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A critique of the use of indicator-species scores for identifying
thresholds in species responses

Thomas F. Cuffney1

US Geological Survey, 3916 Sunset Ridge Road, Raleigh, North Carolina 27607 USA

Song S. Qian2

Nicholas School of the Environment, Duke University, Durham, North Carolina 27708 USA

Abstract. Identification of ecological thresholds is important both for theoretical and applied ecology.
Recently, Baker and King (2010, King and Baker 2010) proposed a method, threshold indicator analysis
(TITAN), to calculate species and community thresholds based on indicator species scores adapted from
Dufrêne and Legendre (1997). We tested the ability of TITAN to detect thresholds using models with
(broken-stick, disjointed broken-stick, dose-response, step-function, Gaussian) and without (linear)
definitive thresholds. TITAN accurately and consistently detected thresholds in step-function models,
but not in models characterized by abrupt changes in response slopes or response direction. Threshold
detection in TITAN was very sensitive to the distribution of 0 values, which caused TITAN to identify
thresholds associated with relatively small differences in the distribution of 0 values while ignoring
thresholds associated with large changes in abundance. Threshold identification and tests of statistical
significance were based on the same data permutations resulting in inflated estimates of statistical
significance. Application of bootstrapping to the split-point problem that underlies TITAN led to
underestimates of the confidence intervals of thresholds. Bias in the derivation of the z-scores used to
identify TITAN thresholds and skewedness in the distribution of data along the gradient produced TITAN
thresholds that were much more similar than the actual thresholds. This tendency may account for the
synchronicity of thresholds reported in TITAN analyses. The thresholds identified by TITAN represented
disparate characteristics of species responses that, when coupled with the inability of TITAN to identify
thresholds accurately and consistently, does not support the aggregation of individual species thresholds
into a community threshold.

Key words: benthic macroinvertebrates, change point, indicator species scores, management threshold,
simulation, threshold.

Ecological thresholds are defined rather broadly
as abrupt changes in the response of an ecological
variable (e.g., species abundance) to a relatively small
change in an environmental driver (e.g., urbanization)
(Stringham et al. 2003, Groffman et al. 2006, Andersen
et al. 2009). Thresholds can indicate the point at which
an ecosystem transitions rapidly from one stable state
to another with a concomitant change in ecosystem
structure and function (Holling 1973, May 1977). Such
changes usually represent a diminishment in ecolog-
ical condition and the goods and services provided
by the ecosystem. From a management perspective,

threshold identification is important for establishing
criteria that prevent degradation of the ecosystem and
the subsequent high cost of restoration.

The ability of analytical methods to detect thresholds
accurately and consistently is critical to their use as
tools for establishing criteria that can protect aquatic
resources. Methods that overestimate the threshold
lead to degradation of the resource, whereas underes-
timates overprotect the resource, and inconsistent (i.e.,
highly variable) estimates provide unreliable protec-
tion. Many mathematical and statistical methods have
been proposed for detecting thresholds (Brenden et al.
2008, Sonderegger et al. 2009, Dodds et al. 2010), but
investigations of the accuracy and precision of these
methods and the conditions under which they may be
applied are relatively rare in the ecological literature
(Daily et al. 2012).
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Baker and King (2010, King and Baker 2010)
proposed a threshold-detection method based on the
indicator-value analysis used by Dufrêne and Le-
gendre (1997) to identify taxa that differentiate among
clusters. They describe their threshold indicator
analysis (TITAN) program as a nonparametric statis-
tical method for identifying thresholds of individual
species, testing the significance of the threshold,
estimating uncertainty in threshold estimates, and
combining thresholds into an aggregate measure that
depicts the community threshold. The TITAN pro-
gram identifies thresholds by ordering samples along
a disturbance gradient (e.g., urban intensity) and then
successively splitting the samples into 2 clusters each
time the disturbance variable changes value (Table 1).
The midpoints of the disturbance variables that
differentiate the clusters define a series of potential
thresholds in a species’ response. Indicator values
(IndVals) are calculated for the clusters associated
with each potential threshold using a modification of
the method used by Dufrêne and Legendre (1997):

IndValij=max
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�AAij1z�AAij2
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where i is the species index, j is the potential threshold

that defines the 2 clusters, �AA is the mean abundance in
a cluster, O is the occurrence in a cluster, n is the
number of samples in a cluster, and max is the

maximum. The potential threshold associated with
the cluster that has the maximum indicator value (32.5
and 72.5 for Species A and B in Table 1) is the
threshold for the response of that species.

TITAN restricts the minimum sample size for a
group to 3, though a minimum group size of 5 is
recommended. Consequently, the search for the
threshold often starts at some distance from the low
end and ends at some distance from the high end of
the gradient (Table 1) with the displacement depen-
dent upon the distribution of the data along the
gradient. Permutations of the data in the clusters are
used to establish the statistical significance of the
TITAN threshold under the null hypothesis of no
change (or clustering) in the abundance or occurrence
of the species along the gradient. The mean and
variance of the IndVals (mind, sind, respectively)
estimated from the permutations are used to calculate

the z-score (z=
IndVal{mind

sind
) for each species that is used

in the calculation of the community threshold.
Confidence limits for each species’ threshold are
derived by bootstrapping.

