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Of TITAN and straw men: an appeal for greater understanding of
community data

Matthew E. Baker1

Department of Geography and Environmental Systems, University of Maryland, Baltimore County,
Baltimore, Maryland 21250 USA

Ryan S. King2

Department of Biology, Baylor University, Waco, Texas 76706 USA

Abstract. Cuffney and Qian (2013) performed numerous simulations to demonstrate potential flaws in
Threshold Indicator Taxa Analysis (TITAN), a method for interpreting taxon contributions to community
change along novel environmental gradients. Based on their simulations, they concluded that: 1) TITAN is
not an effective method for detecting different types of statistical thresholds in trend lines, 2) permutation
results in highly significant p-values even for splits that are not thresholds, and 3) coincident change points
may arise as an artifact of inaccuracies, imprecision, and systematic bias in both change-point estimation
and TITAN’s bootstrap. The critique raises some important concerns, but because of significant
misunderstanding, it is based on analyses that violate basic assumptions of both TITAN and indicator
species analysis (IndVal), and thus, constitutes a straw man that cannot be used to evaluate their
performance. We demonstrate that the critique: 1) fundamentally misrepresents TITAN’s primary goals;
2) simulates taxon abundances based on unrealistic statistical models that fail to represent important
empirical patterns present in Cuffney and Qian’s own published data sets (i.e., negative binomial
distributions, frequent absences a function of the predictor); 3) tests TITAN’s ability to identify breaks in
trend lines distorted by log-transformation that do not match the greatest change in the simulated
response, leading to misinterpretation of expected and previously documented behavior by TITAN as
errors; 4) misinterprets TITAN’s use of p-values while ignoring diagnostic indices of purity and reliability
for identifying robust indicator taxa; and 5) asserts that bootstrapped change-point quantiles in TITAN are
too narrow despite published results to the contrary. Last, in contrast to the claim that change-point
synchrony may be an artifact of the technique, we show that: 6) analysis of published data using
completely independent methods (i.e., scatterplots of abundance data or generalized additive models) also
reveals synchrony in the nonlinear decline of numerous taxa in corroboration of TITAN and its underlying
conceptual model. Thus, Cuffney and Qian have not identified any serious limitations of TITAN because
their critique is based on misinterpretation of TITAN’s assumptions and primary objectives. However,
their critique does highlight the need for clarification of the appropriate uses, potential misuses, and
limitations of TITAN and other methods for ecological analysis.

Key words: bioassessment, biodiversity, community analysis, indicator species, ecological thresholds,
conservation, stream integrity, statistical analysis.

‘‘If our goal as a field is to use data to solve problems,
then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.’’

Leo Breiman (2001b, p. 199)

Cuffney and Qian (2013; hereafter C&Q) present a
case for flaws in Threshold Indicator Taxa Analysis

(TITAN; Baker and King 2010), a method for detecting
and interpreting individual taxon contributions to
patterns of community change along novel environ-
mental gradients. TITAN uses binary partitioning by
indicator value (IndVal; Dufrêne and Legendre 1997)
scores to identify taxon-specific change points in
community sampling units ranked along environ-
mental gradients (fig. 1 in Baker and King 2010).
Permutation methods are used to compare the
magnitude of observed scores to random scores, and
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significance of change in robust indicator taxa is
assessed via indices of purity (consistent direction),
reliability (consistent magnitude), and narrow quan-
tiles of change-point location across bootstrap repli-
cates. Correspondence in the distribution of change-
point locations for pure and reliable taxa and narrow
bootstrap quantiles around a distinct peak in normal-
ized changes summed across taxa (i.e., sum[z]) are
used to infer evidence for thresholds in community
composition and structure.

C&Q set up a series of simulations to assess sample
partitioning by IndVal scores and the permutations
used in TITAN to test their ability to detect statistical
thresholds (i.e., slope changes or disjunctions) in
trend lines representing different underlying patterns
of abundance and differing levels of introduced
variability. Their primary assertions are that: 1)
TITAN’s use of IndVal is not an effective method
for detecting thresholds in species abundance trend
lines, 2) the permutation methods result in highly
significant p-values even for splits that are not
thresholds, and 3) coincident change points are at
least partially an artifact of inaccuracies, imprecision,
and systematic bias resulting from both change-point
estimation and subsequent bootstrapping.

TITAN is a relatively new method that combines
well known techniques from quantitative ecology,
and we expect detailed scrutiny. Our terminology is
derived from these techniques, but the approach used
in TITAN may require clarification to distinguish our
use and interpretation from other perspectives. By
design, TITAN combines a few of the most vetted and
commonly used methods in ecological data analysis.
IndVal (Dufrêne and Legendre 1997) is one of the
most highly cited methods in the recent ecological
literature (1849 Thomson ReutersH Web of Knowledge
citations and 2761 Google ScholarH citations as of 10
January 2013; also see Podani and Csányi 2010).
Binary partitioning forms the basis for frequently
used methods such as Classification and Regression
Trees (Breiman et al. 1984, De’Ath and Fabricius
2000), Random Forests (Breiman 2001a), and Boosted
Trees (De’Ath 2007), whereas Random Forests, Boost-
ed Trees, and Piecewise Regression (Toms and
Lesperance 2003) use bootstrapping. However well
these techniques are understood, their specific appli-
cation within TITAN is novel and, thus, may generate
confusion among potential users. Therefore, we
welcome this opportunity to clarify the fundamental
misunderstandings of TITAN upon which C&Q’s
critique rests.

Here we demonstrate that because of misunder-
standing of TITAN, the critique’s core premise that
TITAN was designed to identify statistical thresholds

in individual trend lines deemed by C&Q to represent
‘‘species abundances’’ is false. We then explore the
nature of their simulation data to show that they are
unrealistic and deviate strongly from patterns of real
data assumed by both IndVal and TITAN. We show
that entirely expected IndVal behavior is mistaken for
errors because of misinterpretation, unrealistic simu-
lations, data transformations that distort trend lines
(C&Q analyzed transformed data but present TI-
TAN’s results with untransformed data), and mod-
eled ‘‘thresholds’’ in trend lines that do not match the
location of greatest change in simulated variables. As
a result, the critique’s claims of inaccuracy, impreci-
sion, and bias are not valid. Further claims regarding
statistical significance and confidence intervals based
on the faulty premises are also misguided, and
subsequent speculation about the causes of change-
point synchrony in previously published work (e.g.,
King and Baker 2010, 2011; King et al. 2011) is not
supported by any analysis and shown here to be
unfounded. C&Q’s critique raises some important
questions surrounding threshold analysis, but be-
cause it does not present TITAN accurately and
because its rationale for testing TITAN is at odds
with all published descriptions or applications of the
method, the results cannot reliably inform any
judgment or evaluation of TITAN’s ability to identify
regions of maximum taxon-specific or community
change. C&Q’s claims should not discourage use of
TITAN for analyzing taxa contributions to community
change and detecting and interpreting ecological
community thresholds, but they do highlight the
need for clarification of uses and misuses of new
analytical techniques.

