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INTRODUCTION

Recognizing species of echolocating
bats by their calls has been valuable in 
assessing the distribution of, and habitat 
use by, bats not prone to capture (e.g.,
Kalko, 1997; Ochoa et al., 2000). Many 
authors (e.g., Fenton and Bell, 1981; Ah-
lén, 1990; O’Farrell and Miller, 1997, 
1999; Russo and Jones, 2002; Rydell et al.,
2002) have demonstrated that it is possible

to distinguish among species of bats by their
echolocation calls, reflecting diagnostic pat-
terns of frequency change over time and
species-specific frequencies in calls. The
feasibility of detecting and identifying a bat
by its echolocation calls is a direct function
of call intensity. Species producing low in-
tensity echolocation calls (the ‘whispering
bats’ of Griffin, 1958) are more difficult to
sample than bats using high intensity echo-
location calls. Among species producing
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high intensity echolocation calls, some call
features appear to be particularly useful in
distinguishing species. For example, in
some vespertilionids (Fenton and Bell,
1981; O’Farrell and Miller, 1999), and mol-
ossids (Fenton and Bell, 1981), lowest fre-
quencies in calls are important, while in em-
ballonurids, frequencies with most energy
are particularly useful (Kalko, 1995). Other
authors report that the frequency values
measured at the ends of calls could be most
useful in discriminating between species
from different families (Parsons and Jones,
2000; Russo and Jones, 2002). However,
the use of apparently diagnostic frequencies
to identify bat species by their calls is com-
plicated in species that vary frequencies be-
tween calls such as Saccopteryx bilineata 
and S. leptura (Kalko, 1995), Molossus mo-
lossus (Kossl et al., 1999), or Barbastella
barbastellus (Denzinger et al., 2001).

Identification of bat species by their
echolocation calls is affected by variability.
Individuals can dramatically change the fea-
tures of their calls as they search for, detect,
and close on flying prey (Griffin et al.,
1960), under different environmental condi-
tions (Kalko and Schnitzler, 1993; Kalko,
1995; Obrist, 1995) and/or in the presence
of conspecifics (Obrist, 1995; Ratcliffe et
al., In press; Ulanovsky et al., In press).
Furthermore, calls may vary within species
geographically (Thomas et al., 1987; Par-
sons, 1997; Law, 2002), sexually (Neuwei-
ler et al., 1987; Jones et al., 1992), by age
(Jones and Ransome, 1993; Jones and Ko-
kurewicz, 1994; Kazial et al., 2001; Russo
et al., 2001) and as a result of bats using dif-
ferent foraging tactics (Ratcliffe and Daw-
son, 2003). Variability in call detection can
be generated by a variety of recording arti-
facts. Included are discrepancies in record-
ing equipment (Obrist, 1995; Barclay,
1999), relative distances between micro-
phones and bats (Barclay, 1999), wind, tem-
perature, and humidity-related transfer

functions of acoustic signals (Lawrence and
Simmons, 1982). Also contributing to vari-
ation are movements of bats’ heads relative
to the microphone (O’Farrell and Miller,
1999) and vegetation (Schnitzler and Kalko,
1998; Patriquin et al., 2003). 

In a bat fauna of few species, some peo-
ple accustomed to listening to bat detector
representations of bat echolocation calls
may learn to distinguish between species by
the audio output of bat detectors. But, quan-
tifying call features can make recognition of
bats by their echolocation calls a more re-
peatable procedure leading to the next step,
statistical analyses, which are fundamental
for quantification and objectification of the
process. Among the many statistical analy-
ses available to researchers, discriminant
function analysis (DFA) has been more
widely used (Obrist, 1995; Barclay, 1999;
Jones et al., 2000; Parsons and Jones, 2000;
Kazial et al., 2001; Russo and Jones, 2002)
than other analyses such as artificial neural
networks (Jones et al., 2000; Olden and
Jackson, 2002), synergistic pattern recogni-
tion (Obrist et al., 2004), decision trees
(Herr et al., 1997) and multiple logistic re-
gression. DFA has the ability to identify
which variables (call features) discriminate
between groups, vital information when us-
ing echolocation calls to identify species. 

