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Abstract

We derived and implemented two spatial models of May snow water equivalent (SWE) at

Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis

that vegetation structure is a control on snow redistribution at the alpine treeline ecotone

(ATE). The statistical models were derived using stepwise and ‘‘best’’ subsets regression

techniques. The first model was derived from field measurements of SWE, topography,

and vegetation taken at 27 sample points. The second model was derived using GIS-based

measures of topography and vegetation. Both the field- (R2 ¼ 0.93) and GIS-based models

(R2 ¼ 0.69) of May SWE included the following variables: site type (based on vegetation),

elevation, maximum slope, and general slope aspect. Site type was identified as the most

important predictor of SWE in both models, accounting for 74.0% and 29.5% of the

variation, respectively. The GIS-based model was applied to create a predictive map of

SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where

vegetation is scarce. The GIS model failed in large depressions, including ephemeral

stream channels. The models supported the hypothesis that upright vegetation has

a positive effect on accumulation of SWE above and beyond the effects of topography.

Vegetation, therefore, creates a positive feedback in which it modifies its environment and

could affect the ability of additional vegetation to become established.

Introduction

Snow is one of the more important influences on hydrologic,

biologic, and climatic processes at the alpine treeline ecotone (ATE;

Jones et al., 2001), which is defined as the gradient from tall, erect trees

growing at normal forest densities to the harsher environmental condi-

tions, biophysical disturbances, and competition at higher elevations

that preclude tree survival. Snow is particularly influential on the distri-

bution of plant communities at treeline, as it can offer plants protection

from otherwise inhospitable conditions (Walker et al., 1993) as well as

act as a stress and a disturbance (Walsh et al., 1994). Optimal depth of

snow cover can protect plants against frost damage, dehydration, and

wind abrasion (Wardle, 1968; Tranquillini, 1979). Snow also serves as

a reservoir of water and essential nutrients (Bowman, 1992; Fisk et al.,

1998). The timing of snowmelt is critical; deep snowpacks that persist

into late spring or summer can shorten the growing season, while early

snowmelt can lead to desiccation or the damping of phenological cycles

(Billings and Bliss, 1959; Allen and Walsh, 1993). Thus, the presence of

snowpatches can influence microenvironmental conditions, detrimen-

tally or favorably, by reducing the growing season in some places and

providing moisture in others where water might be limiting (Billings and

Bliss, 1959; Rochefort and Peterson, 1996; Cairns and Malanson, 1998

Moir et al., 1999; Alftine et al., 2003).

Wind, topography, and vegetation interactions are important

controls on snow accumulation and ablation, thereby influencing many

ecological processes along the ATE (Walker et al., 1993). Vegetation

itself plays an important role in treeline dynamics through positive-

feedback switches with snow. Formally, a positive-feedback switch is

defined as ‘‘a process in which a community modifies the environment,

making it more suitable for that community’’ (Wilson and Agnew,

1992). Positive-feedback mechanisms are responsible for such distinc-

tive vegetation patterns at the ATE as ribbon forest–snow glade

alternating sequences (Billings, 1969) and isolated krummholz patches

(Marr, 1977; Daly, 1984). In situations where snow serves to improve

seedling establishment, snow can serve as one mechanism for positive

feedback. For example, isolated patches of krummholz, surrounded by

alpine tundra, form above treeline in depressions that are relatively

protected from harsh conditions. Snow is scoured from tundra environ-

ments on ridge crests and subsequently transported downwind into

krummholz patches and subalpine forest where trees act as snowfences,

altering the local wind field and causing the formation of deep snowdrifts

in the lee of the patch (Hiemstra et al., 2002). Melting occurs earliest in

the growing season along the periphery of the snowpack, creating

suitable moisture conditions and offering protection for seedling

establishment without detrimentally shortening the growing season.

Consequently, conditions to the lee of the patch can promote seedling

establishment by improving the microclimate (Marr, 1977; Hätten-

schwiler and Smith, 1999). In this way, vegetation can act as an auto-

genic control on its environment.

This research contributes to a larger study that is attempting to

explain the effects of positive-feedback strength, seed rain, and environ-

mental gradients on the pattern of subalpine fir (Abies lasiocarpa),

a common krummholz species in the northern Rocky Mountains.