A Flawed Premise

The premise at the core of C&Q’s critique is that
TITAN, through the use of the IndVal statistic, seeks
to isolate statistical thresholds in a taxon’s response
to a disturbance gradient. We agree with C&Q that
thresholds may be defined as a disproportionate
ecosystem response to an incremental change in a
driver (e.g., sensu Groffman et al. 2006). However,
if C&Q’s premise were true, then any curve that
satisfies the statistical definition of a threshold would
represent a valid test of IndVal partitioning and, by
extension, of TITAN. Because the premise is false,
threshold constructs used to identify ‘‘errors’’, the
validity of subsequent test data, and the conclusions
that follow all require much closer scrutiny.

TITAN does not seek to identify statistical thresh-
olds in trend lines of a single response variable, and
we have never described it this way. The goal

490 M. E. BAKER AND R. S. KING [Volume 32

Downloaded From: https://bioone.org/journals/Freshwater-Science on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



statement in our original methods paper and a
summary statement from our subsequent description
for managers were explicit:

‘‘We introduce a new analytical approach…with
the goals of (i) exploring and identifying abrupt
changes in both the occurrence frequency and
relative abundance of individual taxa along an
environmental, spatial or temporal gradient; (ii)
quantifying uncertainty around locations of abrupt
change; and (iii) estimating the relative synchrony
and uncertainty of those changes as a nonparamet-
ric indicator of a community threshold.’’ (Baker
and King 2010, p. 26)

‘‘We developed TITAN specifically to address the
problems described in our paper… [TITAN] can
distinguish the response direction, magnitude, and
location of change in individual taxa, and provide an
assessment of uncertainty about the location and
synchrony of taxon change points as evidence for
community thresholds.’’ (King and Baker 2010, p. 1006)

In TITAN, it is immaterial whether or not taxa
exhibit a statistical threshold or other specific
response form, because change at the taxon level is
all that is required to develop and assess evidence for
thresholds at the community level. All taxon thresh-
olds represent change, but not all taxon changes
constitute thresholds. IndVal partitioning is used to
identify objectively the greatest change in abundance
or occurrence frequency for individual taxa (i.e.,
change points or split points). Abrupt changes are
indicated when resampling produces only limited
modification of the location of the change point,
whereas gradual changes produce broader distribu-
tions of resampled change-point locations. Said
another way, IndVal partitioning may correspond to
steepening trend lines and other so-called threshold
patterns, but it is not required or even expected to do
so in many cases (e.g., linear, wedge-shaped increases
of tolerant taxa along urbanization or other novel
gradients; King and Baker 2010, Bernhardt et al. 2012).
Thus, what may seem to be a minor semantic
distinction between statistical thresholds introduced
by C&Q and change points is, in fact, a crucial
mischaracterization of TITAN because it accounts for
many of the disparities C&Q count as ‘‘errors’’ in their
simulations. Furthermore, this misunderstanding
leads to flawed interpretation of most of TITAN’s
core functions (see discussion below).

If species exhibit modal distributions with respect
to most natural environmental gradients (sensu Whit-
taker 1967, Austin and Smith 1989), novel gradients
produced via anthropogenic activity can fall outside

the range of conditions experienced by a species over
evolutionary time (Hobbs et al. 2006, Fox 2007,
Williams and Jackson 2007). Depending on the
intensity of the novel gradient and species-specific
tolerances, we generally expect a decline in abun-
dance and occurrence with increasing departures
from natural conditions, similar to the truncated
distributions often observed at extremes of natural
gradients (Fig. 1A).

‘‘In the context of ecological communities, we
interpret a threshold to mean that the frequency
and/or abundance of taxa will increase or decrease
sharply at some level of an environmental gradient,
such that an incremental change in a driver such as

FIG. 1. Response of taxon abundance to novel environ-
mental gradients showing idealized departures from a
unimodal response often observed along natural gradients
(A) and observed synchronous responses of 5 robust
declining taxa identified by Threshold Indicator Taxa
Analysis (TITAN) in US Geological Survey North American
Water Quality Assessment (NAWQA) data (Boston; richest
targeted habitat data) along a metro-area normalized
urbanization intensity index (MA-NUII; Cuffney et al.
2010) (B).
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urban intensity results in a disproportionately large
change in community structure relative to else-
where along the gradient.’’ (King and Baker 2011,
p. 2833)

TITAN is designed to compare change across taxa
because we are interested in detecting correspon-
dence at the community level. In principle, a series of
wedge-shaped declines in species counts with syn-
chronous IndVal change points could still produce
a community response of interest in TITAN even
though no single taxon exhibits threshold behavior.
However, because of the gradual nature of the decline
there would be broad uncertainty about the location
of the change and, thus, only weak evidence for a
community threshold. In practice, we have observed a
variety of responses to novel gradients, and we refer
interested readers and potential users to our descrip-
tion in fig. 7 of King and Baker (2010).

C&Q’s misinterpretation of TITAN’s purpose is
understandable because change point and threshold
are sometimes used as synonyms in the literature.
Moreover, the term threshold appears to have
different meanings for different people. We may have
inadvertently contributed to the confusion because
some of the simulations initially used to test TITAN
involved underlying step-functions in the probability
distribution of individual taxa (figs 3, 4 in Baker and
King 2010), and we have documented that many taxa
declining along anthropogenic disturbance gradients
do show disproportionate change in frequency and
abundance with an incremental change in the
gradient (i.e., a threshold; King and Baker 2010,
2011, King et al. 2011). However, in TITAN, a change
point really means what its name suggests (see next
sections). We urge readers not to conflate change
points (or ‘‘split points’’ following Breiman et al. 1984)
exhibited by individual taxa (and detected by IndVal
maxima) with ecological thresholds that, in TITAN,
are inferred at the community level by considering
aggregate changes across taxa.

Unrealistic and Inappropriate Simulated Data

In evaluating the C&Q critique, it is worth
considering whether the simulated data they used
represent a valid test of IndVal performance. As a
measure of change, binary partitioning by IndVal may
appear rather clunky, but the statistic itself was
developed to deal elegantly with a well known, but
sometimes overlooked property of biological survey
data—sparse matrices (many 0s) with high levels of
variability (i.e., negative binomial distributions with
overdispersion; Pielou 1984, Legendre and Legendre
1998, McCune and Grace 2002, Podani and Csányi

2010). In most community matrices, absences can
occur in nearly any sampling unit, occurrence
frequency is not independent of mean abundance,
and both may be a function of the gradient. We have
repeatedly emphasized that TITAN was designed
explicitly for this type of data, and we have generated
our simulated abundances from distributions (i.e.,
negative binomial) that have some or all of these key
characteristics (Baker and King 2010, p. 26; King and
Baker 2010, p. 1000).

In their criticism of TITAN, Cuffney et al. (2011)
and C&Q used 2 types of simulated data to test
IndVal performance. Type 1 simulated data (figs 1–4
by C&Q) consists of abundances that follow specific
trend lines and that have either no absences (i.e., Type 1
data ,25% variance) or far fewer than would be
expected for .95% of observed taxa (Fig. 2). Variance,
when included, is generated by a normal distribution
centered on the trend line (Type 1 data, variance 1–
100%). Type 2 simulated data are similar to Type 1,
except that C&Q force the response curve to intersect
the x-axis away from where they define ‘‘actual’’
thresholds (e.g., fig. 5 by C&Q). In a few Type-2
simulations, C&Q place a group of 0 counts (absences)
in locations inversely related to the trend line (e.g., fig.
9C, D by C&Q).