Statistical procedures are performed on
samples of the total populations in question.
Although sample sizes fluctuate due to
many factors, there are general guidelines
on minimum sample sizes acceptable
(Cohen, 1988). Similarly, the way in which
data are obtained, organized and submitted
to the statistical procedure vary across
schools of thought, laboratories, and indi-
vidual researchers. Thus, although statistics
are used with the intent of objectifying
analyses of echolocation calls, they are in-
herently subject to biased factors due to the
researcher’s data selection process, and also
the variability in the calls themselves.
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Our paper has two goals: 1) to test the
utility of DFA and MLR in the face of call
variability, data manipulation, and sample
size manipulation; and 2) to determine
which features of calls are most useful for
identification of species.

MATERIALS AND METHODS

Preliminary Procedures

We recorded bat calls in Belize (near Lamanai
Outpost Lodge; 17°46’N, 88°39’W; from 16 to 23
May 2000, 7 nights), Brazil (around Alter do Chao,
Para’ State; 02°30’S, 54°57’W; from 1 to 23 April
2002, 15 nights of recordings) and in Mexico (Mexico
City; 19°25’N, 99°10’W; and Chamela, Jalisco State;
19°31’N, 105°02’W; from 21 June to 20 July 2002,
13 nights of recordings).

We used data on the calls of eight species of bats:
four emballonurids, three molossids and one mor-
moopid from among the species occurring in the
study areas (Sanchez et al., 1989; Ceballos and
Miranda, 2000; Chavez and Ceballos, 2001; Fenton et
al., 2001; Bernard and Fenton, 2002). Using features
such as pattern of frequency change over time as well
as frequency and time parameters, we identified the
species we studied from recordings (field recordings
and those from hand-released bats) and the literature.
We caught Saccopteryx bilineata (Belize and Brazil),
Peropteryx macrotis (Brazil), Nyctinomops macrotis
(Mexico) and Tadarida brasiliensis (Mexico). We
weighed each captured bat, measured length of fore-
arm, classified them as adults or subadults, and
recorded sex. We released the bats when no other bats
flew in the area and recorded the echolocation calls
they produced. We compared the data from these
recordings with those obtained from free-flying bats
that we watched while recording. We recorded
Saccopteryx leptura in Brazil, Pteronotus davyi in
Mexico, a Molossus sp. in Brazil and an unknown
emballonurid in Brazil. Identification of S. leptura
was based on previous captures in the area (Bernard,
2001) and on published data about its echolocation
calls (Kalko, 1995). Call features suggested the pres-
ence of Pteronotus davyi in Mexico (O’Farrell and
Miller, 1997), while identification of the Molossus sp.
in Brazil was based on previously reported data about
Neotropical molossid echolocation calls (Kossl et al.,
1999; O’Farrell and Miller, 1999). Our recordings
also suggested the presence of an unknown embal-
lonurid in Brazil. The sonogram parameters and shape
of these calls is typical of Neotropical emballonurids

(Barclay, 1983; Kalko, 1995; O’Farrell and Miller,
1997; Rydell et al., 2002), and on our recordings of
the calls of released emballonurids.

We recorded calls by connecting the high fre-
quency output of a Pettersson D980 (Pettersson Ele-
ktronik AB, Uppsala, Sweden) bat detector via an F
2000 Control (Pettersson Elektronik AB) filter and an
Ines DAQ i508 or a National Instruments DAQ
6062E high speed card to a personal computer run-
ning BatSoundPro 3.31 (2001; Pettersson Elektronik
AB) software. We set the sampling frequency at 250
kHz and the sample rate at 44,100 Hz (16 bits/sample,
mono). The D980 was mounted on a tripod, 1.3 m
above the ground and pointed upwards at an angle of
45° from the horizontal. 

We reviewed 1,169 recorded minutes of calls
from free-flying bats, selecting for analysis, only a
fraction of these recorded minutes, those with se-
quences that met our criteria. Specifically, we ana-
lyzed only calls selected from sequences of 10 suc-
cessive calls emitted by one bat as it flew through the
airspace sampled by the microphone. We used six cri-
teria to select call sequences for analysis: 1) high sig-
nal-to-noise ratio, i.e., the call was at least three times
stronger than background noise as displayed on the
time-amplitude window, 2) calls were not saturated,
3) at least 10 sequential calls from one individual
based on interpulse intervals, 4) no evidence of the
presence of conspecifics; 5) search phases calls as de-
fined by Griffin et al. (1960), and 6) we randomly se-
lected sequences recorded on different nights to min-
imize the chances of using sequences from the same
individual (pseudoreplication).

