683	-8.17467
		WAG0060577°	Sierra Leone	9.85000	-11.31667
Anthonotha ferruginea (Harms)	3	WAG0161150 ^e	Gabon	-1.36333	10.61333
J. Léonard ^d		WAG0122594e	Gabon	-2.21533	9.66750
		GiD2141	Gabon	-0.76000	10.54250
Anthonotha fragrans (Baker f.)	7	WAG0204481e	Cameroon	5.01667	8.80000
Exell & Hillc. ^d		WAG0235123°	Gabon	-0.85667	13.26167
		WAG0152975 ^e	Côte d'Ivoire	5.74500	-4.12500
		Bod1667	Liberia	7.47875	-8.64761
		Bod1866, Bod1908, Bod2184	Liberia	7.55824	-8.63344
Anthonotha gilletii (De Wild.)	1	WAG0161147 ^e	DRC	-4.06667	15.56667
J. Leonard ^a	4	WA C00218216	Companyon	2 80000	10.01667
Anthonotha lamprophylia (Harms)	4	WAG0021831° DM5206	Cameroon	2.80000	10.01007
J. Leonard		PM3200 WA C0102800c	Califertooli	0.47250	0.03400 10.25717
		WAG0103899	Gabon	0.47330	10.25717
Anthonotha mouandzaa Bretelerd	3	WAG012/702*	Gabon	_2 33333	10.30007
manonoma monanazae Breterer	5	WAG0028668°	Gabon	-2.55555 -2.25583	0 70806
		WAG0161177°	Gabon	-2 55000	10 53333
Anthonotha noldeae (Rossberg)	3	WAG0161248°	Gabon	6 56667	10.68333
Exell & Hillc ^d	5	WAG0161263°	Cameroon	4 08333	9,10000
Liten & Time.		WAG0161090°	Burundi	-2.70000	29.25000
Anthonotha pellegrinii Aubrév.d	1	WAG0161250°	Gabon	0.75000	9.83333

http://www.bioone.org/loi/apps

Species	n	Voucher no. ^a	Collection locality	Latitude	Longitude
Anthonotha pynaertii (De Wild.)	4	WAG0250507e	DRC	-7.21667	17.96667
Exell & Hillc. ^d		WAG0281070e	Gabon	-0.80833	13.86833
		WAG0323827 ^e	Liberia	5.64733	-8.18133
		WAG0409718e	Liberia	5.30617	-8.75117
Anthonotha stipulacea J. Léonard ^d	9	WAG0394765 ^e	Gabon	0.58819	9.33542
*		WAG0416743 ^e	Gabon	-2.01253	10.48131
		WAG0122464 ^e	Gabon	0.81667	10.23333
		WAG0061693 ^e	Gabon	-0.58833	10.46833
		WAG0161258e	Gabon	-1.93333	9.83333
		GiD0264	Gabon	-1.73000	10.19900
		GiD0283	Gabon	-1.73300	10.20800
		GiD0396	Gabon	-1.42059	10.30705
		GiD1849	Gabon	-0.83155	10.46154
Anthonotha wijmacampensis Breteler ^d	1	WAG0161128e	Cameroon	3.00000	11.35000
Anthonotha xanderi Breteler ^d	3	WAG0161217 ^e	Cameroon	2.65000	9.90000
		WAG0237446 ^e	Cameroon	4.35200	10.42450
		WAG0204351°	Cameroon	4.98333	8.83333

Note: DRC = Democratic Republic of the Congo; *n* = number of individuals.

^aVouchers are deposited at the Herbarium of the Université Libre de Bruxelles (BRLU), Brussels, Belgium, silica gel collection of Dr. Olivier Hardy. ^b Individual used to create a DNA genomic library. ^c Individuals used for the first amplification test and for polymorphism testing.

^dIndividuals used for cross-amplification.

^eSpecimen codes for samples collected from material deposited in the National Herbarium of The Netherlands (WAG), Leiden, The Netherlands.

APPENDIX 1. Continued.