Malanson (1997) used simulation to identify at least two treeline patterns

that can result from autogenic processes rather than abiotic spatial

heterogeneity: a straight abrupt treeline and isolated patches. The

relationships uncovered between snow and vegetation characteristics

can help explain the mechanisms by which positive feedbacks affect

vegetation pattern, and can be used to calibrate similar spatially explicit

simulation models.
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Predicting snow distribution in a geometrically complex landscape

patterned with discontinuous vegetation structures is computationally

and logistically difficult. Most studies to date have focused on modeling

snow distribution over level terrain and are thus not applicable in

mountain environments. A notable exception is the SnowTran-3D

model developed by Liston and Sturm (1998), which has been applied at

treeline in the Medicine Bow Mountains and the Northern Colorado

Rocky Mountains (Greene et al., 1999; Hiemstra et al., 2002). The model

simulates snow redistribution by wind over three-dimensional, complex

terrain with variable vegetation cover. With inputs of solar radiation,

precipitation, wind speed and direction, air temperature, humidity,

topography, vegetation, and snow-holding capacity, the model calcu-

lates a wind-flow forcing field, wind-shear stress on the surface,

transport by saltation and turbulent-suspension, loss to sublimation, and

snow accumulation. The use of surrogate spatial variables for

environmental processes may allow statistical modeling that can reduce

the number of variables required without jeopardizing model integrity

and, moreover, could facilitate remote collection (e.g., through remote

sensing) of necessary data in rugged, often inaccessible, terrain.

The primary goal of this study was to test the hypothesis that,

accounting for the effects of topography, vegetation structure is

a significant control on snow redistribution at the ATE. The analysis

was conducted by implementing spatial models of snow water

equivalent (SWE) across the ATE on Lee Ridge in Glacier National

Park, Montana, U.S.A. Snow water equivalent is the theoretical depth of

water if a snowpack were to instantaneously melt. It is preferred over

snow depth as a measure of snow amount because of the spatial

variability of snow density resulting from redistribution and differences

in fresh snowfall (Goodison et al., 1981). A secondary methodological

goal was to evaluate the possibility of using remotely sensed and

geographic information system (GIS)-derived measures of these topo-

graphic and vegetation controls. Two statistical models were developed

and compared: one using topographic and vegetation variables mea-

sured in situ and one using similar variables derived from remote sens-

ing and processed variables using GIS. An advantage of the GIS-based

model was the ability to apply it to data covering Lee Ridge to produce

a predictive map of the distribution of SWE across the study site.

Data and Methods

STUDY AREA

The study area is in northeastern Glacier National Park in the

northern Rocky Mountains of Montana, U.S.A. (Fig. 1). Glacier

National Park lies astride the Continental Divide, and the Lee Ridge

study site encompasses approximately 0.75 km2 on its eastern flank. The

Divide serves as a natural barrier separating two distinct climatic

regimes; to the west of the Divide, a Pacific maritime climate dominates,

and to the east of the Divide a drier continental climate prevails. Here the

climate is characterized by long, severe winters and short, mild summers

(Finklin, 1986).

FIGURE 1. Location of study
area in northeast Glacier National
Park, Montana. Average May
SWE, for 1999 through 2002, were
based on measurements by field
crews following the protocol of the
Natural Resources Conservation
Service (NRCS).
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Previous studies have shown that topography is one of the most

important factors regulating environmental processes in eastern Glacier

National Park (Allen and Walsh, 1993, 1996; Brown, 1994a, 1994b;

Walsh et al., 1994, 1998; Allen, 1998; Cairns, 1999, 2001). Elevations

at the study site range from ca. 1985 m in the valleys on either side of

the ridge to 2195 m at the top of the ridge. The terrain is rugged and

rapid changes in elevation are common, especially on the eastern slope

of the ridge and the areas beyond the valleys on either side of the ridge.

Geomorphic disturbances, including rock and debris flows (Butler and

Walsh, 1994), have left accumulations of talus at the base of many

slopes. Evidence of fire (Kessel, 1979; Johnson and Larsen, 1991) and

animal disturbances (Butler, 1992) also exists. Soil depths have not

been shown to exhibit significant spatial variation across the ridge

(Malanson et al., 2002).