We analyzed the calls using BatSoundPro. We
measured call duration (DUR) as well as inter-pulse
intervals (IPI) taken from the end of one call to the 
beginning of the next, from the time-amplitude dis-
play (see Fig. 1A). We measured frequency compo-
nents from the Fast Fourier Transform (FFT) power
spectrum (Obrist, 1995; Parsons and Jones, 2000;
Ibáñez at al., 2002; Russo and Jones, 2002; Fig. 1B
— size 512, Hanning window), taking -50dB as the
criterion for isolating the highest (HF) and lowest
(LF) frequencies (kHz) for each call (Fenton et al.,
2004). We measured frequency with most energy
(FME) (kHz) from the peak of the power spectrum
(Obrist, 1995; Parsons and Jones, 2000; Ibáñez et al.,
2002; Russo and Jones, 2002; Fig. 1C). These basic
call features (DUR, HF, LF, and FME) have been
widely used in the past (Obrist, 1995; Masters et al.,
1991; Britton et al., 1997; Surlykke and Moss, 2000).
We also used the FFT power spectrum to identify har-
monics.

We minimized the variability in calls due to envi-
ronmental conditions (Kalko and Schnitzler, 1993;
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Kalko, 1995; Obrist, 1995) by making recordings in
open spaces (bats > 10 m from nearest obstacles). In
Brazil we recorded on a lake away from vegetation, in
Mexico City in an ‘open’ city park or at Chamela,
Jalisco State (Mexico) on a beach and at Lamanai in
Belize from a dock or a canoe. We grouped sequences
by species according to our criteria. We did not use
data obtained from calls recorded from hand-released
bats in the statistical analyses. We calculated descrip-
tive statistics from 560 single calls using Statistix 7.0
for Windows, 2000 (Analytical Software, Talahassee,
Florida).

We used both hierarchical and K-means cluster-
ing analysis of the call data to confirm that these taxa
were readily distinguishable by call features. For hi-
erarchical clustering we used a custom program in
Matlab 6.5 for Windows, 2002 (The MathWorks,

Natick, Massachusetts), for K-means clustering,
SPSS 10.0 for Windows, 1999 (SPSS, Chicago, Il-
linois). In hierarchical clustering, we used the ‘single’
linkage method in the calculation and distance be-
tween the observations was calculated as the
Euclidean distance. In K-means clustering, we speci-
fied eight groups.

Testing the DFA and MLR Procedures 

Discriminant Function Analysis (DFA) is often
used to assess the percentage of species correctly
identificied, to determine which variables (DUR, HF,
LF and FME) discriminate most both between and
within species, and to classify species into groups or
guilds. Descriptive DFA has been commonly used 
in analyses of bat calls (e.g., Obrist, 1995; Boughman

FIG. 1. Displays used for ecolochation call measurements. A) a time-amplitude, B) a spectrogram, and C) a FFT
power spectrum
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and Wilkinson, 1998; Jones et al., 2000; Parsons and
Jones, 2000; Kazial et al., 2001; Russo and Jones,
2002). We assessed the effects of data input and 
sample size on the efficacy of DFA for the identifica-
tion of bat species by their echolocation calls, and
also determined which variables (DUR, HF, LF and
FME) discriminate most both between and within
species.

We used SPSS 11.0.1 for Windows, 2001 (SPSS,
Chicago, Illinois) and entered call feature data
grouped by sequences. We used DUR, HF, LF, and
FME as predictors, or independent variables, while
‘species’ served as the group membership or depend-
ent variable. For all discriminant analyses, we calcu-
lated cross-validated classification results using the
leave-one-out method to assess the generalizability of
the model to calls outside our sample (Olden and
Jackson, 2002). However, our objective was to study
the accuracy of DFA given the information available,
rather than to assess its classification of unknown
calls, so we have reported original results. Prior prob-
abilities were set to equal (all species were equally
considered in the classifications) for the purposes of
these exercises (Wollerman and Wiley, 2002). We also
used Multinomial Logistic Regression (MLR) as an
alternative to DFA (Press and Wilson, 1978; Affi and
Clark, 1990) to classify individuals into groups on the
basis of multiple measures. 