Collectively, Type 1 and 2 simulations are unam-
biguously unrealistic representations of taxon abun-
dance data. In Fig. 2, we show a comparison of C&Q’s
simulation data to observed data from their own
published work (Cuffney et al. 2010). The authors offer
no substantiation for their claim that their simulated
data are common. We dispute this claim and point to
representative examples from our data (fig. 3 in King
and Baker 2010, fig. 6 in King et al. 2011) and C&Q’s
empirical observations (Figs 1B, 2) that indicate other-
wise. Had C&Q attempted to reproduce their own
published empirical taxon distributions, we are confi-
dent they would have rejected their simulation data (as
we do) on statistical, if not ecological, grounds.

The patterns C&Q simulated have more in common
with their previous analysis of idealized aggregate/
composite community metrics (see Cuffney et al. 2010,
Qian and Cuffney 2012, Qian et al. 2012) than with
realistic examples of taxon abundances. TITAN was
developed for a fundamentally different kind of data,
and we have presented it as an unambiguous
alternative to aggregate metrics (King and Baker
2010). However, the reader need not rely on either
of our viewpoints regarding properties of taxon
counts. Following Zuur et al. (2010), we encourage
investigators to plot representative examples of their
data (taxon abundances along environmental gradi-
ents) and decide whether TITAN is appropriate for
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their question (e.g., see Figs 1B, 3A–H). We also
encourage users to plot these relationships post hoc
for robust taxa identified by TITAN (e.g., Fig. 1B).

We developed more realistic simulations using
negative binomial distributions with overdispersion
in R (version 2.15.1; R Development Core Team,
Vienna, Austria; Appendix S1; available online from:
http://dx.doi.org/10.1899/12-142.1.s1). We set mean
abundance across observations to range from 2 to 10
individuals, which approximates the range of empir-
ical values we have observed in our analyses of
various survey data sets (e.g., King and Baker 2010,
2011, Bernhardt et al. 2012). We set mean abundance
to be a function of the response models suggested by
fig. 1 of C&Q (Fig. 3A–D). However, we used the
negative binomial distribution, which incorporated
nonnormal error distributions and allowed specifica-
tion of an appropriate level of overdispersion in the
response, in our simulations. We set the dispersion
parameter to 0.5 to simulate moderate overdispersion
consistent with natural variability in taxon abundances
in community data sets (e.g., the National Water
Quality Assessment [NAWQA] data in Cuffney et al.
2010; Appendix S2; available online from: http://dx.
doi.org/10.1899/12-142.1.s2). We did not log-transform
the data prior to analysis.

Figure 3A–H illustrates the results of our negative
binomial simulations. The most obvious characteristic
is that observed values (Fig. 3E–H) only vaguely
resemble the original model forms from which they
derive (Fig. 3A–D). Noisy counts make discerning a
trend in abundance difficult at best, and it is easy to
imagine piecewise or quantile regression fits that look
nothing like the underlying models. However, all of
the data can be interpreted by binary partitioning,
especially when one considers both changes in
abundance and occurrence frequency across the
gradient. Because each realization of the underlying
distribution produces different patterns of both
abundance and occurrence, the actual point of
greatest change also varies. However, change points
identified across 20 simulations for each response
form illustrate that responses detected by TITAN are
tracking the greatest changes in the underlying
response model.

Wide bootstrap quantiles spanning the zone of
greatest change for each response form in Fig. 3I–L
are also highly informative because they demonstrate
the high degree of uncertainty regarding the point of
greatest change in the data. Linear, broken-stick, or
dose-response models all have a zone, rather than a
single point, of greatest change (steepest slope) that

FIG. 2. Comparison of patterns of abundance with Type 1 (abundance trend lines with 0–100% normally distributed
variability) simulation data used by Cuffney and Qian (C&Q) (2013) showing the proportion of 0s relative to the cumulative
proportion of taxa vs empirical data from US Geological Survey North American Water Quality Assessment (NAWQA) of urban
streams (Cuffney et al. 2010), which show strong evidence of frequent absences across most taxa.
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begins at the first break in the trend line and can
continue for much of the remainder of the gradient
(Fig. 3I–K). This continuum of greatest change is
captured accurately by the distribution of IndVals
and their respective bootstrap quantiles.

IndVal was developed specifically for the noise
inherent in the type of data represented in Fig. 3E–H,
and such variability underscores the fundamental
problem in C&Q’s idealized approach for critiquing
IndVal. Similar constructs for analyzing community
metric data may be familiar to many readers (e.g.,
Brenden et al. 2008, Dodds et al. 2010, Qian and
Cuffney 2012), but C&Q’s response models have little

to do with the patterns encountered in site 3 species
community matrices. Expecting a statistic developed
specifically for noisy counts to detect with precision
subtle breaks in trend lines or other smooth response
forms ignores the reasons for developing IndVal in
the first place.

C&Q’s simulations contribute to the fallacy of their
critique by disregarding known properties of biolog-
ical survey data, an omission we are at a loss to
explain given their recent exploration of negative
binomial models (e.g., Qian et al. 2012). Taxa with a
few absences occur in their simulation data (Fig. 2),
but these are clearly the exception rather than the rule.

FIG. 3. Threshold Indicator Taxa Analysis (TITAN) change points obtained for 4 hypothetical taxon abundance distributions
developed from negative binomial mean response curves from 2 to 10 individuals and a moderate overdispersion parameter of
0.5 for linear (A), broken-stick (B), dose-response (C), and step-function (D) declines. Panels E–H (row 2) show observed values
generated by 1 simulation corresponding to each of the models in the same column. Panels I–L (row 3) show the distribution of
indicator value (IndVal) maxima (i.e., change points, with symbol diameter proportional to z-score) and 90% bootstrap quantiles
from 500 replicates across 20 simulations corresponding to each response curve. A total of 16 (linear), 16 (broken-stick), 17 (dose-
response), and 19 (step-function) simulated taxa were deemed robust indicators (purity § 0.95, reliability § 0.95). Only pure and
reliable indicator taxa are shown in panels I–L.
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Without absences, the IndVal statistics assessed by
C&Q frequently are reduced to comparisons of mean
abundance, for which neither TITAN nor IndVal is
ideal. Furthermore, without the nonnormal variability
associated with overdispersion, C&Q’s test data lack
key signals that IndVal is specifically designed to
exploit. In sum, C&Q’s unrealistically biased simula-
tions lead to inappropriate tests of TITAN’s perfor-
mance and a misapplication of the method as we
designed it. We agree with C&Q that simple models
can be heuristically useful, but only when they
capture essential phenomena. C&Q’s simulations are
focused solely on detection of their specific response
forms, but their simulations do not represent essential
attributes of community data (McCune and Grace
2002).

Change-Point Identification

The core premise of C&Q’s argument is false. Thus,
the interpretation that follows is largely misguided
and, when combined with unrealistic data, unfound-
ed. However, we think it might be helpful to explain
what C&Q found and why they found it. Many
practitioners accustomed to thinking about biotic
change in terms of nonlinear trend lines produced
by aggregate community metrics (e.g., Walsh et al.
2005, Brenden et al. 2008, Cuffney et al. 2010, Qian
and Cuffney 2012) may wonder at discrepancies
presented by the critique, despite the flaws in its
analytical construct.