Topographic interactions with wind are important in understand-

ing snow, and consequently vegetation, distribution at the ATE. Data

from a climatic station, continuously operating on Lee Ridge from 1998

through 2001 at a height of 10 ft (approx. 3 m) revealed a southwesterly

prevailing winter wind direction with an azimuth of 2258 from north

(Fig. 2). These general wind patterns were in agreement with longer

term records reported by Finklin (1986) for most areas in the Park.

Vegetation at the study site progresses from closed-canopy forest

in the valleys to alpine meadows of fescue at mid-elevations to alpine

tundra on the top of the ridge. Tree cover in the study area is dominated

by subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea

engelmannii) with some five-needle pines (Pinus albicaulis Engelm.

and P. flexilis James). Lodgepole pine (P. contorta) is a dominant

species over much of the western side of the ridge because of recovery

from a historical fire event.

FIELD OBSERVATIONS

Snow depth and SWE data were collected by U.S. Geological

Survey personnel along six snow courses, consisting of four to six

sampling points each, extending from alpine tundra into subalpine

forest on either side of the ridge (Fig. 1). The sites ranged in elevation

from 2066 m to 2185 m. Snow data collection followed the protocol of

the Natural Resources Conservation Service (NRCS; USDA, 1984).

Though data were collected near the beginning of March, April, May,

and June during each year from 1999 through 2002, we only used the

May data. In addition to being the month with the most complete data

set (i.e., fewest missing observations), May is also early enough to not

have experienced a lot of melt yet late enough to have received most of

the snow for the season. Measurements were recorded close to the

beginning of the month; specific dates of visits were 3 May 1999, 8 May

2000, 25 April 2001, and 1 May 2002.

Variable field conditions resulted in substantial gaps in SWE

measurements (ca. 20% of data values were missing from the data set).

Snow depth plotted against SWE, based on measurements taken during

all months of the 4-yr study period, yielded a strongly positive

relationship (R2 ¼ 0.95; Fig. 3). Snow water equivalent was therefore

estimated for missing values based on this relationship. The measure of

SWE we used was the average of the May SWE values across the four

years (Fig. 1). Average May SWE values were, in general, greatest in

forested areas on either side of the ridge and just beyond the eastern lip

on the top of the ridge.

In addition to snow data, data were collected in the summer of

2002 to describe the topographic and vegetation conditions at each

sample point (Table 1). Vegetation observations were made in four

quadrants radiating 15 m from the respective snow posting. The length

of the axes was believed to exceed any wind eddy influence from wind-

forest canopy interaction (Greene et al., 1999). To capture the influence

of strong winter winds, quadrants were oriented such that the axes were

at a 458 angle to the prevailing winter wind direction. Quadrant axes

were, therefore, oriented at 3608 and 908.

Vegetation structural characteristics thought to be relevant to

snow redistribution were summarized in each quadrant. The relative

proportions of trees, meadow, tundra/barren, and krummholz were

noted at each site. In or near subalpine forest or krummholz patches,

additional variables of interest included average vegetation height,

distance to the nearest tree or treeline (as appropriate) in the SW

direction, and the percent of each quadrant occupied by forest gaps.

Artificially large values (i.e., 9999) were entered where distances to

trees or treeline in the SW direction were so large as to prohibit

measurement. Heights of representative samples of woody stems and

distances were measured with a handheld digital laser rangefinder.

Additionally, all sites were described using a structural site-type

variable, defined in terms of proximity to tree cover in the SW direction

as forest, edge, edge/open, or open (coded ordinally as ‘‘1’’, ‘‘2’’, ‘‘3’’,

FIGURE 2. Wind rose. The wind direction frequencies are arranged
in ‘‘petals’’ aligned with the wind directions, and the wind speed
frequencies are shown using varying-width segments of the petals.
Concentric circles represent the percentage of time wind of a given
intensity comes from a given direction.

FIGURE 3. Snow Depth versus SWE. A total of 219 snow depth and
SWE measurements, acquired between 1999 and 2002 on Lee Ridge,
showed a strong positive relationship, so SWE was estimated for
missing values based on this relationship where data were lacking.
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and ‘‘4’’ in the model, respectively). Sites were designated forest if they

were located within closed- or open-canopy forest, edge if they were

proximal to treeline or a krummholz patch of large stature, edge/open if

they were proximal to individual trees or a krummholz patch, and open

if they were not proximal to upright vegetation.