We investigated the ability of TITAN to identify
accurately and consistently thresholds in simple
models with known response forms, thresholds,
and variation. We calculated IndValijs with a direct
application of the methods of Dufrêne and Legendre
(1997) to assess how IndValijs change in these data sets
and how closely the potential thresholds associated
with the maximum IndValij correspond to the actual
thresholds and the thresholds identified by TITAN.
We also investigated the methods used to establish
statistical significance and confidence intervals for
thresholds in TITAN. The work presented here builds

TABLE 1. Indicator values (IndValij) calculated for each 2-group cluster (1 and 2) associated with potential thresholds (i.e.,
midpoint between unique disturbance values) for a hypothetical data set. * indicates potential threshold that would not be
considered in a threshold indicator analysis (TITAN) with a minimum cluster size criterion of 5.

Disturbance
value

Abundance of Potential thresholds

Species A Species B 3.5* 13.0* 22.0* 32.5 41.0 51.0 62.5* 72.5* 83.5* 93.5*

0 200 152 1 1 1 1 1 1 1 1 1 1
7 180 160 2 1 1 1 1 1 1 1 1 1
19 190 155 2 2 1 1 1 1 1 1 1 1
25 185 158 2 2 2 1 1 1 1 1 1 1
25 180 155 2 2 2 1 1 1 1 1 1 1
40 60 162 2 2 2 2 1 1 1 1 1 1
42 70 158 2 2 2 2 2 1 1 1 1 1
60 55 154 2 2 2 2 2 2 1 1 1 1
65 45 149 2 2 2 2 2 2 2 1 1 1
80 80 55 2 2 2 2 2 2 2 2 1 1
87 65 53 2 2 2 2 2 2 2 2 2 1
100 68 57 2 2 2 2 2 2 2 2 2 2
IndValij Species A 53.9 54.0 54.5 55.8 54.8 54.4 53.7 52.4 52.6 52.3

Species B 51.3 51.6 51.7 52.3 52.8 53.4 54.2 55.7 55.2 54.5
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on the analyses that were broadly outlined in Cuffney
et al. (2011).

Methods

We assessed the ability of the TITAN method to
detect thresholds accurately based on detection of
known thresholds in data sets simulating the responses
of a community of 225 species to a gradient of
disturbance ranging from 0 (least disturbed) to 100
(most disturbed) (Supplemental data file; available
online from: http://dx.doi.org/10.1899/12-056.1.s1).
We modeled species responses as variations of 6
response models: broken-stick (BS), disjointed broken-
stick (BSdj), step-function (SF), dose-response (DR),
Gaussian (GA), and linear (LIN) (Fig. 1A–F). BS, BSdj,
SF, and DR models (eqs 4–7 below) represented
responses with statistical thresholds (i.e., model pa-
rameters changed at the threshold), GA models (eq. 8
below) represented responses with an ecological rather
than a statistical threshold (i.e., the threshold is defined
by the species optimum, m, and model parameters do
not change at the threshold), and LIN models (eq. 3)
represented responses without a threshold. We based
models on 201 observations evenly distributed across
the gradient with no replication.

The 6 response models were defined as:

LIN : yj=azbxjze ½3�

BS : yj=
azb(xj{Q)ze1, if xƒQ

az(bzd)(xj{Q)ze2, if xwQ

�
½4�

BSdj : yj=
azbðxj{Q)ze1, if xƒQ

azd1ð Þz bzd2ð Þðxj{QÞze2, if xwQ

�
½5�

SF : yj=
aze1, if xƒQ

(azd)ze2, if xwQ

�
½6�

DR : yj=

aze1, if xƒQ1

azb xj{Q1

� �
ze2, if Q2§x

azbðQ2zQ1)ze3, if xwQ2

8><
>: wQ1 ½7�

GA : yj=Ae
{

(xj{m)2

2s2 ze ½8�

where yj is the jth observed species abundance, xj is
the jth observed disturbance value, a is the intercept, b
is the slope, Q is the threshold value, e is the error
term [,N(0, s2)], d is the offset value, A is the

maximum abundance, m is the species optimum, and
s is the species tolerance.

LIN models lacked a statistical or ecological
threshold and were defined by a single intercept
and slope (eq. 3, Fig. 1F). BS models consisted of 2
joined line segments (A–B and B–C; Fig. 1A) that
differed in slopes and intercepts (eq. 4, Fig. 1A). BSdj
models were similar to the broken-stick models
except that the end of the 1st line segment (B) and
the beginning of the 2nd (C) were displaced along the
y-axis with the displacement determined by d1 and d2

for intercepts and slopes, respectively (eq. 5, Fig. 1B).
SF models were similar to the disjointed broken-stick
models in that the ends of the 2 line segments (B and
C) were displaced along the y-axis (a1 and a2; eq. 6,
Fig. 1C), but differed in having 0 slopes for both line
segments. Because slopes are 0, the intercepts in the
SF model are the mean abundances in each line
segment (a1 = m1, a2 = m2). The DR models consisted
of 3 joined line segments (A–B, B–C, and C–D) in
which the slope of segment B–C differed from A–B
and C–D and the slopes of A–B and C–D may or may
not have differed from one another or from 0 (eq. 7,
Fig. 1D). The 3 segments of the DR model result in
thresholds at points B and C (Q1 and Q2, respectively).
GA models were modeled as a bell-shaped curve with
the species’ optimum (m) identifying the ecological
threshold (i.e., disturbance value at the transition
between increasing and decreasing species abun-
dance), s representing the species’ tolerance, and A
the maximum abundance (eq. 8, Fig. 1E). The tails of
the GA model were truncated by setting abundances
,1 to 0.