An important modification made by C&Q may
not be obvious to the casual reader because it
is mentioned only briefly in their methods. C&Q
specifically developed their idealized curves to test
TITAN’s ability to detect threshold response forms,
and then log(y + 1)-transformed their simulation data
prior to analysis. We have transformed our empirical
data in the past when using TITAN (e.g., Baker and
King 2010, King and Baker 2010), but only after
careful consideration of the effect of transformation
on properties of sparse community matrices with
predominant 0s and very high overdispersion for
most taxa. More recently, we have found that TITAN
is relatively robust to, and transformation is unneces-
sary for, all but the most extreme cases of over-
dispersion (King and Baker 2013). Transformations
are common in ecological data analysis, but we
consider transformation of C&Q’s simulation data
unnecessary because their simulation data are neither
sparse nor overdispersed (Fig. 2). Moreover, C&Q
presented their untransformed idealized curves with
TITAN’s change points, even though they analyzed
transformed data. Figure 4A–F illustrates the effect of

this transformation on the data actually analyzed with
TITAN for 3 selected response forms (linear [LIN],
broken-stick [BS], and Gaussian [GAU]). In the
transformed data, smoothly varying functions are
distorted (evident in curves that should have uniform
slopes), the magnitudes of breaks in slope are altered,
and specific locations of greatest changes in abun-
dance may be shifted. Thus, presentation of untrans-
formed response curves and TITAN’s change points is
potentially misleading to readers who might fail to
notice that TITAN was performed on, and change
points identified from, transformed values rather than
those presented in the figures.

C&Q indicate that TITAN failed to identify ‘‘actual’’
threshold locations in trend lines representing BS,
dose-response (DR), and GAU response forms unless
they were step changes in mean abundance. The
‘‘actual’’ thresholds in some of these simulations may
be legitimate split points of analytical interest, but
they depart from the literature definition that C&Q
cite (Groffman et al. 2006) when they do not
correspond to locations of greatest change in abun-
dance (Table 1), particularly after log-transformation
(Fig. 4A–F). For example, in their BS and DR
simulations, C&Q define thresholds at breaks in slope
even though all locations anywhere along the steepest
part of the trend line are equivalent locations of
disproportionate change relative to an incremental
change in the environment (i.e., an ecological thresh-
old; Groffman et al. 2006). For GAU response curves,
C&Q define their ‘‘actual’’ threshold at the peak of the
unimodal response, where change is at a minimum
(e.g., figs 4F, G, 5D, E by C&Q). Considering these
departures from preceding literature, TITAN’s stated
goals (see A Flawed Premise above), our previous
description of IndVal behavior along step function
(SF) (taxon A), Gaussian (taxon C), and dose-response
(taxon D) models (fig 2 in Baker and King 2010),
distortion of curves via log-transformation, and
graphical representation of the point or zone of
greatest change in taxon responses to environmental
gradients (fig. 7 in King and Baker 2010), it should not
be surprising that IndVal maxima did not correspond
well with C&Q’s ‘‘actual’’ thresholds.

Given known behavior of IndVal partitioning when
confronted with various response forms, it also
should come as no surprise that IndVal performs
well when there is a step change in mean abundance
or that such partitioning is sensitive to the pattern of
absences because the statistic was designed specifi-
cally to detect such changes. As the simulations in
Fig. 3A–L demonstrate, binary partitioning is one of
the few ways to interpret the noise in count data, and
IndVal integrates 2 of its strongest signals. The IndVal
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notation used by C&Q (eq. 1 in C&Q) and similar
notation elsewhere (Dufrêne and Legendre 1997,
Legendre and Legendre 1998, McCune and Grace
2002) shows that the term maximized across groups
by IndVal scores is the product of 2 components: 1)
the proportion of occurrences (Oi1/ni1) and 2) the
mean abundance in 1 sample group (Āi1) relative to
total mean abundance across both groups (Āi1 + Āi2).
Notice that the difference between a species’ presence
(occurrence = 1, abundance . 0) and its absence
(occurrence = 0, abundance = 0) affects both terms,
and therefore, has a compounded effect on IndVal.

Without absences, the IndVal statistic in TITAN
finds a split that produces the greatest difference in
mean abundance. Without changes in abundance, the
statistic reverts to a comparison of within-group
occurrence frequency. As used in TITAN, IndVal
can be viewed as the difference in abundance-
weighted frequency between 2 groups. IndVal scores
use both terms to assess whether each taxon shows a
distinct association with a group of samples split
according to an environmental variable.

As C&Q discovered, and as should be apparent
from published descriptions of both IndVal and
TITAN, absences matter. When variability is intro-
duced into each of their idealized response curves
(fig. 3 by C&Q), we would expect similar patterns of
such ‘‘errors’’ to occur until increased variability
starts to produce counts of 0 (absences). When
distributed randomly and uniformly across the
gradient (i.e., Fig. 5A, Type 1 data, .60% variation)
rather than in correlation with abundance (e.g.,
Fig. 3E–H), absences add random noise to IndVal
partitioning rather than interpretable signal. When
absences are introduced nonrandomly, unrealistically,

and away from decreases in abundance (e.g., fig. 9C,
D by C&Q), they necessarily affect the ability of
IndVal partitioning to detect change because they
reduce apparent differences in mean abundance.
However, the change points shown in fig. 9C, D by
C&Q are not just unrealistic, they are also an artifact
of misapplied data transformations that are not
apparent because the figure shows untransformed
data and ignores the results of TITAN’s bootstrap. In
Fig. 6A, transformation enhances the effect of unreal-
istic absences by minimizing the break in abundance
and producing an increasing (not decreasing) change
point with broad uncertainty. In Fig. 6B, the uncer-
tainty is so great that the resulting change point is
both impure and unreliable (,0.95) over 500 boot-
strap replicates. When we analyzed the untrans-
formed data provided in C&Q’s supplemental data
(available online at: http://dx.doi.org/10.1899/12-
056.1.s2), TITAN identified pure and reliable change
points at or near 52 (90% quantiles: 48.5–58.5) in the
case of fig. 9C by C&Q (Fig. 6C) and at or near 85
(90% quantiles: 74.0–87.0) in the case of fig. 9D by
C&Q (Fig. 6D). We do not know how many ‘‘errors’’

identified by C&Q are attributable to transformations
because we have not reanalyzed all of their data, but
this example does raise concerns regarding their
findings and interpretation.

When absences are introduced via truncated distri-
butions (i.e., Type 2 data, fig. 5 by C&Q), the IndVal
statistic is no longer driven by a comparison of mean
abundance. Because C&Q have so few absences in
their simulations, the IndVal statistic is maximized at
or near the point of intersection of each response
curve with the x-axis when all abundance and
occurrence are entirely in one partition (e.g., Fig. 5B)

TABLE 1. Differences with Cuffney and Qian (C&Q) (2013) regarding interpretation of indicator value (IndVal) partitioning of
simulated response forms by Threshold Indicator Taxa Analysis (TITAN).