Topographical measures of surface slope, aspect, and curvature

were also recorded at each snow posting. Relative elevation measure-

ments were made at locations 3 m from the sample points in each of four

directions, oriented parallel and perpendicular to the maximum slope.

An apparatus made of two posts, each having a protractor secured to it,

and cord running between them was fashioned to make these measure-

ments. These measurements were used to derive slope and profile and

plan curvature, as well as slope and curvature in the SW direction.

When the SW aspect (i.e., 2108) differed by less than 158 from either the

direction maximum slope or its orthogonal, measurements made in

these directions were used in place of separately making measurements

in the SW direction. Curvature values range from�1 toþ1, representing

maximum concavity and maximum convexity, respectively. In addi-

tion, a measure of general slope and aspect was recorded. Slope and

aspect were measured with a compass over the broad area, defined by

breaks in terrain continuity (i.e., rapid changes in slope or aspect)

around the sampling site. All measures of aspect were scaled to the

range �1 to þ1, representing northeast-facing and southwest-facing

slopes, respectively.

GIS-BASED DATA

Alternative measures of terrain and vegetation structure were

derived remotely and processed within a GIS. All GIS-based variables

are summarized in Table 2.

Terrain Data

A digital elevation model (DEM) of the Lee Ridge area was

generated using a series of 37 ground control points (GCPs) with

elevations determined with differential GPS and a stereo pair of high-

resolution aerial photographs (scale: 1:15,000; Geddes, 2003). The

automatic DEM extraction algorithm of OrthoEngine (PCI, Inc.,

Richmond Hill, Ontario) was used to extract elevation values and

output them to a 5-m resolution DEM (Fig. 4A). The accuracy of the

DEM was evaluated using two different data sets and compared

against the 30 m DEM from the USGS (USGS, 1987). First, the DEM

was compared with the GPS-based ground control points that were

used to create the DEM. The calculated root mean squared error

(RMSE) of the DEM was 9 m. Though this was a higher level of

average error than the USGS DEM (6 m), both DEMs had errors (i.e.,

difference from the control points) that were less than 7 m for about

two-thirds of the sample points. Further, the highest errors were

observed in the valleys adjacent to the ridge, i.e., outside the area of

interest. In a second evaluation, we compared the DEM with a total of

278 points collected within a small portion of the study area using

a total station theodolite (Topcon GTS-226), which had an accuracy of

about 15 cm. The linear regression relationship between elevations in

the DEM was strong (R2 ¼ 0.75) and substantially stronger than that

obtained for the USGS DEM (R2¼ 0.19). Together the error analyses

suggest that the 5-m DEM suffered some areas of large error,

especially in the valleys to the east and west of the ridge, perhaps

because of the influence of trees on DEM heights, but was superior to

the USGS DEM in representing local surface form on the ridge, which

is the primary concern in understanding snow redistribution.

Elevation and geographic coordinates were extracted directly from

the DEM. Grids of slope, aspect, profile curvature, and plan curvature

were created in ArcGIS. As with the field-based measures, aspect was

scaled to range from �1 to þ1, representing northeast-facing and

southwest-facing slopes, respectively.

Measures of the general aspect and slope of a site were derived

from a triangulated irregular network (TIN) that was created from the

DEM. Each triangle of a TIN represents a plane with a single slope and

aspect over the contained area. The junctions of the planes, then,

represent breaks in the terrain beyond a defined threshold. ‘‘Z

tolerance’’ describes the degree of generalization applied in converting

a gridded DEM to a TIN. Higher Z-tolerance values suggest more

TABLE 1

Summary of all potential variables for the field-based model.

Variable Explanation

Site type Site type designation: open, edge/open, edge, or forest.

Distance to nearest tree in the SW direction Distance (m) when appropriate.

Distance to treeline in the SW direction Distance (m) when appropriate.

Proportion trees Proportion tree cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion meadow Proportion meadow cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion tundra/barren Proportion tundra cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion krummholz Proportion krummholz cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Avg. tree height Tree height (m) of a representative sample of trees, measured in NW, NE, SE, and SW quadrants.