Prior to each DFA and MLR analysis, we per-
formed a multivariate analysis of variance (MANO-
VA). Again, the call feature data were entered into the
analyses grouped by sequences. We used DUR, HF,
LF and FME as criterion variables, and ‘species’ as
the factor, with 8 levels, to test for significant inter-se-
quence differences both within and between species,
with DUR, HF, LF and FME taken together. We found
that the variance of our dependent variables was not
equally distributed across groups but Q-Q plots and
the skew of each dependent variable indicated that the
variables were adequately normally distributed.
Further, DFA is relatively robust to departures from
normality (Dillon and Goldstein, 1984). The results of
a Box’s Test suggested that the covariance of our de-
pendent variables was not equal across groups, but
Lachenbruch (1975) has asserted that DFA is relative-
ly robust even when there are violations of these 
assumptions. MLR is not affected by such assumption
violations (Affi and Clark, 1990).

RESULTS

Preliminary Statistical Results

CV values and visual inspection of spec-
trograms indicated that while some species

we recorded (e.g., the unknown emballo-
nurid; Table 1; Fig. 2) consistently produced
similar echolocation calls, the calls of oth-
ers were more variable. Results of the clus-
ter analysis confirmed our impression that
the eight species were readily distinguish-
able by their calls (Table 2). In fact, there is
little difference between the clustering by
all four parameters or when only the two
most significant (FME and LF) are used,
probably reflecting strong correlations be-
tween call parameters (Table 3). Hierar-
chical clustering provided the best separa-
tion by groups, although the analysis re-
veals that some call variants complicate the
situation. Using call data from three se-
quences for each of the eight species, a
MANOVA showed significant differences
in call features between all species used
(Table 4). 

Effects of Data Input and Sample Size on
DFA and MLR 

The output of the DFA corresponded to
our subjective grouping of sequences by
species 93.8% of the time (Table 5). This
DFA revealed that LF and FME were the
most important call features, DUR the least
important (Table 6). When the 24 sequences
were randomly associated with species by
grouping sequences with no regard to
species, the DFA classification accuracy
was 29.6%. 

To further explore the effect of data
loading on the outcomes of DFA we used a
‘blind analysis’ with data from the 24 se-
quences (3 from each 8 species) not sorted
by species. Now the DFA correctly classi-
fied 74.2% of calls by sequence, with FME,
LF and HF used to discriminate between se-
quences (Table 6). These results could have
been used to support the view that we were
dealing with 24 rather than eight species. 

To examine the effect of sample size, we
compared the results of DFA performed on
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data from three and from five sequences
(Table 5). While the analysis with three 
sequences correctly classified call se-
quences to species in 93.8% of cases, with 
5 sequences correct identifications de-
clined to 89.5%. In all cases, the most 
important call features were FME and 
LF (Table 6). In comparing the effect of

three and five sequences on classifica-
tion, we found that species 100% correct-
ly classified with data from three sequen-
ces were similarly classified with data 
from five sequences. However, for most
other species, the incidence of correctly
classified results decreased with increased
samples.

Taxon n DUR FME HF LF
Emballonurid 50 6.7 ± 1.0 58.7 ± 0.5 59.6 ± 0.6 56.6 ± 1.1

14.3 0.9 0.9 1.9
4.7–8.3 57.7–59.8 57.8–60.6 54.0–58.7

S. bilineata 25 9.6 ± 0.7 48.0 ± 0.4 48.6 ± 0.6 45.9 ± 0.7
High (Belize) 7.8 0.8 1.2 1.5

7.9–11.2 47.3–48.6 46.9–49.2 44.6–47.4
S. bilineata 25 9.7 ± 0.9 45.7 ± 0.5 46.4 ± 0.5 44.0 ± 0.9
Low (Belize) 9.6 1.2 1.2 2.1

7.9–11.4 44.8–46.6 45.5–47.3 41.8–45.7
S. bilineata 25 8.6 ± 0.9 45.9 ± 0.4 46.6 ± 0.8 43.0 ± 0.99
High (Brazil) 9.1 1 1.7 2.3