We modeled 41 species as LIN, 42 as BS, 41 as BSdj,
36 as SF, 33 as DR, and 32 as GA. We varied model
parameters (e.g., location of the thresholds, intercepts,
slopes, offsets, maximum abundance, means, and
standard deviations) to produce models with differ-
ent abundance and occurrence characteristics. Distur-
bance values were uniformly distributed across the
gradient and coupled with a single response value
(i.e., no replication). We examined the effects of
variability on the derivation of thresholds by intro-
ducing an additive error term with a normal
distribution of mean 0 and a standard deviation
expressed as a percentage (1, 5, 10, 25, 40, 60, 80,
and 100%) of the response value resulting in 2025
simulated species responses.

These species response models are relatively sim-
plistic and cannot provide a complete representation
of all possible response models, but they do represent
common patterns of response and provide important
insights into the ability of TITAN to detect thresholds
and assess uncertainty under a variety of conditions.
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The simulated responses represent conditions in which
the response form and thresholds are known and
unambiguous (variance = 0), and conditions in which
the threshold and response form, while known, are
obscured by varying amounts of random variability.
Our approach complements the hypothetical response

curves analyzed in Baker and King (2010) and King
and Baker (2010) that, while addressing realistic
responses, were not able to address issues related to
the conditions (e.g., response form, level of variability)
under which TITAN can and cannot accurately
identify thresholds. We used additional models to

FIG. 1. Response models used to examine the performance of the Indicator Value (IndVal) and threshold indicator analysis
(TITAN) methods: broken-stick (BS) (A), disjointed broken-stick (BSdj) (B), step-function (SF) (C), dose-response (DR) (D),
Gaussian (GA) (E), and linear (LIN) (F) models.
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investigate the effects of replicated data, data distribu-
tions (uniform, right-, and left-skewed), and distribu-
tions of 0 values on threshold detection in TITAN.

We calculated thresholds using the TITAN program
(Baker and King 2010) with the following default
values: 250 permutations, taxa present at a minimum
of 5 sites, minimum cluster size of 5, and log10(y + 1)-
transformation of abundance data. We repeated
TITAN analyses 25 times to assess variability in the
estimates of thresholds. We used a smaller set of
representative data to examine issues related to
bootstrapping because of the extremely long calcula-
tion times required for bootstrapping.

We calculated IndValijs independently of TITAN
with the method of Dufrêne and Legendre (1997). We
placed samples in ascending order along the distur-
bance gradient and defined potential thresholds as
the mid-points between successive unique distur-
bance values. We log10(y + 1)-transformed abundanc-
es prior to calculating IndVals. Table 1 illustrates the
process of identifying potential thresholds, calculat-
ing IndVals values (eqs 1, 2), and the effects of
TITAN’s minimum cluster size (5) on threshold
detection in a small data set representing 2 species
responses that follow a SF model. Two samples had
replicate disturbance values (25, 25) resulting in
potential thresholds at 22 ([19+25]/2) and 32.5
([25+40]/2), but not at 25 ([25+25]/2). The clusters
defined by each potential threshold are represented
as 1s and 2s in Table 1. IndVals can be calculated for
all potential thresholds, but TITAN requires a
minimum number of samples in each cluster. For
example, only 3 (32.5, 41.0, and 51.0) of the 10
potential thresholds in Table 1 would be considered
in a TITAN analysis if a minimum cluster size of 5
were used. Independently calculated IndValijs were

used to determine the response of IndValijs across the
gradient and the relationship between the maximum
IndValij (e.g., 32.5 for Species A and 72.5 for Species
B) and the TITAN threshold.

Results and Discussion

The TITAN program reported statistically signifi-
cant (p , 0.05) thresholds for all species response
models with ,25% variability (Table 2). However,
even under ideal conditions (0% introduced variabil-
ity) the thresholds detected by the TITAN program
were consistently accurate estimates of the actual
thresholds only for SF models (Fig. 2A–F). Under less-
ideal conditions (1–100% introduced variability), the
deviation of TITAN thresholds from actual thresholds
tended to increase when random variability was
§40%, particularly for SF models (Fig. 3). Deviations
for GA models were the largest of all the models
studied and exhibited little change as variability
increased. The level of variability (40%) at which
statistical significance dropped off and the deviation
of SF thresholds increased would not be unexpected
for replicate macroinvertebrate samples depending
upon the sampling methods used, the abundance of
the taxon, and the spatial distribution of the taxon
(Elliott 1977, Resh 1979).

Plots of IndValijs showed that the maximum value
corresponded to the actual threshold only for SF
models (Fig. 4A–H, Online Appendices; available
online from: http://dx.doi.org/10.1899/12-056.1.s2).
Maximum IndValij for BS, BSdj, and LIN models
tended to occur at either end of the species
distribution along the gradient (Fig. 4A–C, H, Online
Appendices). If the species’ abundance increased
across the gradient, IndValij decreased across the

TABLE 2. Percentage of species-response models (Online Appendices) that were identified as having statistically significant
thresholds (p ƒ 0.05) by the threshold indicator analysis (TITAN) program at levels of introduced variability ranging from 0 to
100% of the response. BS = broken stick, BSdj = disjointed broken stick, DR = dose response, SF = step function, GA = Gaussian,
LIN = linear.