Response form Actual location C&Q interpretation Baker and King response

Step function Step break TITAN and IndVal identify this
location accurately

Expected, especially for data without absences

Gaussian Mode of
distribution

TITAN and IndVal inaccurate;
they always identify points to
either side of the correct
location

Greatest change is to either side of the mode,
especially when transformed; TITAN identifies
these locations accurately; C&Q’s definition is
inconsistent with literature

Dose-response Upper and lower
slope breaks

TITAN and IndVal inaccurate;
they always identify points
between the correct locations

For partitioning algorithm, greatest change is always
along declining limb; TITAN working as expected

Broken stick Slope break TITAN and IndVal inaccurate;
they identify points other than
slope break

Partitioning works on simulated data, not idealized
curve; IndVal maximum depends on magnitude
of slope break and range of introduced variability;
TITAN working as expected, especially for
transformed data when there is no change in
occurrence frequency
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FIG. 4. Comparison of selected response curves used in tests of Threshold Indicator Taxa Analysis (TITAN) presented by
Cuffney and Qian (C&Q) (2013) (A, C, E) with the log(y + 1)-transformed data actually analyzed by Cuffney and Qian (2013) (B, D,
F). y-axis titles refer to specific models presented in their online appendices (available at: http://dx.doi.org/10.1899/12-052.1.s1).
LIN = linear, BS = broken stick, GAU = Gaussian.
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and especially when the data are log-transformed
(Fig. 4D). In addition to problems with C&Q’s
‘‘actual’’ threshold locations relative to the zone of
greatest change in the response, C&Q’s definition of
thresholds in Type 2 data is problematic. Without
absences that increase in frequency with decreasing

mean abundance, we would expect TITAN to find the
coincident loss of abundance and occurrence instead
of a break in slope or the peak of a unimodal
distribution (e.g., taxa E and F in fig. 2 by Baker and
King 2010). In empirical data, truncated distributions
usually are preceded by low abundances and a
marked increase in absences (fig. 7 by King and Baker
2010), so TITAN typically identifies this zone rather
than the point of intersection. Here, we differ
philosophically with C&Q because we think that a
point of sudden extinction along an environmental
gradient is both statistically and ecologically a
location of far greater change in a taxon’s response
than either a break in slope or a peak in a unimodal
distribution, especially when compared to the subtle
change in slopes used to define Type 2 thresholds.

The results presented by C&Q as problems with
IndVal partitioning are, in fact, entirely predictable
given their simulated trend lines, log-transformation
of data, confusion regarding TITAN’s purpose, and
threshold criteria that depart from literature defini-
tions. Thus, their critique does not pose a concern
for users analyzing empirical community data with
typical negative binomial distributions and frequent
0s. C&Q suggest that comparing multiple alternative
models offers a more comprehensive approach to
threshold detection across taxa. We agree, but we note
that the alternative models they suggest (i.e., Qian
and Cuffney 2012) may be appropriate for some
community metrics, but would violate their own
assumptions (e.g., homogeneity of errors and normal
distribution of observations) if applied to a matrix of
taxon counts (e.g., Figs 1B, 3E–H).

IndVal, z-Score Maxima, and Skew

In their critique, C&Q pointed out differences
between change points identified by independently
calculated IndVal maxima and those identified by
TITAN, which are based on z-score maxima. The
difference occurs because, as C&Q note, z-scores
generated via permutation are different each time
TITAN runs. This difference was designed to draw
attention to uncertainty arising from near-maximal
change-point realizations (i.e., IndVals with near-
maximum magnitudes can be identified at different
locations along the gradient by different permuta-
tions; e.g., see pattern of IndVal z-scores relative to
IndVals in Fig. 6A, C). C&Q’s more serious claim is
that the permutations introduce bias into the identi-
fication of change points. We are aware of this
possibility, and C&Q are correct that it can happen,
especially with certain kinds of data. In general, the
effect is to move the change point closer to the center

FIG. 5. Occurrence frequency response in broken-stick
(BS) models used in Cuffney and Qian (C&Q) (2013)
representative of problems with Type 1 (BS2 with 100%

introduced variance) (A) or Type 2 (BS6 with 0% introduced
variance) data (B). Insets show the modeled taxon abun-
dance response curve. See text for details of Type 1 and
Type 2 data. C&Q state that a threshold occurs at a break
in the slope of abundance decline (vertical dashed line).
Threshold Indicator Taxa Analysis (TITAN) integrates
changes in mean relative abundance and occurrence
frequency. In A, the pattern of absences is unrelated to the
pattern of abundance or to the gradient. In B, the break in
the slope is a trivial signal (especially after log[y + 1]
transformation) when compared to the truncated distribu-
tion. C&Q count these differences as errors in TITAN, but
they represent expected behavior when TITAN is presented
with unrealistic data or unreasonable definitions.
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of observations along the x-axis. All TITAN objects
output in R contain IndVals and z-scores for each
taxon, but updates of TITAN will, by default, use
IndVal maxima to simplify interpretation and to
reduce concerns about bias.

Our own comparisons indicate that z-score bias has
not affected interpretation of our published analyses
of community thresholds along urbanization gradi-
ents. If bias were substantial, its effect would be to
make apparent responses to urbanization less extreme
(i.e., toward the center of observations) and not more
extreme at the low end of the gradient. When a
taxon’s change point is the result of a strong break in
its distribution (i.e., SF3 in figs 4D, 5A–F by C&Q;
Figs 5B, 6C), the variation introduced by permutation
is likely to be trivial compared to the uncertainty
generated by the bootstrap, which C&Q ignore. When

used to describe an indistinct or smoothly varying
and unrealistic IndVal maximum, such as those
provided by the linear (LIN) or BS curves (figs 4A–
C, H, 7A–C in C&Q; Fig. 6D), the permutation can
introduce enough variability to change the rank order
of z-scores. However, the same variability is intro-
duced repeatedly during bootstrapping, broadening
change-point quantiles (what C&Q call taxon-specific
confidence intervals; e.g., Fig. 3I–L), and making the
observed location suspect according to prescribed use
of TITAN (Baker and King 2010, King and Baker
2010).

C&Q raise the issue of skewed sample distributions
as a further claim of bias in change-point locations
and present examples in their fig. 7A–C. C&Q’s skew
simulations suffer from a lack of absences and a
smoothly declining pattern of abundance, which

FIG. 6. Scatterplots of log(y + 1)-transformed simulated taxon abundances (black) corresponding to a step-function (A) and
broken-stick (B) abundance response patterns with introduced absences analyzed by Cuffney and Qian (C&Q) (2013) and the
untransformed data presented by C&Q in their fig. 9C (C) and fig. 9D (D). C&Q stated that by introducing absences to idealized
abundance patterns, they were able to generate large differences in observed change points identified by Threshold Indicator
Taxa Analysis (TITAN), but these differences, change-point directionality, and associated uncertainty were an artifact of the
transformation. When we provided the untransformed data (obtained from C&Q supplemental data files; available at: http://dx.
doi.org/10.1899/12-052.1.s2) to TITAN, we obtained results similar to those obtained by C&Q when they analyzed the same
response patterns without absences in their fig. 9A and B (C, D). Observed change points are shown as a dashed vertical line, with
90% bootstrap quantiles as a shaded area. Change points in panel A denote an increase in occurrence frequency, change points in
panel B are impure and unreliable, and change points in panels C and D are pure and reliable decreasers. IndVal scores for all
candidate change points are shown in red (1st right-hand axis), whereas IndVal z-scores are shown in grey (2nd right-hand axis).
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makes the ‘‘threshold’’ they define subtle, especially
after transformation (data not shown in fig. 7A–C by
C&Q). Under these specific conditions of reduced
signal, bias introduced by the z-score maximum is
enhanced, pushing the identified change point closer
to the center of observations along the x-axis.