7.3–10.4 45.2–46.8 45.9–50.0 40.6–44.6
S. bilineata 25 9.0 ± 1.3 42.7 ± 0.7 43.8 ± 0.3 39.2 ± 2.1
Low (Brazil) 13.9 1.6 0.7 5.4

6.3–11.5 41.2–43.8 43.0–44.4 33.9–42.0
S. leptura 25 7.5 ± 0.9 53.6 ± 0.7 54.5 ± 0.8 51.4 ± 1.5
High 11.7 1.3 1.5 3

5.3–9.0 52.4–55.0 53.3–56.1 48.4–54.1
S. leptura 25 7.5 ± 1.1 50.4 ± 0.9 51.4 ± 0.9 47.2 ± 2.7
Low 14.2 1.7 1.7 5.8

5.5–10.0 49.0–51.9 50.0–53.9 40.1–50.3
P. davyi 30 6.7 ± 0.9 71.5 ± 4.7 79.2 ± 6.7 69.2 ± 2.3

13.1 6.6 8.5 3.3
4.9–8.0 68.5–84.5 63.0–85.7 64.9–79.0

T. brasiliensis 50 14.2 ± 2.0 27.3 ± 1.8 31.1 ± 3.4 26.0 ± 1.7
14.4 6.7 10.8 6.5
9.1–19.0 23.6–31.0 24.2–40.0 22.6–28.7

N. macrotis 50 17.4 ± 2.6 15.0 ± 2.0 19.5 ± 4.4 13.6 ± 1.9
14.7 13.1 22.6 13.8
10.0–24.0 11.6–19.4 12.7–29 10.7–18.0

Molossus sp. 50 11.7 ± 3.4 36.9 ± 4.0 38.6 ± 4.7 34.3 ± 4.3
28.9 11 12.1 12.5
5.7–18.0 28.8–46.4 31.8 –53.1 23.5–45.0

P. macrotis 180 8.6 ± 3.8 42.1 ± 1.9 43.4 ± 1.9 40.3 ± 2.4
44.4 4.4 4.4 6.0
2.4–22.0 37.7–46.0 40.4–47.9 31.8–45.2

TABLE 1. Descriptive statistics of call features, where n = sample size (number of calls), DUR = duration in ms,
FME = frequency with most energy in kHz, HF = the highest frequency in kHz, and LF = the lowest frequency
in kHz. Means ± 1SD are shown, followed by CV (coefficient of variation), and min–max (the range). For S.
leptura, 50 calls were divided into high and low frequency groups, resulting in two groups of 25 calls each. For
S. bilineata, 100 calls were divided by geographic location; 50 from Belize and 50 from Brazil. These calls were
further divided into high and low frequency groups, resulting in 25 high calls from Belize, 25 low calls from
Belize, 25 high calls from Brazil, and 25 low calls from Brazil
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However, correct classification of a
species by DFA does not necessarily mean
low variability in echolocation calls. A
species such as N. macrotis with very vari-
able calls (Table 1) was 100% correctly
classified by DFA using data from three and
from five sequences (Table 5). Nycteris
macrotis had the lowest frequency values
(HF, LF and FME) in our sample (Table 1)
contributing to its consistent classification
by DFA. Correct classification of species by
DFA could merely indicate distinct species
means.

Multinomial logistic regression (MLR)
analyses with data from 3 and 5 sequences
provided the same patterns of results as
DFA. With three sequences per species, we
obtained 96.7% correctly classified cases,
while with five sequences per species, the
MLR showed 91.8% correct (Table 7).
Further, with a blind MLR analysis, we ob-
tained 91.7% correctly classified cases,
again suggesting separation by sequence
rather than by species. With all the parame-
ters taken into account, the error associated
with each MLR model was significantly
reduced (for 3 sequences, χ2 = 1420.9, d.f.
= 28, P < 0.001; for 5 sequences, χ2 =
973.1, d.f. = 28, P < 0.001; for the blind
analysis χ2 = 1454.6, d.f. = 92, P < 0.001)
indicating that the model for each analysis
was appropriate. 