Percent gaps Percent gaps in the presence of tree cover, measured in NW, NE, SE, and SW quadrants.

Elevation Elevation (m) at the location of the sampling site.

X coordinate X coordinate in the UTM coordinate system acquired by a GPS receiver.

Y coordinate Y coordinate in the UTM coordinate system acquired by a GPS receiver.

(X coordinate)2 Square of the X coordinate.

(Y coordinate)2 Square of the Y coordinate.

Aspect Rescaled aspect ranging from �1 (NE) to þ1 (SW).

Avg. max. slope Average slope measured 3-m upslope and downslope in direction of maximum slope.

Profile curv. Curvature over 6 m in the direction of maximum slope.

Avg. orthog. slope Average slope measured both 3-m upslope and downslope from sampling point in direction orthogonal to maximum slope.

Plan curv. Curvature over 3 m in the direction orthogonal to maximum slope.

Avg. SW slope Average slope measured 3-m upslope and downslope in SW direction.

SW curv. Curvature over 3 m in the SW direction.

General aspect Aspect ranging from �1 to þ1 indicating northeast-facing and southwest-facing slopes, respectively, measured along the

continuous surface on which the sampling point was.

General slope Slope measured along the continuous surface on which the sampling point was located.
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generalization. The benefit of using a TIN in this study was its ability to

describe the surface at a resolution coarser than the DEM. The TIN

created for this purpose was created with a Z tolerance of 2.06 m (i.e., [Z

max� Z min]/100), which resulted in an average triangle size of 4038

m2. Slope and aspect were extracted from TIN faces with snow

sampling sites. The TIN was then transformed to a raster (i.e., pixel) file

to be compatible with the modeling format requirements. Orthogonal

slope, slope in the SW direction, and curvature in the SW direction were

not found from the GIS data.

Vegetation Structural Data

Vegetation structural classes were mapped by classifying a 1-m

resolution Airborne Data Acquisition and Registration (ADAR)

multispectral image, acquired for the study area on 28 July 1999. An

object-oriented (OO) classification approach was employed to identify

vegetation objects that were, on average, much larger than the resolution

of the imagery (Geddes, 2003). Using eCognition software (Definiens

AG, Munich, Germany), we segmented the image into spatially con-

tiguous and spectrally homogenous spatial clusters. Next, a minimum of

FIGURE 4. Digital data created for GIS-based model: (a) digital elevation model; (b) vegetation classification.

TABLE 2

Summary of all potential remotely-acquired model variables. Data were extracted from a DEM, or its derivatives, of the study area or a vegetation
classification in a GIS.

Variable Explanation

Site type Site type designation: open, edge, or forest.

Proportion trees/krum. Proportion tree/krummholz cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion meadow Proportion meadow cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion tundra Proportion tundra cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Proportion snow Proportion snow cover ranging from 0 to 1, measured in NW, NE, SE, and SW quadrants.

Elevation Elevation (m) at the location of the sampling site.

X coordinate X coordinate in the UTM coordinate system.

Y coordinate Y coordinate in the UTM coordinate system.

(X coordinate)2 Square of the X coordinate.

(Y coordinate)2 Square of the Y coordinate.

Aspect Aspect ranging from �1 (NE) to þ1 (SW).

Avg. max. slope Average slope measured in a 5-by-5-meter neighborhood (5-meter cell size) in direction of maximum slope.

Profile curv. Curvature over 10 m in the direction of maximum slope.

General aspect Aspect ranging from �1 (NE) to þ1 (SW), measured on the TIN facet of the sampling point.

General slope Slope measured on the TIN facet of the sampling point.
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20 of the resulting polygons was manually selected to represent each of

four vegetation classes (i.e., forest, meadow, tundra/barren, and snow)

as training polygons. A classification tree approach was used to develop

rules to assign all polygons to one of these classes based on the spectral

and spatial characteristics of the polygon (Fig. 4B). One hundred

additional polygons were randomly selected and manually labeled for

accuracy assessment in comparison with the classified map. Using

a fuzzy accuracy assessment methodology (Gopal and Woodcock,

1994), we found that 95% of the evaluation polygons were assigned to

the best class, determined by an image interpreter.