Variability
(%)

Response model

BS BSdj DR SF GA LIN

0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 97.0 100.0 100.0 100.0
60 97.6 95.1 81.8 100.0 96.9 97.6
80 85.7 95.1 78.8 88.9 96.9 97.6

100 78.6 90.2 69.7 94.4 93.8 92.7
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gradient. Conversely, if abundance decreased across
the gradient, IndValij increased across the gradient.
If the species occurred over only a portion of the
gradient (truncated species distributions; Fig. 5A–F),

IndValijs reached a peak at the point where the
response curve intersected the x-axis rather than at
the actual threshold. This corresponds to the point on
the gradient that divided the data into a cluster

FIG. 2. Correspondence between thresholds estimated by threshold indicator analysis (TITAN) and the actual thresholds for
the broken-stick (BS) (A), disjointed broken-stick (BSdj) (B), step-function (SF) (C), Gaussian (GA) (D), and lower (E) and upper
dose-response (DR) (F) models (variance = 0%). The dashed line indicates the 1:1 correspondence between the actual thresholds
and the thresholds estimated by TITAN.
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consisting of all 0 values and a cluster consisting of
non-0 values.

IndValijs in GA models (Figs 4F, G, 5D, E, Online
Appendices) showed responses that were similar to
BS, BSdj, and LIN models when the model was
asymmetrically located along the gradient resulting in
an overall increasing or decreasing trend in the
abundance (GA13 and GA10; Figs 4G, 5D). When
GA models were symmetrically located across the
gradient (GA4 and GA1; Figs 4F, 5E), peak IndValijs
corresponded to the ends of the distribution and
reached a minimum, rather than a maximum, value at
the threshold (m). In these cases, multiple runs of the
TITAN program detected one or the other end of
the GA distribution resulting in a mean threshold
estimate that was much closer to the actual threshold
than any of the individual TITAN threshold esti-
mates. As with BS, BSdj, and LIN models, the IndValijs
in GA models peaked at the point or points where the
abundance curve intercepted the x-axis (GA1 and
GA10, Fig. 5D, E) rather than at the threshold when
the species occurred over only a portion of the
disturbance gradient.

IndValijs in DR models typically showed a peak that
lay between the 2 thresholds (DR4; Fig. 4E), though
some DR models showed a monotonic response
across the gradient with a maximum value at the

ends of the disturbance gradient if line segment A–B
or C–D was very short (e.g., DR17; Online Appendi-
ces). Step-function models (SF3; Fig. 4D, Online
Appendices) were the only response models that
showed a sharp peak in the IndValijs that correspond-
ed to the actual threshold and to the threshold
identified by TITAN.

Threshold identification in TITAN

Thresholds estimated by TITAN varied each time
the data were run through the program (Fig. 6) even
though the underlying data, potential thresholds, and
IndValijs did not change (Figs 4A–H, 5A–F, Online
Appendices). The variability in threshold estimates
occurs because TITAN uses the maximum z-score to
identify the threshold rather than the maximum
IndValij value (Fig. 7A–C). z-scores are derived from
a relatively small subset (e.g., 250–500) of all possible
permutations of the data in the clusters. Consequent-
ly, the statistics used to calculate z-scores (mind and
sind) and to identify the threshold vary each time the
program is run. Increasing the number of permuta-
tions would appear to address this issue, but other
problems with the derivation of z-scores cannot be
addressed simply by increasing the number of
permutations.

FIG. 3. Median deviation between the threshold indicator analysis (TITAN)-estimated threshold and the actual threshold at
various levels of introduced random variability.
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FIG. 4. Broken-stick (BS) models 2 (A) and 26 (B), disjointed broken-stick (BSdj) model 2 (C), step-function (SF) model 3 (D),
dose-response (DR) model 4 (E), Gaussian (GA) models 4 (F) and 13 (G), and linear (LIN) model 4 (H) showing the response
model (solid black line), the actual threshold (vertical dashed black line), the 25 thresholds estimates obtained from threshold
indicator analysis (TITAN) (vertical light gray lines), the mean TITAN threshold (vertical gray dash-dot line), and the
independently calculated indicator value (IndValij) (dark gray response line). Model abbreviations and numbers refer to the
models in Online Appendices.
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Disparities in cluster sizes across the disturbance
gradient introduce a systematic bias in the mind and
sind statistics used to derive the z-scores and identify
thresholds. This bias results in a U-shaped distribu-
tion across the gradient (Fig. 7A–C) with larger values
of mind and sind at the ends of the gradient and smaller
values in the middle. This pattern was evident for all
model forms (BS, BSdj, SF, DR, GA, LIN) examined

and results from disparities in cluster sizes associated
with potential thresholds across the gradient. For
example, if data are evenly distributed across the
gradient (uniform; Fig. 7B), the larger disparity in
cluster sizes at the ends (low and high) of the gradient
will bias mind and sind toward high values and z-scores
toward low values. This bias results in z-scores that can
peak near, but not at, the ends of the gradient and

FIG. 5. Effect of truncated species distributions (structural 0s) on the ability of TITAN to detect thresholds accurately in broken
stick (BS) models 7 (A) and 33 (B), disjointed broken stick (BSdj) model 35 (C), Gaussian (GA) models 10 (D) and 1 (E), and linear
(LIN) model 28 (F) showing the response model (solid black line denotes the response domain, black line with white center
denotes 0 abundances), the actual threshold (vertical dashed black line), the 25 thresholds estimates obtained from threshold
indicator analysis (TITAN) (vertical light gray lines), the mean TITAN threshold (vertical gray dash-dot line), and the
independently calculated indicator value (IndValij) (dark gray response line). Model abbreviations and numbers refer to the
models in Online Appendices.
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account for why TITAN does not identify thresholds at
the ends of the gradient when the IndValijs show a
monotonic response across the gradient. The bias in
mind, sind, and z-scores persist even if the distribution of
data across the gradient is highly skewed (Fig. 7A, C).