Taxon
Hierarchical clustering K-mean clustering

All four LF and FME All four LF and FME
parameters only parameters only

Emballonurid e a a c
S. leptura a b a c, h
S. bilineata b b d h
P. davyi h* h** b***, f a****
T. brasiliensis c c h b
N. macrotis d d c d
Molossus sp. b b d, e, h e, h
P. macrotis b b d, e h

TABLE 2. Cluster analysis results for all eight taxa. Each cluster done twice, once with all four call parameters
(DUR, LF, HF and FME) and once with only two call parameters (LF and FME). Letters define the cluster
groups. Cluster groups: f and g (*); e, f and g (**); f and g (***); and g (****) are in the last four sequences

Effects of Call Variability on DFA and
MLR Results

Four examples illustrate levels of intra-
specific variation we encountered in
echolocation calls and how they emerged
from MANOVA and DFA analyses.

First, descriptive statistics (Table 1) 
and MANOVA (Table 4) indicated that
echolocation calls of S. bilineata differed
significantly between sites in Belize and
Brazil. Using data from five sequences of 
10 calls each from Belize and Brazil, a DFA
showed that 92% of the two groups of calls
of S. bilineata were correctly classified 
by seven geographic locations and that the
most important parameters distinguishing
the groups were LF and FME (Table 6).

Second, durations of echolocation calls
recorded from P. macrotis varied with time
of night (Fig. 3). Calls recorded early in the
evening were significantly shorter than
those recorded later (5.67 ± 1.87 ms versus
11.54 ± 2.93 ms, respectively), t (151.4) = 

Parameter LF HF FME

DUR -0.791 -0.808 -0.801
LF 0.984 0.989
HF 0.994

TABLE 3. Non-parametric correlation (Spearman’s r)
for all four call parameters. Two-tailed test used. All
correlations significant at P < 0.001
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Analyzed variant Wilks’ λ F Hypothesis d.f. Error d.f. Partial ε
8 species 3 sequences 0.005 96.9 28 827.1 0.73
24 sequences (blind analysis) 0.000 53.9 92 845.6 0.85
8 species 5 sequences 0.009 127.6 28 1331.9 0.69
S. bilineata (Brazil and Belize) 0.427 31.9 4 95.0 0.57
P. macrotis (dusk and late) 0.341 84.1 4 174.0 0.66

TABLE 4. MANOVA results, computed using α = 0.0125. In all cases P < 0.001 and observed power = 1.00

FIG. 3. Frequency distribution of P. macrotis echolocation calls of different durations recorded for the 60 min
period beginning at 18:00 h, 19:00 h, 20:00 h, and 21:00 h. Calls ≤ 5 ms long are shown by solid black bars, 

6–10 ms long calls as gray bars, and calls ≥ 11 ms as open bars

-16.06, P < 0.001. A DFA using data from
18 sequences revealed that 95.5% of the
two temporally distinct groups of calls from
P. macrotis were correctly classified, and
that DUR was the most important feature
(Table 6). 

Third, we used the echolocation calls of
S. leptura to assess the impact of variation
in call frequencies on DFA-based identifi-
cations because in any sequence of search
phase calls, this species alternates calls
dominated by higher and lower frequencies.
We grouped data from five sequences of
echolocation calls of S. leptura as if the al-
ternating calls represented two different hy-
pothetical sequences consisting of either
high or low frequency calls (Table 1). Had
we not been aware of the bats’ behavior dur-
ing recording and not known of call alterna-

tion from the literature, we could have pre-
sumed that the call sequences represented
two different species. A DFA classification
indicated that 100% of the manipulated se-
quences were correctly classified as high or
low frequency based primarily on FME.

Fourth, calls of a Molossus species were
particularly variable in call parameters and
patterns of frequency change over time.
This was especially evident from the calls
produced as a bat approached and attacked
a flying insect (Fig. 4A). We also observed
that search phase calls varied both in shape
and in frequency parameters (Figs. 2H and
4B; Table 1). Analysis of call data by DFA
and MLR using three and five sequences
showed that this was the species most often
misclassified of any in our samples (Tables
5 and 7).
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DISCUSSION

In summary, we used modest sample
sizes of echolocation calls of eight species
of high intensity, echolocating bats readily
acoustically distinguishable from one an-
other by human observers. Using four sim-
ple call features, we illustrated how DFA
and MLR can be affected by the way in
which data are presented to either analysis,
by sample sizes, and by call variability.
‘Blind’ loading of echolocation call data can
generate the impression of greater than ac-
tual diversity. Thus blind loading could oc-
cur intentionally (as in our case) or in the
absence of detailed knowledge about varia-
tion in echolocation calls.