Proportions of vegetation classes within quadrants radiating 15 m

from snow sampling sites were acquired in ArcGIS by summarizing

land-cover types from the vegetation classification within wedges that

mimicked field sampling dimensions and locations. Because of the

vegetation classification scheme, there were two inconsistencies with

field measurements; trees and krummholz were not distinguished in the

classification and were, therefore, considered together, and snow was

considered as a discrete class. Forest, edge, and open sites were iden-

tified by means of proxies from the vegetation classification. A 15-m

radius wedge oriented to the SW (1808–2708) was superimposed on each

site in the vegetation classification, and the cover type comprising the

majority of the area was identified. Sites were then classified as forest,

edge, or open (coded ordinally as ‘‘1’’, ‘‘2’’, and ‘‘4’’, respectively) if the

majority cover type in the SW direction was forest/krummholz,

meadow, or tundra/snow, respectively. The edge/open site type

designation (coded ‘‘3’’ in the model generated by local measures)

was omitted from the remote model derivation, as were distances to trees

and treeline in the SW direction due to software limitations. Tree heights

and percent forest gaps were difficult to ascertain without additional data

and were, thus, not acquired digitally.

STATISTICAL MODELING

Statistical methods involved data exploration and the determina-

tion of a regression model that predicts average May SWE (in cm),

followed by residual diagnostics. Two models were created and

compared: one using the field-based measures as predictor variables

and the other using GIS-based measures. The models were developed

with a total of 27 observations. Though additional observations would

improve the robustness of the findings, the intensive, multiyear effort

required to collect the observations in a remote location limited our

ability to increase the sample size without excessive cost.

The statistical models were fitted through an iterative process of

model fitting in the Minitab statistical software package (Minitab, Inc.,

State College, PA). First, stepwise regression, recommended with large

numbers of variables (Neter et al., 1996), was used to evaluate potential

models with different numbers of variables. The stepwise regression

formed the optimum combination of variables for explanation at each of

progressive numbers of explanatory variables. Potential models were

chosen based on model fit (R2). All variables suggested as potential

predictors were then input for a best-subsets regression. The best-subsets

algorithm searched for the best subsets from all variables in terms of

predictability. Suitable models were then chosen based on their fit (R2),

the numbers of variables in the respective models, and ecological

defensibility. Because the process was highly iterative in nature, only the

final models are presented below, with comments on interesting aspects

of failed models. Variance inflation factors were calculated to evaluate

the models for multicollinearity; values less than 10 are typically

accepted to indicate a lack of multicollinearity effect on the model.

Satisfactory models were then implemented with an ordinary least

squares (OLS) algorithm in ArcView GIS with the S-Plus extension

(Mathsoft, Inc., Seattle WA). Residuals were investigated for violations

of regression model assumptions. Linearity of relationships and

normality and homoskedasticity of residuals were evaluated graphically

using scatterplots, histograms, and plots of model predictions versus

model residuals. The Moran coefficient (Bailey and Gatrell, 1995) was

used to test for spatial dependence. Moran’s I values vary from�1 (i.e.,

negative spatial autocorrelation) to þ1 (i.e., positive spatial autocorre-

lation), with values significantly higher than zero suggesting that near

values of residuals tend to be similar (i.e., not independent) and that

Type I errors are possible. To generate a spatial weight matrix, which is

necessary to compute the Moran coefficient, the point sampling

locations were transformed into areas by generating Thiessen polygons.

A matrix of first-order neighbor weights, which describes adjacent

polygons as contiguous, was created and Moran’s I calculated.

A map of ‘‘predicted’’ May SWE pattern was generated by

applying the best regression model from the GIS-based variables to all

raster cells on the ridge. This ability to map, i.e., ‘‘predict,’’ SWE at

unmeasured locations is a distinct advantage of using GIS-based

measures as predictors in the model.

Results

Similar models were produced with field- and GIS-based

predictor variables (Table 3). Stepwise and ‘‘best’’ subsets regression

identified site type as the single best predictor of SWE in both models,

accounting for 74.0 and 29.5% of the variation in May SWE,

respectively. The best model in each case included site type, elevation,

maximum slope, and general slope aspect. In addition, the field-based

model included the proportion tree covered in the SE quadrant as

a significant predictor, but that version of the model was rejected

because of a high degree of collinearity between this variable and site

type (variance inflation factor ¼ 9.9).