TITAN accurately and consistently detected thresh-
olds in responses only for SF models. It could not
accurately detect thresholds that were associated with
abrupt changes in rates (slopes) or direction (GA) of
response nor could it differentiate responses that
lacked a threshold (LIN). A more comprehensive
approach to threshold detection would be to compare
multiple alternative models (Qian et al. 2003, Qian
and Cuffney 2012) to determine whether the data fit a
response model that is indicative of a threshold or
whether the response cannot be differentiated from a
model without a threshold (e.g., linear model).

Statistical significance and confidence limits

TITAN uses permutation tests to determine the
statistical significance of threshold estimates. On the
basis of these tests, the thresholds derived for all

simulated species responses with ,25% introduced
variability were statistically significant (p ƒ 0.004),
even those derived from LIN responses that have no
thresholds (Table 2). The percentage of statistically
significant thresholds tended to decrease as variability
increased .25%, but most response models still had a
high percentage of statistically significant thresholds
at relatively high levels of variability.

TITAN assesses the statistical significance of
thresholds using the same permutations that were
used to calculate z-scores and identify thresholds
(Table 3). The maximum z-score across the gradient
(15.66) identifies the threshold (49.5), and the propor-
tion of permuted IndVals that are larger than the
IndValij associated with the threshold (52.99) is used to
determine the statistical significance of the threshold
(p = 0.002). This approach is problematic because the
permutations used to identify the threshold (i.e., find
the best 2-cluster classification) also are used to test
the statistical significance of the threshold (classifica-
tion). Evaluation of the statistical significance of
classifications using permutations requires that the
classification must be derived a priori for the tests to

FIG. 6. Variability (coefficient of variation) in the threshold estimates produced by the threshold indicator analysis (TITAN)
program for the broken-stick (BS), disjointed broken-stick (BSdj), step-function (SF), dose-response (DR), Gaussian (GA), and
linear (LIN) response models. Variability is based on 25 iterations of the TITAN program using the default value of
250 permutations.
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be statistically valid, as emphasized in analysis of
similarity (ANOSIM; Clarke and Gorley 2006) and
multiresponse permutation procedure (MRPP; McCune
and Mefford 1999) analyses. Because the permutation
tests in TITAN are used both to derive and to test the
classifications, the p-values derived from TITAN over-
estimate the statistical significance of the thresholds.

This accounts for the very low p-values (1/[number of
permutations + 1]) commonly observed even for LIN
models.

TITAN uses a bootstrap resampling method to
calculate confidence intervals for the selected thresh-
old. Bootstrapping uses Monte Carlo simulation to
obtain an approximation of the sampling distribution

FIG. 7. Variables (abundance and indicator values [IndValij]) and statistics (m, s, and z-scores of IndValijs) used to identify
thresholds in threshold indicator analysis (TITAN) based on a common broken-stick model with left-skewed (A), uniform (B), and
right-skewed (C) data distributions. The solid vertical line identifies the actual threshold and the dashed line indicates the
TITAN threshold.
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of the variable of interest by substituting random
samples from the existing data for random samples
from the target population (Efron and Tibshirani
1993). However, bootstrapping is not appropriate for
a split-point problem (Bühlmann and Yu 2002, Bane-
rjee and McKeague 2007), such as TITAN, because the
estimated standard deviation of the threshold will
always be smaller than the true standard deviation,
thereby leading to a narrower confidence interval. In a
TITAN analysis with k unique gradient values, the
number of potential thresholds (k 2 1) and their
values are fixed. The number of potential thresholds
in a bootstrap sample is always ,k 2 1 and represents
a subsample of the same k 21 potential thresholds in
the original data. In other words, the bootstrapping
process repeatedly selects the threshold from the
same pool of k 2 1 potential thresholds. Consequent-
ly, the bootstrapped estimated standard deviation is
much smaller than it should be and the estimated
confidence interval is much narrower than it should
be. This problem can be illustrated by comparing the
distribution of thresholds derived using bootstrap-
ping in TITAN to IndValijs (Fig. 8A–C). The displace-
ment of the distribution toward the center of the
gradient is apparent and is similar to the bias
introduced in z-score calculations using statistics
derived from permutations.

The uncertainty analyses incorporated into TITAN
(permutation tests and bootstrapping) have statistical
problems that lead to overestimates of the significance
of the thresholds and underestimates of confidence
intervals. A better approach to estimating uncertainty
would be to use Bayesian methods to estimate model
parameters (e.g., Q in eqs 4–7, m in eq. 8) from which
statistics (mean, standard deviation, and confidence
limits) could be derived and tested (Qian et al. 2003,
Qian and Cuffney 2012). Bayesian analysis would

provide better estimates of uncertainty that could be
applied to a wide range of model types and compared
to identify the most appropriate representation of the
response.