Distributional skew within a sample set is a serious
concern with important implications for nearly any
form of regression (most assume a normal or uniform
distribution in the predictor) and for binary partition-
ing because the location of candidate change points
(considered as the midpoint between successive,
ranked observations) is not evenly distributed. Thus,
in regions of reduced sample density, change-point
precision will necessarily be reduced. Analyses of
regression trees suggest that skewed samples can
affect the pattern of variance when applied to
idealized and smoothly varying functions (i.e., linear;
Daily et al. 2012). However, IndVal partitioning (as
opposed to z-score partitioning) in TITAN appears
relatively robust to strongly skewed samples when
parameters from observed data are used with more
realistic negative binomial simulations (see appendix
1 by Bernhardt et al. 2012 for a detailed example). To
aid users in better understanding the implications of
skewed samples in specific data sets, forthcoming
versions of TITAN will offer guidance for generating
data-set-specific simulations and IndVal, rather than
z-score, partitioning.

Statistical Significance

Another premise of C&Q’s argument is that TITAN
uses permutations to evaluate the significance of the
IndVal or z-score maximum for each taxon (i.e., its
observed change point). In their simulations, C&Q
find many examples where apparently erroneous
threshold locations nonetheless produce very small
(p , 0.01) p-values. C&Q argue that because the
permutation procedure is used to identify thresholds
(by z-scores) in addition to testing their statistical
significance (by p-values), the significance tests, and
by implication TITAN itself, are invalid.

We agree that IndVal p-values should not be used
to assess the significance of taxon-specific thresholds.
However, C&Q’s claim is incorrect because TITAN
does not use p-values to compare the quality of one
candidate split-point location relative to others.
Rather, it uses p-values to compare the magnitude of
the change relative to random noise and to provide an
initial filter for candidate partitions assessed during
bootstrapping. In fact, although permutation results
are used to assist in evaluating many candidate
partitions, no statistical evaluation is made of the

comparison among the resulting z-scores that pro-
duces the maximum (i.e., a test for a threshold
change). We bear some blame here because our
descriptions have not been explicit enough, and we
did not anticipate C&Q’s misinterpretation. In our
published descriptions of TITAN, we noted that
Dufrêne and Legendre (1997) used permutation for
evaluating the statistical significance of IndVal scores.
The p-values in TITAN were calculated in precisely
the same way as in IndVal analysis to provide
continuity with the original method. However, Du-
frêne and Legendre (1997) permuted IndVal scores for
a small number of clustered sets defined a priori by
independent (usually environmental) criteria in a
hierarchical cluster analysis and used IndVal scores
to select optimal levels of grouping in a hierarchical
cluster. Dufrêne and Legendre (1997) did not permute
IndVal scores repeatedly for each value of an
environmental variable—as is done in TITAN—and
we were careful to note this distinction (Baker and
King 2010, p. 27). Therefore, as we discussed in our
original description (underline added):

‘‘…many (.40%) randomly generated distributions
were nonetheless deemed to contain significant
change points following permutation. This pattern
illustrated how frequent or abundant taxa with only
modest differences in IndVals between groups are
often statistically significant (pƒ0.05) in large data
sets despite dubious ecological significance. However,
such patterns are readily distinguished from more
meaningful responses through the diagnostic use of
reliability and purity. We note that those taxa deemed
significant by permutation do not always achieve
reliability or purity §0.95, but taxa with reliability or
purity §0.95 are by definition significant at pƒ0.05 or
much lower.’’ (Baker and King 2010, p. 35)

Thus, we reported our finding that the p-values
from the permutation (or, for that matter, the
magnitude of z-scores) were not, by themselves, a
useful criterion for significance of change points, and
their interpretation is not Bonferroni-adjusted for
repeated computing at each possible change point.
Instead, p-values indicate whether observed changes
are large enough to be distinct from random noise.
TITAN uses z-scores to normalize the relative
magnitude of change across taxa with inherently
different abundance patterns (Baker and King 2010,
pp. 28–29; after Dufrêne and Legendre 1997), as in any
generic standardization approach (e.g., Euclidean
distances). C&Q misunderstood TITAN’s use of the
p-values suggested by Dufrêne and Legendre (1997)
because they misinterpreted the objective of IndVal
partitioning in TITAN. However, by disregarding

500 M. E. BAKER AND R. S. KING [Volume 32

Downloaded From: https://bioone.org/journals/Freshwater-Science on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



purity and reliability, they have misrepresented the
method.

C&Q’s criticism of change-point significance high-
lights another—largely implicit—premise that under-
pins their case against TITAN: disregarding the
integral role of bootstrap resampling. Their critique
implies that significance of any IndVal-based change
point in TITAN is assessed solely through permuta-
tion, but they completely ignore the role that
bootstrap results play in interpreting and filtering
IndVal results. Our original description of TITAN was
explicit about the integral role of the bootstrap:

‘‘The bootstrap procedure is necessary because
unlike a priori group classification required by
indicator species analysis, optimal group partition-
ing along x is initially unknown in TITAN, and is
in fact the objective of the analysis. Whereas the
permutation procedure is used to estimate the
probability that an equal or larger IndVal could be
obtained from random data, the bootstrap proce-
dure estimates uncertainty around change point
locations as well as consistency in the response
direction of each taxon. Variability in change-point
location, directionality, and magnitude constitute
the information content of the indicator response for
each taxon.’’ (Baker and King 2010, p. 27)

In TITAN, the 3-fold information content of each
taxon’s indicator response is used to assess its
significance, and this 3-fold approach is an addition
to the original conceptualization of the IndVal
statistic. TITAN does not provide an estimate of
overall likelihood for a change point. Instead, it uses
the smallest p-values across all candidate change
points derived from permutation of each bootstrap
replicate to assess whether response magnitudes are
consistently large (i.e., reliability; Baker and King
2010). Taxa that fail to maintain small p-values across
bootstrap replicates are considered unreliable indica-
tors because the strength of their apparent response
depends strongly on the specific sample analyzed
(e.g., taxa with large abundances in few samples).
Likewise, taxa that fail to maintain fidelity to the
observed response direction (e.g., unimodal distribu-
tions or weak signals variably interpreted as increas-
ing or decreasing) are considered impure indicators of
change (purity; Baker and King 2010). We have found
that reliability is somewhat redundant with purity
(e.g., taxa with purity §0.95 are usually reliable)
except in cases of a modal response (i.e., reliable taxa
that are not pure). TITAN uses purity and reliability—
both outcomes of bootstrap resampling—to remove
those taxa with weak signal relative to background
noise, reduce error, and minimize the effects of bias.

TITAN’s bootstrap diagnostics were not used by
Cuffney et al. (2011) and C&Q as significance criteria
in their simulations because of the time needed to
complete the procedure. Instead, they evaluated the
bootstrap diagnostics based on analysis of small
subsets of their simulation data. Thus, their assertion
that bootstrapped confidence limits are too narrow
is not based on empirical evidence. The theoretical
arguments C&Q present are all based on split-point
problems in which the objective is to estimate the true
population standard deviation by resampling ob-
served values. However, TITAN does not use the
bootstrap to estimate a true standard deviation (i.e., as
if it were attempting to detect taxon-specific thresh-
olds), nor does TITAN estimate an observed standard
deviation. Thus, how C&Q can demonstrate that its
quantiles are too narrow is not clear. The IndVal
statistic is sensitive to the distribution of relative mean
abundance and occurrence frequency within each
partition. Resampling is used to examine a range of
alternative observation sets to assess relative sensitiv-
ity in the location of change points across taxa.
Moreover, we explicitly discouraged strict interpreta-
tion of taxon-specific change-point quantiles as
confidence intervals (Baker and King 2010, p. 28).