The patterns of response of SWE to the predictor variables were

similar between the models (Fig. 5). In each case, SWE decreased with

increasing site type (which increased ordinally from forest sites

through edge to open sites), elevation, and aspect relative to NE (�1)

and SW (þ1), and increased with increasing slope.

Analysis of error patterns revealed no significant violations of

regression assumptions. Assumptions of residual normality and

homoskedasticity were not violated, based on graphic analysis, nor

were residuals spatially autocorrelated in either model (Table 3). The

variance inflation factor values, as an indicator of multicollinearity in

the model, were all less than 2.0.

The GIS-based model of average May SWE was applied to the

entire study area, resulting in a 5-m resolution map of predicted SWE

TABLE 3

Ordinary Least Squares models generated to explain May SWE across
Lee Ridge. Two models were created: a field-based model using
measures acquired in situ and a second model using only remotely
acquired variables from a GIS. Measures of variable significance (t),
model fit (R2), and residual spatial autocorrelation (Moran’s I) are

included for each model.

May SWE (cm) t (P-value) R2 Moran’s I

Field-based model þ466.20 0.93 �0.02

(P ¼ 0.87)

�18.63 (site type) �11.62 (0.000)

�15.43 (gen. aspect) �5.22 (0.000)

þ0.98 (slope) 3.53 (0.002)

�0.19 (elevation) �2.87 (0.009)

GIS-based model þ736.60 0.69 �0.31

(P ¼ 0.98)

�21.92 (site type) �3.96 (0.001)

�20.78 (gen. aspect) �3.85 (0.001)

þ1.41 (slope) 2.81 (0.010)

�0.32 (elevation) �2.30 (0.031)
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(Fig. 6). Because of the small sample size no additional ground control

data were available to evaluate the accuracy of the predictions.

However, the fit of the model (Table 3) and the mapped output lend

insight to model performance. The inclusion of general aspect data,

which were derived from a TIN, propagated some of the sharp

boundaries of the TIN faces. These were clearly discernible on an initial

version of the predicted SWE map. For this reason, the version shown in

Figure 6 was smoothed with a 5-by-5 averaging filter.

Discussion

Together, vegetation and topography serve as important controls

on snow distribution, resulting in distinct spatial patterning of snow

accumulation at the ATE (Billings, 1969; Daly, 1984; Hiemstra et al.,

2002). The statistical models developed here (Table 3) revealed

a significant role of vegetation as a control on average May SWE,

even while accounting for the topographic effects. In general, the

highest SWE values were found to the lee of trees, where trees act as

snow fences, promoting snowdrift accumulation. Snow water equivalent

decreased in a sequence of site types from forest to forest edge, to edge/

open, to open positions. On average, each step in the progression of site

types, holding topographic variables constant, resulted in a reduction in

SWE of 18.6 cm, based on the field-based model. The comparable value

from the GIS-based model was 21.9 cm.

The models also demonstrated the importance of topography in

controlling May SWE across Lee Ridge. In the field-based model,

topographic measures alone accounted for 49.1% of the variation in

SWE. Elevation, shown to be the most important determinant on treeline

patterns (Brown, 1994a), is related to a complex of environmental

gradients and, thus, is likely acting as a surrogate for other variables

(e.g., wind speed and vegetation types). Also, sites oriented toward the

NE (i.e., the leeward direction) accumulated more snow, most likely

because of wind scouring on windward slopes, transport, and

deposition. Interpretations of the effect of any individual variable in

the models must recognize variable interactions. For example, areas

with the highest slopes on Lee Ridge are coincident with forest and

meadow cover on the sides of the ridge, where vegetation serves as

protection from harsh environmental conditions, and tundra/meadow

communities just beyond the eastern lip on the top of the ridge, where

snow accumulation can be explained by wind-topography relationships.

There are several potential sources of difference between the field-

and GIS-based models. Different levels and types of data quality

between the field and GIS-derived measures were clearly present. For

example, differences in the resolution and accuracy of the topographic

measures could have a large impact. Elevations in the DEM were likely

over-estimated in areas of tall, dense vegetation. Even small changes in

surface characteristics can have a large influence on wind speed, and

thus on snow redistribution (Essery et al., 1999). Furthermore, some of

the variables necessarily had slightly different definitions when derived

in GIS compared to their field-based counterpart. For example, in the

GIS-derived model site type was determined based on the vegetation

map rather than observation and designation in the field.