We agree with many researchers that it
is possible to use features of echolocation

calls to identify species of high intensity
echolocating bats present in an area (Fenton
and Bell, 1981; Barclay, 1983; Ahlén, 1990;
O’Farrell and Miller, 1999; Jones et al.,
2000; Rydell et al., 2002). Cluster analyses,
DFA and MLR can confirm subjective ar-
rangements of species by the features of
their echolocation calls. However, our anal-
yses also show weaknesses inherent in DFA
and MLR, statistical analyses commonly
used to objectify and normalize subjective
echolocation call analysis (or the analysis of
other calls — e.g., Boughman and Wilkin-
son, 1998; Wollerman and Wiley, 2002). 

Statistical Concerns

Analyses using MANOVA can be af-
fected by sample size, equal variances, and

Recognition of species of bats by their echolocation calls 357

Parameter Wilks’ λ F d.f. 1 d.f. 2 P-level

8 species (3 sequences)
Duration 0.356 60.0 7 232 <0.001
Low frequency 0.015 2133.1 7 232 <0.001
High freqeuncy 0.031 1019.2 7 232 <0.001
Frequency with max energy 0.018 1791.3 7 232 <0.001

24 sequences (blind analysis)
Duration 0.072 120.6 23 216 <0.001
Low frequency 0.013 711.6 23 216 <0.001
High freqeuncy 0.022 412.4 23 216 <0.001
Frequency with max energy 0.013 736.6 23 216 <0.001

8 species (5 sequences)
Duration 0.380 86.9 7 372 <0.001
Low frequency 0.026 1978.6 7 372 <0.001
High freqeuncy 0.040 1286.7 7 372 <0.001
Frequency with max energy 0.021 2464.4 7 372 <0.001

S. bilineata from Belize vs. S. bilineata from Brazil
Duration 0.836 19.2 1 98 <0.001
Low frequency 0.505 96.2 1 98 <0.001
High freqeuncy 0.604 64.2 1 98 <0.001
Frequency with max energy 0.574 72.7 1 98 <0.001

P. macrotis at dusk versus late at night
Duration 0.411 254.1 1 177 <0.001
Low frequency 0.999 0.2 1 177 0.629
High freqeuncy 0.660 91.4 1 177 <0.001
Frequency with max energy 0.752 58.3 1 177 <0.001

TABLE 6. Results of discriminant function analysis using parameters distiniguishing: the 8 species 
(3 sequences); 24 sequences (blind analysis); 8 species (5 sequences); S. bilineata from Belize and  from Brazil;
and P. macrotis at dusk and late at night
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variance matrices become untestable and
overeall results unreliable (Tabachnick and
Fidell, 2001). Furthermore, power is nega-
tively affected by small sample sizes which
can generate Type II errors (i.e., accepting
the null hypothesis when it is in fact false).
Finally, the power of MANOVA is nega-
tively affected by positively correlated de-
pendent variables, when these correlations
are zero, and even when they are only
slightly negative (Tabachnick and Fidell,
2001). This last point is especially impor-
tant given the relationships between call du-
ration, bandwidth, and frequency of maxi-
mum energy. Such relationships commonly
observed within different call designs of the
same or congeneric species are studied.
They also emerge when distantly related
species converge on similar echolocation
call designs reflecting similar habitats/for-
aging tactics (for review see Schnitzler and
Kalko, 2001).

It is clear that both sample size and the
way that data are loaded into the statistical
programme can affect the outcome of DFA.
A further complication arises from the in-
terpretation of a DFA output. First, accept-
able levels of overall percent correct classi-
fications at the species level range from
64–96% in the literature (e.g., Obrist, 1995;
Pearl and Fenton, 1996; Vaughan et al.,
1997; Parsons and Jones, 2000; Russo and
Jones, 2002), reflecting a variety of species
and call variables. There appears to be no
‘rule’ about what is an ‘acceptable’ level for
accuracy in DFA analyses. We showed that
percentages of correct classification by
DFA are readily altered by data loading and
sample size. Second, DFA identifies differ-
ences between call parameters used in the
model, not between species.