C&Q refer to simulations in their fig. 8 to support
their claim, but these results do not provide evidence
that taxon-specific bootstrap quantiles are too narrow.
Instead, the figure shows unrealistic abundance trend
lines without absences, where IndVals would nor-
mally be maximized at one end of the gradient. Under
such conditions resampling naturally tends to find a
range of alternate change points. The bootstrapped
change-point distributions span the entire gradient.
Thus, they (appropriately) convey broad uncertainty
associated with finding a difference in mean abun-
dance along each trend line. We do not see how these
distributions could get any wider. In our simulations,
true change points sampled using negative binomial
generators were frequently captured more often than
expected for 90% quantiles, results indicating that
intervals might be too wide rather than too narrow.
We prefer to be conservative in conveying such
uncertainty.

Given the empirical patterns described above,
C&Q’s subsequent endorsement of Bayesian ap-
proaches over those used in TITAN is contradictory.
We are unaware of any rigorous test of the method
they promote, and the sole publication where both
approaches were compared (Qian et al. 2003) revealed
that Bayesian intervals were narrower than intervals
similar to those calculated by TITAN (2-sample t-test
assuming unequal variances, n = 8 observations, p ,

0.01). Thus, C&Q’s claims regarding the bootstrap in
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TITAN are not valid. Without mentioning TITAN’s
core diagnostic indices and without using the boot-
strap results in their interpretations, the critique does
not actually test TITAN, but selectively misapplies
portions of the analysis for purposes that have never
been suggested or used in a published or unpublished
work.

Synchronicity and Community Change

C&Q imply that coincident changes described in
our published work are at least partially an artifact of
inaccuracies, imprecision, and bias in TITAN’s iden-
tification of change points. Of all of C&Q’s claims, this
suggestion of artifactual synchrony is perhaps the
least well supported and most speculative. None of
the concerns raised about z-scores, skewed samples,
or minimum split size indicate that change points
across taxa should be more coincident as a result.

For example, C&Q noted that z-scores introduce
stochastic variability into change-point maxima. Sto-
chastic variability should decrease (not increase) the
likelihood that they will generate synchrony. More-
over, the z-score bias that C&Q demonstrated over
smooth, monotonic functions is clearly larger and
more directional than what they found over more
abrupt changes (e.g., SF3 in fig. 4D, 5A–F by C&Q).
Nevertheless, the effect of skew on z-score change
points identified by C&Q is toward the center of the
sample distribution and not toward the margin of the
gradient. Bias toward the center of the distribution
should decrease the likelihood of artifactual synchro-
ny in change points at gradient extremes, where our
empirical analyses have detected synchrony (King
and Baker 2010, 2011, King et al. 2011). As C&Q
suggest, using a minimum cluster size does make
identifying change points at extremes impossible in
observed data, but identifying change points at
extremes certainly is possible during bootstrap re-
sampling, a point that C&Q did not mention. In any
case, the support for change points at gradient
extremes is necessarily weak (i.e., low sample
densities and number of observations), a problem
that should be highlighted by the bootstrap. On the
other hand, TITAN identified coincident change
points in our published simulations (Baker and King
2010, King and Baker 2010) with high accuracy. In all
of our simulations, TITAN’s diagnostic filters were far
more likely to interpret coincidently declining taxa as
either not robust or asynchronous than to indicate
synchrony where none existed.

Change-point synchrony is well known along
thermal (e.g., Wehrly et al. 2003) and nutrient
gradients (e.g., King and Richardson 2003) among

others. In TITAN, synchronous change at the com-
munity level is identified by sharp peaks in sum(z)
maxima with narrow confidence intervals, and
corresponding alignment of change points for robust
indicator taxa. TITAN is focused on detecting change,
but synchronous change can be identified by other
means. Verification of change-point synchrony is as
easy as plotting the abundances of robust (i.e., pure
and reliable) indicator taxa vs the gradient (e.g.,
Fig. 1B, Appendix S2). C&Q did not use this approach
in their simulations. Yet another approach involves
fitting models to the relative abundance of each taxon
(e.g., Qian et al. 2012). Below we describe our use of
all 3 approaches, and we encourage those skeptical of
TITAN’s component analyses to do the same.

We used previously published US Geological
Survey NAWQA data from Boston, Massachusetts
(richest targeted habitat data [RTH]; Cuffney et al.
2010), which we previously analyzed at the commu-
nity level and presented graphically using combined
Quantitative–Qualitative (QQ) presence–absence data
along a metro-area normalized urbanization intensity
index (MA-NUII) in King and Baker (2011). Cuffney et
al. (2010) concluded that this assemblage exhibited
linear change in response to urbanization. TITAN
showed that 13 taxa present at low levels of
urbanization declined sharply below 12 MA-NUII,
leading to a community threshold estimate at 11.6
MA-NUII (with a 90% confidence interval of 3.9–25.0)
(Fig. 7A, B). Eleven additional taxa declined between
20 and 53 MA-NUII, indicative of additional change
that was less synchronous but certainly not a linear
function of the remaining gradient. TITAN also
described 4 increasing taxa whose change points
ranged from 3 to 61 MA-NUII with 90% confidence
intervals at the community level of 10.4 to 77.0 MA-
NUII.

We analyzed the same data set by fitting negative
binomial generalized additive models (GAMs) using
the gam function in the mgcv package in R following
Zuur et al. (2009). We standardized densities of taxa
with significant (p , 0.05) model fits to the maximum
predicted density for each taxon for clarity (i.e.,
response curves could not exceed a value of 1). The
data points (n = 30) were too few for us to interpret
most of the resulting curves with great confidence,
but nonetheless, the results are relevant. Of the 37 taxa
with §3 occurrences selected by TITAN or GAMs, 23
were identified by both GAMs and TITAN, 9 were
identified by GAMs but not TITAN, and 5 were
identified by TITAN but not GAMs (Appendices S2,
S3; available online from: http://dx.doi.org/10.1899/
12-142.1.s3). The primary pattern was strong agree-
ment between TITAN and an independent method, a
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FIG. 7. Plots of significant negative binomial Generalized Additive Model (GAM) fits to taxa abundance with §3 occurrences
for a metro-area normalized urbanization intensity index (MA-NUII) (A) and Threshold Indicator Taxa Analysis (TITAN) change
points with 90% bootstrap quantiles for robust indicator taxa showing increasers (red) or decreasers (black), with symbol size
proportional to IndVal z-scores (B). In panel A, black lines indicate robust declining indicator taxa from panel B (n = 19), red lines
are robust increasing taxa (n = 4), and gray lines are taxa that did not meet purity and reliability criteria in TITAN (n = 9). Many
taxa corroborate TITAN results of declines at ,12 MA-NUII, with other declines occurring with greater urbanization. Two
increasing taxa change most steeply ,15 MA-NUII, whereas one changes at ,50, and a 4th exhibits greater change when MA-
NUII . 60. See Appendices S2, S3 for detailed results and scatterplots of each taxon in response to MA-NUII, respectively.
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plurality of taxa declining within a narrow band of
low levels of MA-NUII, and independent corrobora-
tion of change-point synchrony.