Abundance, occurrence, and thresholds

TITAN accurately detects thresholds in SF models
because the abrupt change in abundance that defines
these models (Fig. 1C, eq. 6) divides the data into 2
clusters that maximize the difference in average
abundance relative to other cluster pairs. Consequent-
ly, the potential threshold associated with the maxi-
mum IndValij and maximum z-value corresponds to
the actual threshold. In contrast, models in which
thresholds are defined by an abrupt change in the rate
(slopes in BS, BSdj, or DR; Fig. 1A, B, D) or direction
of response (GA; Fig. 1E) produce gradual changes
in average abundance across successive clusters. For
these models, neither maximum IndValij nor maxi-
mum z-value corresponds to the actual threshold
unless the model approximates a SF model (e.g., BSdj
model with slopes close to 0).

Threshold detection in TITAN also is strongly
influenced by the distribution of occurrences across
the gradient. As with abundance, TITAN readily
detects thresholds that correspond to an abrupt
change in occurrence. Such changes are often associ-
ated with the limits of a species distribution across the
gradient (i.e., species’ response domain; Fig. 9A, B) or
with the distribution of occurrences within a species’
response domain (Fig. 9C, D). TITAN’s sensitivity
to the distribution of occurrences is evident when
species responses include abrupt changes in both
occurrence and abundance. In these situations, TITAN
identifies thresholds associated with relatively small
changes in occurrence while ignoring thresholds

TABLE 3. Indicator values (IndValijs), means (mind), variances (sind), and z-scores obtained from 500 permutations of the data in
the clusters defined by the potential thresholds.

Permutation

Potential threshold

5.5 6.5 7.5 … 49.5 … 94.5 95.5 96.5

1 50.5 50.2 50.4 … 50.2 … 50.2 50.5 50.3
2 50.0 50.2 50.8 … 50.1 … 50.2 50.5 50.9
3 50.5 50.2 50.4 … 50.1 … 50.2 50.0 50.3
: : : : : : : : : :
498 50.5 50.2 50.0 … 50.1 … 50.2 50.5 50.9
499 50.5 50.2 50.4 … 50.1 … 50.2 51.1 50.3
500 50.5 50.7 50.4 … 50.0 … 50.7 50.5 51.7
Observed IndValij 51.58 51.60 51.61 … 52.99 … 51.69 51.67 51.66
mind 50.50 50.51 50.46 … 50.23 … 50.50 50.49 50.60
sind 0.41 0.33 0.37 … 0.18 … 0.35 0.43 0.40
z-score 2.67 3.24 3.13 … 15.66 … 3.46 2.74 2.63
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FIG. 8. Three response models that illustrate the changes in abundance, indicator values (IndValij), and distribution of TITAN
threshold estimates obtained from bootstrapping along the disturbance gradients. A.—Broken stick (BS)1. B.—BS2. C.—Disjointed
broken stick (BSdj).
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associated with large changes in abundance (Fig. 9B–
D). Abrupt changes in occurrence represent interesting
characteristics of a species response, but whether they
should be interpreted as thresholds (i.e., an abrupt
change in an ecological attribute) (Groffman et al. 2006)
and combined into a community threshold is a matter
of debate. For example, if the change in occurrence
arises because the species is present over only a portion
of the disturbance gradient, the resulting threshold will
be consistent with the threshold definition if the
transition to 0 constitutes an abrupt change (Fig. 9A),
but not if it constitutes a gradual change (Fig. 9B).
When the change in occurrence is associated with the
distribution of 0 values within the response domain of
the species (Fig. 9C, D), these 0 values constitute errors
in sampling (failure to detect the species when it is
present) or experimental design (response to environ-
mental factors not captured in the disturbance mea-
sure). A relatively small difference in the distribution
of these errors (0 values) can cause TITAN to identify a
threshold associated with the errors even if other
thresholds are present (Fig. 9C, D). Identifying thresh-
olds in the distribution of errors within a species’
response domain is ecologically and statistically
meaningful, but this threshold should not be combined
with thresholds representing other types of response
characteristics (e.g., abrupt change in slopes, change in

direction of response, or limits of the response domain)
to form a community threshold.

Confusing thresholds that arise from sampling 0s
(errors), structural 0s (response domains), or changes
in abundance (slopes and direction) can lead to errors
regarding the presence and ecological significance of
thresholds. Unfortunately, distinguishing between the
various causes of threshold detection to which TITAN
is sensitive can be extremely difficult, particularly in
real world situations where gradients may be short,
experimental control may be tenuous, and levels of
organism identification less than optimal (e.g., mix of
taxonomic levels), all of which make differentiating
responses along the disturbance gradient difficult.
Only when analyses are conducted on simple,
idealized responses with known forms, thresholds,
and levels of random variability can the limitations of
threshold methods be determined (Daily et al. 2012).

Synchronicity and data distributions

Baker and King (2010, King and Baker 2010, King et
al. 2011) identify synchronicity of thresholds among
species as a major finding of their work with TITAN.
However, at least some of this apparent synchronicity
probably results from a combination of inaccurate
threshold estimates, biases in z-scores, and effects of

FIG. 9. The effect of an abrupt change to 0 abundance (A), a gradual change to 0 abundance (B), and changes in the distribution
of 0 values within the response domain of a step-function (C) and broken-stick (D) model on thresholds identified by TITAN
(vertical gray dashed line).