Despite these potential differences, and despite a relatively small

number of sample points, the two models were remarkably similar. Fit

was strong in both models, though stronger in the field-based model

(R2¼ 0.93 vs. 0.69). The directions of relationships between SWE and

the predictor variables were identical and the coefficients were simi-

lar. Thus, the forms of the models were very consistent. Though the

GIS-based model was based strictly on remotely sensed information, we

conclude that the information content, in terms of our ability to predict

average May SWE, was similar to but not as good as information

collected in the field at much greater expense.

The similarity of the field- and GIS-based models also suggests that

the findings are robust despite the small sample size. If the findings were

spurious because of small sample size, one might expect very different

results given sets of predictor variables calculated by independent

means. The consistency of relationships among the models suggests that

the findings are not simply a result of ‘‘over-fitting’’ a small sample.

FIGURE 5. Predictor-response scatterplots of variables in the field- and GIS-based models.
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Predicted patterns of SWE across the ridge, based on the GIS

model (Fig. 6), were mostly consistent with expected results. SWE was

predicted low on top of the ridge and higher at lower elevations on

either side of the ridge where forest cover is dense. Two problematic

areas were in the ephemeral stream channel to the west of the ridge and

on the perennial snowfield in the valley to the east of the ridge. In both

of these areas, where snow is known to accumulate in abundance,

especially to the east, the model predicted relatively low SWE values.

This resulted from the relative importance of site type in the model.

The channels in the valleys are devoid of upright vegetation, while

similar areas barren of tree cover tended to correspond to the upper,

open areas on the ridge where wind scouring is great and SWE is low.

Therefore, the model underestimated SWE in the valleys. This finding

suggests that for prediction purposes, as with all statistical models, the

model is limited to the relatively narrow range of conditions in which it

was fitted.

Conclusions

Two spatial models of SWE were derived for Lee Ridge in Glacier

National Park, Montana as part of a larger study on treeline

determinants: one calibrated with measures of topography and

vegetation characteristics measured at 27 points in situ and one

calibrated with similar measures acquired remotely and processed in

a GIS. The GIS-based model was then applied to predict average May

SWE across the study site. Both models included the variables site type

(forest, edge, or open), elevation, maximum slope, and slope aspect,

supporting the importance of topography (Brown, 1994a) and

vegetation (Billings, 1969; Daly, 1984; Hiemstra et al., 2002) in

determining snow redistribution across Lee Ridge.

The results provide evidence that the presence of upright

vegetation has a positive effect on accumulation of SWE while ac-

counting for the effects of topography. As a result, the effect of snow

can serve as a feedback in the formation of vegetation patterns at the

ATE. The role of vegetation was made explicit in the models by the

inclusion of site type. Notably, the site type variable relates to the wind

protection from trees. SWE decreased from forest to forest edge to

open positions, as trees act as snow fences and promote snowdrift

accumulation (Marr, 1977; Hättenschwiler and Smith, 1999; Hiemstra et

al., 2002). The GIS-based model had a lower fit (R2 ¼ 0.69) than the

field-based model (R2 ¼ 0.93), possibly due to differences in data

quality, variable definitions (i.e., site type), or scale issues. Despite these

differences, the high degree of similarity of the models suggests that the

findings are robust and that the small sample size did not lead to spurious

model fits. The implementation of the GIS-based model across Lee

Ridge predicted SWE to be lowest on the top of the ridge where wind

scouring is the greatest and there is a paucity of upright vegetation. The

model failed in areas of snowpatches and ephemeral stream channels,

where snow is known to accumulate.

A logical next step in this research is to evaluate SWE model

performance quantitatively. To do this, a substantially larger data set of

field measurements is required to allow for model cross-validation.

Additionally, new remote sensing technologies, like RADAR (Dobson

et al., 1995) and LIDAR could be used to provide more direct estimates

of the effects of three-dimensional vegetation structure on snow

accumulation. Finally, the results of this research will contribute to

a study of pattern and process relationships at the ATE and will be

incorporated into a spatially explicit simulation model in which snow-

vegetation feedbacks play a part in the formation of vegetation patterns.
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