Conclusion

Informed and thoughtful criticism is part of the
scientific process. As the authors of TITAN, we
welcome constructive critiques of the method or
suggestions for improvement, and we have received
many from academic colleagues and insightful users.
The approach used in TITAN is novel, and its
superficial similarity to other, well-known techniques
may actually hinder initial understanding among
analysts well versed in quantitative methods. There-
fore, we bear responsibility to distinguish TITAN’s
goals and to explain clearly and carefully how it
works in our publications. We note that several
independent groups have interpreted our published
descriptions successfully and applied TITAN in a
manner consistent with our original intent (Kail et al.
2012, Payne et al. 2013, Smucker et al. 2013). On the
other hand, our experience with others (e.g., Cuffney
et al. 2011) has convinced us that greater explanation
is necessary (King and Baker 2013). In return, we
expect a fair and complete representation of TITAN
from its critics.

The critique offered by C&Q shows evidence of
misunderstanding of TITAN’s primary functions.
Crucial components of its analysis were omitted,
simulated data for which we would recommend other
approaches were tested, and the data were log-
transformed, a step we would not recommend. Many
of the thresholds C&Q used as a baseline for
comparison with TITAN violated literature defini-
tions they themselves cited, and at least some of the
results they attributed to TITAN were potentially
misleading to uninformed readers. It is easy to
imagine that readers accustomed to looking at trends
in multimetric indicator responses might ask ‘‘how
TITAN does that’’ even though it does not, and
thereby conflate a distortion of TITAN with more
familiar approaches. We hope that our explanations
have clarified serious misunderstandings and will
help users assess whether TITAN is appropriate for
their data.

C&Q did identify 2 valid issues (i.e., z-score bias,
extreme sample skew) that could be problematic for
users working to identify change points with small
data sets, disturbance extremes, or the occasional
ubiquitous taxon. These concerns are easily addressed
via modification of TITAN’s output (i.e., IndVal
maxima are output as part of every TITAN object)
or post hoc simulation (see appendix 1 in Bernhardt et

al. 2012) with minor effect on TITAN’s core analysis.
TITAN is relatively unique in its goal of deconstruct-
ing community responses into taxon-specific change
as a complement to ecotoxicology, species distribution
modeling, and community analysis. We will continue
working to refine and improve TITAN’s performance
(and the clarity of our explanation) as we and other
investigators explore new applications and discover
new challenges.

We developed TITAN to address what we view as a
growing concern in community ecology that can be
broadly defined as over-reliance on summary metrics
(e.g., taxon richness, ordination scores) and biotic
indices (e.g., Ephemeroptera, Plecoptera, Trichoptera
richness, indices of biotic integrity) in system-level
analysis, assessment, and management (Suter 2009,
Baker and King 2010, King and Baker 2010, 2011). Like
many investigators, we struggled with various existing
analytical techniques in both basic and applied
contexts until we realized that our problem was not
statistical but conceptual. Understanding any level of a
hierarchical system requires appreciating the behavior
of components and broader contextual constraints
(Allen and Starr 1982, O’Neill et al. 1986). It should
not be controversial to state that to comprehend
community behavior fully, we must at least consider
what individual taxa are doing, just as surely as we
need to examine spatial or environmental contexts.

Previously, we demonstrated that a simulated
community built entirely of step-function decliners,
wedge-shaped increasers, and random noise pro-
duced single-variable community metrics (e.g., num-
ber of taxa) where nothing but smooth and monotonic
declines were evident (King and Baker 2010). We
hoped such findings would call attention to the need
for species-level analysis during community-level
investigations, regardless of whether TITAN or other
appropriate analytical techniques are used. The surge
of recent papers on species distribution modeling for
enhancing bioassessment supports this view (e.g.,
Olden et al. 2006, Elith and Leathwick 2009, Esselman
and Allan 2011). If a better approach exists for linking
community and species-level analyses, we suspect it
does not involve fitting a population of candidate
threshold regression models to each species distribu-
tion within a sampled assemblage.

We have difficulty imagining an underlying rationale
for analyzing community change that requires com-
munity thresholds to be composed solely of responses
that match threshold criteria or ecologically equivalent
change among component taxa. Different species
exhibit different tolerances and can occupy different
trophic positions, leading to distinct responses along
environmental gradients. We see no a priori reason to
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expect that all species will respond in the same manner
or at the same level along a novel environmental
gradient or to constrain community-level analysis by
such an assumption. Thus, the very existence of
coincident change points is exciting from a theoretical
and practical standpoint. The information aggregated
by TITAN is change: change that is robust to permuta-
tion, change that is robust to resampling, change that
maintains its direction and magnitude (i.e., remains
pure and reliable). We encourage users to explore that
change as they interpret community data.
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PODANI, J., AND B. CSÁNYI. 2010. Detecting indicator species:
some extensions of the IndVal measure. Ecological
Indicators 10:1119–1124.

QIAN, S. S., AND T. F. CUFFNEY. 2012. To threshold or not to
threshold? That’s the question. Ecological Indicators 15:
1–9.

QIAN, S. S., T. F. CUFFNEY, AND G. MCMAHON. 2012.
Multinomial regression for analyzing macroinvertebrate

assemblage composition data. Freshwater Science 31:
681–694.

QIAN, S. S., R. S. KING, AND C. J. RICHARDSON. 2003. Two
methods for the detection of environmental thresholds.
Ecological Modelling 166:87–97.

SMUCKER, N. J., N. E. DETENBECK, AND A. C. MORRISON. 2013.
Diatom responses to watershed development and
potential moderating effects of near-stream forest and
wetland cover. Freshwater Science 32:230–249.

SUTER, G. W. 2009. A critique of ecosystem health concepts
and indices. Environmental Toxicology and Chemistry
12:1533–1539.

TOMS, J., AND M. L. LESPERANCE. 2003. Piecewise regression: a
tool for identifying ecological thresholds. Ecology 84:
2034–2041.

WALSH, C. J., A. H. ROY, J. W. FEMINELLA, P. D. COTTINGHAM,
P. M. GROFFMAN, AND R. P. MORGAN. 2005. The urban
stream syndrome: current knowledge and the search for
a cure. Journal of the North American Benthological
Society 24:706–723.

WEHRLY, K. E., M. J. WILEY, AND P. W. SEELBACH. 2003.
Classifying regional variation in thermal regime based
on stream fish community patterns. Transactions of the
American Fisheries Society 132:18–38.

WHITTAKER, R. H. 1967. Gradient analysis of vegetation.
Biological Reviews 42:207–264.

WILLIAMS, J. W., AND S. T. JACKSON. 2007. Novel climates, no-
analog communities, and ecological surprises. Frontiers
in Ecology and the Environment 5:475–482.

ZUUR, A. F., E. N. IENO, AND C. S. ELPHICK. 2010. A protocol for
data exploration to avoid common statistical problems.
Methods in Ecology and Evolution 1:3–14.

ZUUR, A. F., E. N. IENO, M. J. WALKER, A. A. SAVELIEV, AND

G. M. SMITH. 2009. Mixed effects models and extensions
in ecology with R. Springer, New York.

Received: 24 September 2012
Accepted: 23 January 2013

506 M. E. BAKER AND R. S. KING [Volume 32

Downloaded From: https://bioone.org/journals/Freshwater-Science on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use