484 T. F. CUFFNEY AND S. S. QIAN [Volume 32

Downloaded From: https://bioone.org/journals/Freshwater-Science on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



skewed data distributions. Because of z-score bias,
models (BS, BSdj, LIN, GA) in which IndValijs exhibit
a monotonic response over the gradient will yield
TITAN thresholds near the low (increasing abun-
dance) or high (decreasing abundance) end of the
gradient regardless of the actual threshold. This result
gives the impression that species have similar
(synchronous) thresholds when actual thresholds
may be very different or nonexistent. Strongly skewed
data distributions also cause TITAN to identify
species thresholds that are more similar to one
another than are the actual thresholds, particularly
when the minimum cluster size constraint (5) results
in inclusion of the actual threshold in the first or last
cluster (e.g., highest threshold in left-skewed and
lowest threshold in right-skewed data). This situation
causes TITAN to underestimate the actual threshold
and increases the similarity among thresholds. These
effects can be illustrated by comparing TITAN
thresholds derived for BS, BSdj, and SF models that
have thresholds at 20, 40, 60, and 80 along a gradient
that ranges from 0 to 100. The ranges in TITAN
thresholds for each model were strongly affected by
the data distribution (uniform, left-, or right-skewed;
Fig. 7A–C) and the direction of change (increasing
or decreasing) in abundances across the gradient
(Table 4). The thresholds derived from SF models
with uniform data distributions captured essentially
all of the range in the actual thresholds (.98%).
However, thresholds derived from SF models with
left- or right-skewed data distributions captured only
54 to 58% of the range because the low (20) and high
(80) thresholds could not be represented by potential
thresholds. Thresholds derived from BS and BSdj
models represented 9.3 to 68.2% of the range in actual
thresholds. These models were affected by both data
distributions (lowest thresholds associated with left-
and highest with right-skewed data) and direction of
change in abundance (lower thresholds associated
with increasing abundance).

These results reinforce the close association be-
tween the IndVal method and the SF model and
underscore the need to use threshold detection
methods that are appropriate for the underlying
model and data distribution. Applying TITAN to
responses that follow BS, BSdj, DR, GA, and LIN
models is likely to produce thresholds that are
inaccurate, strongly affected by data distributions,
and that indicate a greater level of synchronicity than
is supported by the actual models. Selecting an
appropriate threshold analysis requires a careful
understanding of the capabilities and limitations of
the detection method and its applicability to the
underlying data model (Daily et al. 2012). Character-
ization of individual taxon responses and detection of
thresholds can be improved by comparing multiple
alternative models (Qian and Cuffney 2012) to deter-
mine which model best represents the data and
whether that model contains a threshold.

Community threshold

The community threshold is intended to provide an
assessment of community responses by aggregating
the standardized thresholds for the species in the
community. The ecological significance of the com-
munity threshold depends on TITAN’s ability to
extract accurate thresholds that represent ecologically
equivalent information. Unfortunately, the thresholds
detected by TITAN are often imprecise and inaccu-
rate, particularly if the underlying response model is
linear or contains a threshold defined by a change in
response rate (slope) or direction (BS, BSdj, DR, GA,
LIN). TITAN thresholds can also represent very
different characteristics of a species response, such
as an abrupt change in average abundance (Fig. 9A),
the limits of a species’ distribution (Fig. 9A, B), or
variation in the distribution of sampling errors
(Fig. 9C, D) within a species response domain. The
diagnostics provided by TITAN (p-values, confidence
intervals) are not sufficient to assess which thresholds

TABLE 4. Ranges in threshold indicator analysis (TITAN) thresholds expressed as a percentage of the range in actual thresholds
(20, 40, 60, 80) for broken-stick (BS), disjointed broken-stick (BSdj), and step-function (SF) models with different data distributions
(uniform, left- or right-skewed data) and directions of change in abundances (i.e., increasing or decreasing across the gradient).

Model
Direction of change in

abundance across gradient

Distribution of data

Left Uniform Right

BS Decreasing 9.5 12.7 14.7
Increasing 9.3 22.2 33.0

BSdj Decreasing 36.3 32.2 18.3
Increasing 31.3 68.2 42.5

SF Decreasing 57.5 98.3 55.5
Increasing 57.7 98.7 54.2
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are statistically meaningful and which thresholds
represent ecologically equivalent information about
the species responses. Without this information,
combining TITAN thresholds into a community
threshold carries a significant risk of combining
ecologically disparate information into a single index.
Before a community threshold can be created, each
threshold identified by TITAN must be evaluated to
establish that it is a valid threshold and to determine
whether it represents equivalent characteristics of the
species responses. This evaluation has to occur
outside of the TITAN program and should involve
examining multiple alternative models to identify the
proper model form against which the TITAN-derived
threshold can be compared (Qian et al. 2003, Qian and
Cuffney 2012). Failure to conduct such in-depth
analyses can lead to erroneous conclusions regarding
the presence of thresholds and the effect of distur-
bance on the community. This situation could be
problematic if the community threshold were used to
establish criteria for protecting the resource, and the
resulting threshold was not protective.