Effects of Call Variability

Our data on call variability reiterate
those of many previously published studies

358 S. Biscardi, J. Orprecio, M. B. Fenton, A. Tsoar, and J. M. Ratcliffe
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normality. Timm (2002) indicated the im-
portance of not only determining that vari-
ables contain data that are normally distrib-
uted from the perspective of univariate sta-
tistics (e.g., by using procedures such as the
Shapiro-Wilks’ tests) but also that these
variables exhibit multivariate normality.
This exercise can be done using tests such
as Mardia’s test of multivariate skewness,
multivariate chi-square, and Q-Q plots. As
is the case in ANOVA, equal variances are
assumed and violation of this assumption
by unchecked data reduces the reliability 
of the results. These problems may be over-
come by transforming the data (Tabachnick
and Fidell, 2001). Most important, and most
often overlooked, is the effect of small sam-
ple size and correlation of variables on
power and significance. The assumptions 
of MANOVA stipulate that users must have
more cases in every cell than there are 
dependent variables. Further, homogeneity 
of variance is also assumed for MANOVA
and, if this assumption is violated, co-
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and raise important questions about the val-
ue of acoustic libraries of echolocation calls
(e.g., O’Farrell and Miller, 1997; Rydell et
al., 2002) in the absence of careful docu-
mentation of variability. Like others, we
agree that issues associated with variability
erode the accuracy of identifications based
on single calls (Parsons and Jones, 2000;
Russo and Jones, 2002). Furthermore, in ex-
amining the effect of sample size on the out-
comes of DFA and MLR analyses, we found
that increasing the number of call sequences
decreased correct classification. This was
most probably due to a higher total variance
inherent in increased sample sizes.

Geographic variation in echolocation
calls is well known (e.g., Thomas et al.,
1987; Brigham et al., 1989; Barclay, 1999)
and our example extends the data base to 
S. bilineata from Brazil and Belize. Geo-
graphic variation can complicate identifi-
cation of species by calls, making it vital 
to know where calls were recorded. Fur-
thermore echolocation calls of S. leptura
illustrate how an unknown species produc-
ing variable patterns of echolocation calls
could be mistaken for more than one species
when recorded but not observed during
recording.

We were surprised to learn that time of
night could influence bat echolocation calls,
but this clearly is indicated by our data on P.
macrotis. We can offer no concrete explana-
tion of our observations which do put a dif-
ferent perspective on the issue of call dura-
tion as a variable character (Parsons and
Jones, 2002). However, we speculate that
these differences may reflect task (e.g., tran-
sit flights versus foraging) or insect abun-
dance.

Others have documented variability in
the echolocation calls of Molossus spp.,
whether in the larger M. ater (O’Farrell
and Miller, 1999), or the smaller M. molos-
sus (Kossl et al., 1999). Like them, we
found obvious variations in call shapes and

in actual values for LF and HF. Such spec-
tacular within-species variability reaffirms
the importance of a priori documentation of
the bat species present in the study area and
of observing bats whose calls are being re-
corded.

The inherent variability of echolocation
calls is the main problem in distinguishing
bat species by their calls. For example,
Obrist’s (1995) analysis showed that only a
species using much lower frequency calls
(Euderma maculatum) was consistently dis-
tinguished from species using calls of pro-
gressively higher frequencies (Lasiurus
cinereus, Eptesicus fuscus, Lasiurus bore-
alis) even though most calls were readily
assigned to species. 

Statistical analyses such as DFA are
powerful instruments to quantify data on
echolocation calls but, by themselves, are
not objective instruments because their 
outcomes can confirm subjective classifi-
cations and reflect the way data are load-
ed for analysis. We recognize the value of
using echolocation calls to identify the
species of high intensity echolocating bats,
especially those difficult to sample by cap-
ture. However, in areas with many sym-
patric species the task of species recogni-
tion by echolocation calls can be chal-
lenging. When there are many species, sta-
tistical procedures could lead to ambigu-
ous classifications of some species by their
calls.

Researchers in many parts of the world
use a variety of bat detectors to monitor
what bats say. The results of this work have
important implications for conservation as
well as for basic science. Effective identifi-
cation of echolocating bats by their calls
hinges on knowing what call features are
important. Unlike some other procedures,
DFA identifies the call parameters most 
important in discriminating between sig-
nals, facilitating quantifying data and shar-
ing them among researchers.
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