Potential thresholds and replication

IndValijs derived independently of TITAN (Figs 4A–
F, 5A–H, Online Appendices) were identical to those
produced by the TITAN program (variable obsiv in
TITAN) as long as the data set did not contain replicate
samples. When replicate samples were present, TITAN
reported IndValijs for potential thresholds that corre-
sponded to the midpoints between all disturbance
values rather than between unique values. For exam-
ple, TITAN identified 8 potential thresholds (35, 45, 50,
50, 50, 50, 55, and 65) in a data set containing
abundances measured at disturbance values of 30, 40,
50, 50, 50, 50, 50, 60, and 70 rather than the 4 potential
thresholds (35, 45, 55, 65) that corresponded to the
midpoints of the 5 unique disturbance values (30, 40,
50, 60, 70). This approach is problematic because: 1)
successive clusters associated with the replicates do
not represent a change in disturbance, 2) no basis exists
for determining the order in which replicate responses
should be incorporated into successive clusters, and 3)
successive clusters contain varying numbers of re-
sponses for the same disturbance level. As an example,
the 4 potential thresholds at disturbance = 50 define 4
clusters that contain 1, 2, 3, and 4 of the replicate
responses in the left-hand clusters, and 4, 3, 2, and 1 in
the right-hand clusters, respectively. In contrast, the
potential threshold at 45 would combine all the
observations at disturbance ƒ40 into one cluster and
all values §50 into the other. Treating replicate samples
as independent potential thresholds apportions the

variability in replicate responses among multiple
clusters representing the same disturbance levels. This
variability should be associated with a single potential
threshold and 2-group cluster that includes all replicates
in the same cluster. The TITAN program should be
modified to drop IndValijs that are derived from
replicate samples to better quantify response variability
associated with disturbance levels.

Simplistic models

Our evaluation of the IndVal method and its
implementation in TITAN is based on the analysis of
relatively simple models. One could argue that these
models are unrealistic given the large amounts of
variability normally observed in species responses.
However, using simple models has enormous advan-
tages when it comes to evaluating the performance of a
threshold-detection method (Daily et al. 2012). The form
of the response model can be defined in precise
mathematical terms (eqs 3–8), which allows method
performance to be assessed across different model types
(e.g., BS, BSdj, DR, SF, GA, and LIN). The characteristics
that define each model (e.g., slopes, offsets, thresholds,
replication, variability, occurrences, and distribution of
data across the gradient) can be manipulated individ-
ually and collectively to identify effects on threshold
detection. The use of simple models allowed us to assess
the accuracy and precision of thresholds detected in
TITAN for various response models and to identify the
effects of the response domain (sampling and structural
zeros) and data distributions on threshold detection,
neither of which would have been feasible with more
realistic and less well understood data sets. The
philosophy that underlies using simple models for
method evaluation is very simple: 1) a method that
cannot accurately detect a threshold in a simple model
that represents the best statistical conditions for
threshold detection is unlikely to detect a threshold
accurately in a more complicated situation, and 2) the
behavior of an analytical method can be best understood
when the characteristics of the underlying models are
clearly understood prior to analysis.

Conclusions

The TITAN program has been advanced as a
nonparametric method of threshold detection that
can be applied to a wide variety of response models
(Baker and King 2010) and that can detect thresholds
at very low levels of disturbance (King et al. 2011). It
is an easy-to-use method that is beginning to appear
in the literature (Kail et al. 2012). However, our
analysis of the performance of TITAN indicates that it
has important limitations that need to be considered.

486 T. F. CUFFNEY AND S. S. QIAN [Volume 32

Downloaded From: https://bioone.org/journals/Freshwater-Science on 02 May 2024
Terms of Use: https://bioone.org/terms-of-use



The problems with TITAN primarily arise from 3
sources: 1) the use of the IndVal method (Dufrêne and
Legendre 1997) without consideration of its relation to
the underlying response model (i.e., a discrete method
applied to continuous data), 2) biases in statistics (mind,
sind) derived from permutations of the data, and 3)
the use of the same permutations to identify and test
the statistical significance of thresholds. Collectively,
these problems affect the accuracy, precision, and
consistency of threshold identification. The concept
of creating a community threshold by aggregating
thresholds in TITAN is ecologically attractive, but
great care must be exercised to establish that the
thresholds extracted by TITAN are accurate and that
they represent equivalent ecological characteristics of
the species’ responses. Combining disparate charac-
teristics of species responses can easily lead to an
aggregate threshold that has little ecological meaning
and that is unsuitable for supporting management
decisions or criteria development. Because the thresh-
old detection method used by TITAN (IndVal) gives
reliable results only for certain model forms (e.g., SF),
it is imperative that the response of each species be
evaluated carefully to know whether the response is
appropriate for analysis with TITAN. The diagnostic
tools provided with the TITAN program are not
sufficient to do this evaluation. Instead, multiple
alternative models should be evaluated and com-
pared (Qian et al. 2003, Qian and Cuffney 2012) to
determine which model best describes each species’
response, whether that model contains a threshold,
and whether it is amenable to TITAN analysis.
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Editor Heikki Mykrä are also greatly appreciated. The
research was completed while Song Qian was
supported by the USGS through a USGS–Duke
University cooperative agreement (08HQAG0121).

Literature Cited

ANDERSEN, T., J. CARSTENSEN, E. HERNANDEZ-GARCIA, AND C. M.
DUARTE. 2009. Ecological thresholds and regime shifts:

approaches to identification. Trends in Ecology and
Evolution 24:49–57.

BAKER, M. E., AND R. S. KING. 2010. A new method for
detecting and interpreting biodiversity and ecological
community thresholds. Methods in Ecology and Evolu-
tion 1:25–37.

BANERJEE, M., AND I. W. MCKEAGUE. 2007. Confidence sets for
split points in decision trees. Annals of Statistics 35:
543–574.

BRENDEN, T. O., L. Z. WANG, AND Z. M. SU. 2008. Quantitative
identification of disturbance thresholds in support of
aquatic resource management. Environmental Manage-
ment 42:821–832.
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